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In the paper, Cantor:

I introduces, and develops the theory of, ordinal numbers,
ordinal arithmetic, well-ordered sets, number classes, and
more;

I distinguishes proper and improper infinity and distinguishes
the transfinite from the absolutely infinite;

I answers philosophical arguments against the reality of infinite
numbers and sets;

I argues for the freedom of mathematics using a distinction
between two kinds of existence that mathematical objects can
have.

W.W. Tait:

“Given such a rich assortment of original material and given the
prominence anyway of the problem of the infinite in the history of
philosophy, one would a priori have expected the Grundlagen to be
regarded as one of the great philosophical classics of all time.”
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Two Kinds of Infinity

I the transfinite;

I the truly infinite: the absolute or absolutely infinite.

Cantor thought that the transfinite can be treated—logically and
mathematically—as the finite is treated. (Cantorian finitism)

Sets (Mengen) are finite or transfinite.

The sequence of natural numbers is just the beginning of an
absolutely infinite sequence of numbers.

The absolute cannot be determined. This implies, in particular,
that absolutely infinite totalities cannot be numbered.
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Numbers (Zahlen) are objects created or generated in an absolutely
infinite process that begins with the creation or generation of the
natural numbers. They are ordered by the order of generation.

Numbers are also the Anzahlen of well-ordered sets, thus they play
the role of ordinal numbers.
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The First Principle of Generation

(There is, in effect, a 0th generating principle, which gives the
existence of the least number, 1.)

The first principle of generation requires that whenever a number
has just been created an immediate successor of that number
should be created.
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The Second Principle of Generation

Cantor states this principle as follows: “If any definite succession
of defined numbers is put forward of which no greatest exists, a
new number is created by means of this second principle of
generation, which is thought of as the limit of those numbers; that
is, it is defined as the next number greater than all of them.”

By a “definite succession” he means a set. Equivalently, he means
a finite or transfinite totality.
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Cantor implicitly assumes that the predecessors of a number form
a set, Thus an application of the Second Principle yields the
sethood of the totality of predecessorof the new number.

The Second Principle implies a version of the Axiom of
Replacement: Every set-size totality of numbers has a least upper
bound.

If absolutely infinite multiplicities are only potential, then the
sethood requirement for the second principle of would do no work.
If the totality of numbers already created were not a set, then
absolutely infinitely many numbers would have been created
already, and this would be impossible.

Ignacio Jané has argued that Cantor was later a potentialist about
absolute infinity, but—as Jané also argues—this is not the case at
the time of the Grundlagen.

As we’ll see, Cantor tried to give a clearer characterization of
”definite succession.”
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The Number Classes

I Number classes are sets of numbers.

I Every number belongs one of the number classes.

I the number classes are disjoint.

I The first number class is the set of all finite numbers.

I The second number class is the set of all numbers with
countably infinitely many predecessors.

I Two infinite numbers belong to a same number class just in
case the sets of their predecessors have the same power.

Cantor asserts the theorem that for every number γ there is a γth
number class. (He describes this as “remarkable.”)

Cantor regards it a law of logic that every set can be well-ordered,
so this theorem impies that every set has the same power as some
number class.
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The first member of the second number class Cantor calls ω. For
any α, what he later called ωα is the first member of the (2 + α)th
number class.

He introduces ω as follows:

“However contradictory it may be to speak of a greatest number of
class (I), there is on the other hand nothing offensive in thinking of
a new number which we shall call ω.

Cantor regards it as always justified to apply the second principle
of generation to start a new number class when an old one
becomes complete.

In other words, he implicitly assumes that each number class is a
set. This is, in effect, the ordinal analogue of the Power Set Axiom.



The first member of the second number class Cantor calls ω. For
any α, what he later called ωα is the first member of the (2 + α)th
number class.

He introduces ω as follows:

“However contradictory it may be to speak of a greatest number of
class (I), there is on the other hand nothing offensive in thinking of
a new number which we shall call ω.

Cantor regards it as always justified to apply the second principle
of generation to start a new number class when an old one
becomes complete.

In other words, he implicitly assumes that each number class is a
set. This is, in effect, the ordinal analogue of the Power Set Axiom.



The first member of the second number class Cantor calls ω. For
any α, what he later called ωα is the first member of the (2 + α)th
number class.

He introduces ω as follows:

“However contradictory it may be to speak of a greatest number of
class (I), there is on the other hand nothing offensive in thinking of
a new number which we shall call ω.

Cantor regards it as always justified to apply the second principle
of generation to start a new number class when an old one
becomes complete.

In other words, he implicitly assumes that each number class is a
set. This is, in effect, the ordinal analogue of the Power Set Axiom.



The first member of the second number class Cantor calls ω. For
any α, what he later called ωα is the first member of the (2 + α)th
number class.

He introduces ω as follows:

“However contradictory it may be to speak of a greatest number of
class (I), there is on the other hand nothing offensive in thinking of
a new number which we shall call ω.

Cantor regards it as always justified to apply the second principle
of generation to start a new number class when an old one
becomes complete.

