(1) Fix a positive integer \(n \in \mathbb{N} \). Give an example of a groupoid \((G, \circ)\) such that it has exactly \(n \) number of left identities.

(Warning and Hint: Do not give the example of \(a \circ b = b \) for all \(a, b \in G \) with \(|G| = n\); it will not be acceptable, since it’s a stupid answer :-). Instead, consider the following: \(G = \{ (a \ b) \mid a, b \in \mathbb{C}, a^n = 1 \text{ and } b^n = 1 \} \) with a binary composition \(\circ \) defined as the usual matrix multiplication. Now do a similar computation as we did during the lecture.)

(2) Let \(X \) and \(Y \) be two finite sets with \(|X| = m\) and \(|Y| = n\). Let \(f : X \rightarrow Y \) be an injective (i.e., one-to-one) function. If \(1 < m < n \), then prove that \(f \) has at least two left inverses. (Remark: A function \(g : Y \rightarrow X \) is called a left inverse of \(f \) if \(g(f(x)) = x \) for all \(x \in X \).)

(3) Let \(G \) be the set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \). Define a binary composition \(\circ \) on \(G \) by \(f \circ g \) as the usual composition of functions, i.e., for all \(f, g \in G \), \((f \circ g)(x) = f(g(x))\) for all \(x \in \mathbb{N} \).

(a) Show that \((G, \circ)\) is a monoid.
(b) Give an example of an injective function \(f : \mathbb{N} \rightarrow \mathbb{N} \) which is not surjective (i.e., not onto).
(c) Prove that this \(f \) has infinitely many left inverses. (Hint: Use the same idea as in the proof of the Problem (2) to construct the left inverses of \(f \).)

(4) Let \(X \) and \(Y \) be two finite sets with \(|X| = m\) and \(|Y| = n\). Let \(f : X \rightarrow Y \) be a surjective (i.e., onto) function. If \(m > n \), then prove that \(f \) has at least two right inverses. (Remark: A function \(g : Y \rightarrow X \) is called a right inverse of \(f \).)
if \(f(g(y)) = y \) for all \(y \in Y \).

(5) Give an example of a surjective function \(f : \mathbb{N} \to \mathbb{N} \) which is **not injective at infinitely many points**.

(Remark: A function \(f : A \to B \) is called not injective at infinitely many points if the set

\[S = \{ b \in B \mid \text{the inverse image set } f^{-1}(b) \text{ contains at least 2 points of } A \} \]

is an **infinite subset** of \(B \)).

(6) Prove that this \(f \) has **infinitely many right inverses** in the monoid \((G, \circ)\) defined in Problem (3).

(Hint: Use the same idea as in the proof of the Problem (4) to construct the right inverses of \(f \)).

(7) Let \((S, \circ)\) be a **finite semigroup** and \(a \in S \). Then prove that there exist two positive integers \(m > 0 \) and \(n > 0 \) such that \(a^{m+n} = a^m \). Further deduce that \(a^{mn} \) is an **idempotent element** in \((S, \circ)\).

(Remark: An element \(x \in S \) is called an idempotent element if \(x^2 = x \)).

(8) Let \((M, \circ)\) be a **finite monoid**. If the identity element \(e \in M \) is the **only idempotent element** of \(M \), then prove that every element of \(M \) is invertible.

(Hint: Use the result from Problem (7)).

(9) Let \((M, \circ)\) be a monoid. If each element of \(M \) is left invertible then prove that every element of \(M \) is also right invertible.

(Hint: Let \(a \in M \). Let \(a' \in M \) be a left inverse of \(a \), i.e., \(a' \circ a = e \). Since every element of \(M \) has a left inverse, \(a' \in M \) must have a left inverse too. Let \(a'' \in M \) be a left inverse of \(a' \), i.e., \(a'' \circ a' = e \). Since \(a'' \) is an inverse of an inverse \(a' \) of \(a \), our intuition tells us that \(a'' \) should be equal to \(a \). Prove that it is indeed the case, i.e., \(a'' = a \)).

(10) Prove that \((\mathbb{Z} \times \mathbb{Z}, *)\) is a commutative monoid, where \(*\) is defined as \((a, b) \ast (c, d) = (ac, bd)\) for all \((a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z} \).

(a) Find all units (invertible elements) in \((\mathbb{Z} \times \mathbb{Z}, *)\).

(b) Find all idempotent elements in \((\mathbb{Z} \times \mathbb{Z}, *)\).