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Set Theory

This course will be an introduction to independence proofs by forcing. Our
basic treatment will be close to that in Kenneth Kunen’s Set Theory: an
Introduction to Independence Proofs, North-Holland, 1980. In particular,
we will use Kunen’s notation almost always.

1 Forcing

For the purposes of forcing, a partially ordered set (poset) is a triple 〈P,≤,1〉
such that

(a) P is a nonempty set;

(b) ≤ is a partial ordering of P; i.e., ≤ is transitive, reflexive relation in
P (and so p ≤ q ∧ q ≤ p ∧ p 6= q is not forbidden);

(c) for all p ∈ P, p ≤ 1. (1 need not be the only such maximum element.)

We shall often write P for 〈P,≤,1〉.
Let P be a poset. If p is an element of P, then an extension of p is a

q ∈ P such that q ≤ p. Two elements of P are compatible if they have a
common extension. We write p ⊥ q to mean that p and q are incompatible.
A subset D of P is dense in P if every element of P has an extension that
belongs to D.

A filter on a poset P is a non-empty subset F of P satisfying:

(i) (∀p ∈ F )(∀q ∈ P )(p ≤ q → q ∈ F ) ;

(ii) any two elements of F have a common extension that belongs to F .

If M is a class and P is a poset, then a subset G of P is P-generic over
M if

(1) G is a filter on P;

(2) G ∩D 6= ∅ for every dense subset D of P such that D ∈M .
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Remark. One often sees “M -generic on P” used to mean what we mean
by “P-generic over M .”

Example. Let M be a transitive class in which ZFC holds. Let P be the
set of all finite functions f such that domain (f) ⊆ ω and range (f) ⊆ {0, 1}.
Set p ≤ q ↔ q ⊆ p, and let 1 = ∅. Note that 〈P,≤,1〉 ∈M .

Suppose that G is P-generic over M . It follows from property (ii) of
filters that any two elements of G are compatible functions. Thus

⋃
G is a

function. For n ∈ ω, let

Dn = {p ∈ P | n ∈ domain (p)} .

It is easy to see that each Dn is dense. By property (2) of G, it follows that
domain (

⋃
G) = ω. Thus

⋃
G : ω → {0, 1}.

Lemma 1.1. Let M be a countable set and let P be a poset. For every
p ∈ P, there is a G that is P-generic over M with p ∈ G.

Proof. Let Di, i ∈ ω, be such that each Di is dense in P and such that
every D ∈M that is dense in P is among the Di. Let p ∈ P.

We construct a sequence

p = q0 ≥ q1 ≥ · · ·

of elements of P. Given qi, we let qi+1 be an extension of qi that belongs to
Di.

Let G = {r ∈ P | (∃i ∈ ω) qi ≤ r} . It is easy to see that G is P-generic
over M . �

Let P be a poset. An atom of P is an element p of P such that any two
extensions of p are compatible. P is atomless if it has no atoms.

Lemma 1.2. Let P be an atomless poset. Let M be a class such that the
set P belongs to M and such that M is closed under relative complements.
Let G be P-generic over M . Then G /∈M .

Proof. Assume that G ∈M . Since M is closed under relative complements,
P \G ∈M . Since G ∩ (P \G) = ∅, we shall have a contradiction if we can
show that P \ G is dense. Let p ∈ P. The atomlessness of P gives us
incompatible extensions q and r of p. Since G is a filter on P, at least one
of q and r does not belong to G. �
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Exercise 1.1. Let M be a transitive class in which, say, ZF − Power Set
holds. Let P be a poset with P ∈M (i.e., with 〈P,≤,1〉 ∈M) and let p ∈ P
be an atom. Show that there is a filter G ∈ M such that p ∈ G and such
that G is P-generic over V .

Let P be a poset By transfinite recursion on rank, we define the class
V P of P-names. If rank (τ) = α, then let

τ ∈ V P ↔ (τ is a relation ∧ (∀〈σ, p〉 ∈ τ)(σ ∈ V P ∩ Vα ∧ p ∈ P)) .

Thus, for any set τ ,

τ ∈ V P ↔ (τ is a relation ∧ (∀〈σ, p〉 ∈ τ)(σ ∈ V P ∧ p ∈ P)) .

For classes M with P ∈M , let

MP = {τ | (τ is a P-name)M} .

If M is a transitive class in which ZFC holds, then absoluteness implies that
MP = V P ∩M .

Fix P. For any set G, we define val(τ,G) for all sets τ , by transfinite
recursion on rank(τ):

val(τ,G) = {val(σ,G) | (∃p ∈G) 〈σ, p〉 ∈ τ} .

Note that the operation val is absolute for transitive classes in which ZFC
holds. We usually write τG for val(τ,G).

If M is a transitive class in which ZFC holds, if P ∈ M is a poset, and
if G ⊆ P, then set

M [G] = {τG | τ ∈MP} .

The absoluteness of val and of the property of being a P-name gives us
the following lemma.

Lemma 1.3. Let M and N be transitive classes in which ZFC holds. As-
sume that M ⊆ N . Let P ∈M be a poset and let G ⊆ P with G ∈ N . Then
M [G] ⊆ N .

Let P be a poset. We define, by transfinite recursion on rank(x), a
P-name x̌P for each set x. Set

x̌P = {〈y̌P,1〉 | y ∈ x} .