In other words, he implicitly assumes that each number class is a
set. This is, in effect, the ordinal analogue of the Power Set Axiom.



The Limit Number Classes

Why does ωω exist? I.e., why is there an ωth number class?

Cantor gives no proof, but an obvious argument is the following
one.

{ω0, ω1, ω2, . . .} has the same size (power) as the first number
class. Hence it is not absolutely infinite. Hence it is a set. Thus
the second principle of generation calls for a new number, ωω, to
be generated.

This argument generalizes to prove to show that Cantor’s
principles and assumptions imply the theorem that the γth number
class exists for every γ. The generalization also yields what can be
roughly stated by: “The length of the sequence of all numbers is
weakly inaccessible.”
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The Third Principle of Generation

Cantor describes this as “a restricted or limiting principle.”

He first mentions the third principle of generation in paragraph 8.
He mentions it again in paragraphs 7 and 8 of Section 11. In
neither passage does he state the principle.

In the last paragraph of Section 12, he says that the third principle
“consisted in the demand that a new integer could be made with
the help of one of the two other principles of creation only if the
totality of all previous numbers had the power of a defined number
class which was already in existence over its entire extent.”
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Problems with the Third Principle

What is the point of the third principle?

I think that Cantor wants clear necessary and sufficient conditions
for when the second principle applies; i.e. that he’s not content
with “definite succession.” He talks as if he has found such
conditions:

He says that, with the three principles, “one can attain with the
greatest certainty and obviousness, ever newer number classes,
. . . and the new numbers obtained in this way are then always of
the same determinacy and objective reality as the earlier ones.”

Minor problem: “New integer” should be “new infinite integer.”
Otherwise the number 2 cannot be created.

Major problem: The third principle is too restrictive. The creation
of ωω is not allowed.
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Two alternatives

(a) Keep the third principle as it is. Define the limit number
classes to be the unions of all the earlier number classes.

Alternative (a) would not achieve what I suggested is the purpose
of the third principle.

As Cantor defines the number classes in an 1899 letter to
Dedekind, they are disjoint.

(b) Let the third principle be as follows:

A new infinite number can be created with the help of the other
two principles only if there is an unbounded subtotality of the
totality of all previous numbers that has the power of a defined
number class which is already in existence over its entire extent.

This allows the second principle to be used to create ωω. It also
allows ωλ to be created whenever λ is a singular limit number and
ωα has been created for every smaller α.
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The 1899 Letters to Dedekind

In 1899 Cantor wrote two letters to Dededkind (amalgamated by
Zermelo) that summarized his accounts of ordinal and cardinal
numbers and sketched what is basically the standard modern proof
that every set can be well-ordered. In an 1897 letter to Hilbert, he
had given an more sketchy version of the same proof.

The terminology in these letters is rather different from the
terminology of the letter to Hilbert. The latter is much closer to
the terminology of Grundlagen.
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In 1883 and 1899, sets are characterized as multiplicities that can
be thought of as unities. But what he says in 1899 is that sets can
without contradiction be thought of as unities, and “set” is taken
to be synonymous with “consistent multiplicity.” Totalities that
too big to be sets are in 1899 called inconsistent multiplicities.

In Grundlagen, almost the only positive thing he says about
absolute infinity is that it is the infinity of God. He never says
anything about the relative size of absolutely infinite totalities. He
holds that number is not applicable to them. In 1899 he explicitly
makes use of the notion of two absolutely infinite totalities’ being
equivalent (having a one-one correspondence between their
members).

Ordinal numbers have by 1899 become order types of well-ordered
sets. Powers were already equivalence types in 1883, so they have
changed less than ordinal numbers.
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The Well-Ordering Proof

He assumes what Zermelo would later call the Union axiom and
the Separation Axiom. He also assumes a version of Replacement:
Two equivalent multiplicities are either both inconsistent or both
sets.

He proves that the multiplicity of the ordinal numbers (actually the
multiplicity Ω is inconsistent. (He also states that it is absolutely
infinite.)

He then assumes that there is a set, which I’ll call W , whose
power is not an ℵ. He considers a process of assigning elements of
W to ordinal numbers: Choose an element of W and assign it to
1; next pick a different element of W and assign it to 2; and so on.
Since W is not equivalent to an ℵ, the process must produce a
one-one correspondence between W and the ordinal numbers. This
contradicts the assumption that W is a set.
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Zermelo’s Criticism

Zermelo complains that Cantor assumes we can make what we
would now call a proper class of choices. He also complains that
the choices are made sequentially.

I regard the complaint about sequential choices as unjustified.
Sequential choice seems more natural than simultaneous choice.

Cantor’s reductio argument did involve a proper class of choices,
but this could have easily been avoided. He could simply have
remarked that the number of choices was less than or equal to the
number of elements of the set W and hence—by Separation and
Cantor’s version of Replacement—only a set of ordinals would be
assigned.
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Both the version of Replacement he stated and the fact that he
didn’t avoid making absolutely infinitely many choices illustrate
that Cantor in 1899 treated absolute infinity more like sethood
than he had in 1883.


