Examples

1. Let G be a group. Let a, b be any elements of G and n is any positive integer. Then prove that $(aba^{-1})^n = aba^{-1}^n$.

 Proof:
 \[
 \text{LHS} = (aba^{-1})^n \\
 = aba^{-1}aba^{-1}aba^{-1} \ldots \text{n times} \\\n = ab (a^{-1}a)b (a^{-1}a)b (a^{-1}a) \ldots \text{(Since G is associative)} \\
 = abababab \ldots \text{ebeba}^{-1} \\
 = ababa^{-1} \\
 = ab^n \cdot aba^{-1} \\
 = \text{RHS (Proved)}.
 \]

2. Let G be a group such that $(ab)^2 = aba^2 + ab + c$. Then prove G is abelian.

 Proof:
 \[
 (ab)^2 = a^2b^2 \\
 \Rightarrow aba = aba^{-1}b^2 \]
 \[
 \Rightarrow ba = ab + ab + c \text{ (since G is abelian)}
 \]
 i.e. G is abelian (proved).

[In the margin] It's better to check at least 2 cases of a and b. Furthermore, prove G is a commutative group.
3) Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

Proof: G is abelian $\iff ab = ba \forall a, b \in G$

$\iff (ab)^{-1} = (ba)^{-1} \forall a, b \in G$

$\iff (ab)^{-1} = b^{-1}a^{-1} \forall a, b \in G$

(Proved).

4) If $a \in G$, prove that $o(a) = o(a^{-1})$.

Proof: Let $o(a) = n$.

Then $a^n = e$ and $a^k \neq e$ for $0 < k < n$.

$\Rightarrow (a^n)^{-1} = e^{-1}$

$\Rightarrow a^{-n} = e$ (since $e^{-1} = e$).

$\Rightarrow (a^{-1})^n = e$. (i)

Since $a^k \neq e$ for $0 < k < n$

$\Rightarrow a^{-k} \neq e^{-1}$

$\Rightarrow (a^{-1})^k \neq e$ for $0 < k < n$ (ii)

Combining (i) and (ii) we get

$o(a^{-1}) = n = o(a)$.
Let G be a group such that $o(G)$ is an **even** integer.

Then prove that G contains an **odd** number of elements of order 2. In particular, G contains at least one element of order 2.

Proof: G has a unique element of order 1, namely the identity element e.

If a is an element of G of order 2, i.e., $o(a) = 2$,
then $a^2 = e \Rightarrow a = a^{-1}$.

If $o(a) > 3$,
then $a \neq a^{-1}$, otherwise $a = a^{-1}$ would imply that $a^2 = e$, which contradicts that $o(a) > 3$. We also have $o(a^{-1}) > 3$ in this case.

For all $x \in G$ such that $o(x) > 3$, we consider the pairs $\{x, x^{-1}\}$.

These show that there are **even number** of elements in G of order ≥ 3.

Now every element of G falls into one of the following three categories:

- It is an element of order 1.
- It is an element of order ≥ 3.
- It is an element of order ≥ 2.

In this case, $a = a^{-1}$.

And there are **even number** of such elements in G as explained above.
Let \(m \) be the number of elements of order 2 in \(G \).

Since \(o(G) \) is even, we have

\[+m + \text{an even number} = o(G) = \text{an even integer} \]

(for the identity e)

\[\Rightarrow m + (1 + \text{an even number}) = \text{even number} \]

\[\Rightarrow m + \text{an odd number} = \text{even number} \]

\[\therefore m = \text{an odd number} \]

\[\Rightarrow \text{even} - \text{odd} = \text{odd} \]

\[\text{e.g., } 4 - 1 = 3, \]
\[100 - 69 = 31 \]

etc.

\[\therefore G \text{ contains odd number of elements of order 2.} \]

Since 1 is smallest positive odd integer, there is at least one element of \(G \) of order 2.