Note that the two-argument function x̌P is absolute for transitive classes in
which ZFC holds. We shall usually write x̌ for x̌P.
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Lemma 1.4. Let M be a transitive class in which ZFC holds, let P ∈ M
be a poset, and let G be a filter on P. Then

(a) (∀x ∈M) x̌G = x ;

(b) M ⊆M [G] .

Proof. We prove (a) by transfinite induction on rank.

x̌G = {σG | (∃p ∈G) 〈σ, p〉 ∈ x̌} = {y̌G | 1 ∈ G ∧ y ∈ x} = {y | y ∈ x} = x .

(b) follows from (a). �

If P is a poset, let ΓP = {〈p̌, p〉 | p ∈ P} . (We usually omit the
superscript P.)

Lemma 1.5. Let M , P, and G, be as in Lemma 1.4. Then ΓG = G, and
so G ∈M [G].

Proof. ΓG = {p̌G | p ∈ G} = {p | p ∈ G} = G . �

Lemma 1.6. Let M , P, and G be as in Lemma 1.4. Then M [G] is tran-
sitive.

Lemma 1.7. Let M , P, and G be as in Lemma 1.4. Then

(a) for every τ ∈MP, rank(τG) ≤ rank(τ) ;

(b) ON ∩M [G] = ON ∩M .

Proof. (a) is easily proved by transfinite induction, and (a) implies that
ON ∩M [G] ⊆ ON ∩M . Since M ⊆M [G], the reverse inclusion also holds.

�

For any poset P, we let

upP(σ, τ) = {〈σ,1〉, 〈τ,1〉} ;
opP(σ, τ) = up(up(σ, σ), up(σ, τ)) .

Lemma 1.8. Let M , P, and G be as in Lemma 1.4 and let σ and τ belong
to MP. Then

(a) up(σ, τ) ∈MP and (up(σ, τ))G = {σG, τG} ;

(b) op(σ, τ) ∈MP and (op(σ, τ))G = 〈σG, τG〉 .
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Lemma 1.9. Let M , P, and G be as in Lemma 1.4. Then Extensionality,
Foundation, Pairing, and Union hold in M [G].

Proof. For Union, let τ ∈ MP. Let π = U(domain (τ)), where U is the
union operation. We show that U(τG) ⊆ πG. Let x ∈ τG. There is a
σ ∈ domain (τ) such that x = σG ∈ τG. By the definition of π, we have that
σ ⊆ π. This implies that σG ⊆ πG. Hence every element of τG is a subset of
πG. �

Exercise 1.2. Let M and P be as in Lemma 1.4 and let G be a filter on
P. Prove that M [G] is closed under the operation U .

The next exercise requires the following definitions. Let P be a poset.
A subset D of P is predense if every element of P is compatible with some
element of D. An antichain in P is a pairwise incompatible subset of P.
Thus a maximal antichain is just a predense antichain.

Exercise 1.3. Let M and P be as in Lemma 1.4 and let G be a filter on
P. Show that the following are equivalent:

(i) G is P-generic over M ;

(ii) G meets every D ∈M that is predense in P;

(iii) G meets every A ∈M that is a maximal antichain in P.

Exercise 1.4. Let M and P be as in Lemma 1.4 and let G satisfy the
conditions (1) and (2) for being P-generic over M but with condition (ii) in
the definition of a filter on P replaced by the weaker condition that any two
elements of G have a common extension in P. Prove that G is P-generic
over M .

Let M be a transitive class in which ZFC holds and let P ∈ M be a
poset. Let L(P,M) be the result of adjoining to the language of set theory
each element of MP as a new constant. We define a relation ‖−P,M = ‖−
in P× the class of all sentences of L(P,M). Restricted to sentences of any
fixed complexity, ‖− will be a proper class of M , definable in M from P.

We first define by transfinite recursion the forcing relation restricted to P
times the set of all atomic identity sentences of L(P,M). We let p ‖− τ1 = τ2

if and only if both (i) and (ii) below hold:
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(i) For all 〈σ1, s1〉 ∈ τ1 the set

{q ≤ p | q ≤ s1 → (∃〈σ2, s2〉 ∈ τ2)(q ≤ s2 ∧ q ‖− σ1 = σ2)}

is dense below p (i.e., is dense in {q ∈P | q ≤ p}).
(ii) For all 〈σ2, s2〉 ∈ τ2 the set

{q ≤ p | q ≤ s2 → (∃〈σ1, s1〉 ∈ τ1)(q ≤ s1 ∧ q ‖− σ1 = σ2)}

is dense below p.

Next we let p ‖− τ1 ∈ τ2 iff the set

{q ≤ p | (∃〈σ, s〉 ∈ τ2)(q ≤ s ∧ q ‖− σ = τ1)}

is dense below p.
We finish the definition as follows.

(a) p ‖− (ϕ ∧ ψ) ↔ (p ‖− ϕ ∧ p ‖− ψ) ;

(b) p ‖− ¬ϕ ↔ (∀q ≤ p) q 6‖− ϕ ;

(c) p ‖− (∃x)ϕ(x) if and only if {q ≤ p | (∃σ ∈MP) q ‖− ϕ(σ)} is dense
below p.

Theorem 1.10. Let M be a transitive class in which ZFC holds. Let P ∈
M be a poset. Let G be P-generic over M . Then, for any formula ϕ(v1, . . . , vn)
of the language of set theory and for any elements τ1, . . . , τn of MP,

(1) (∀p ∈G)(p ‖− ϕ(τ1, . . . , τn) → (ϕ(τ1G
, . . . , τnG))M [G]) ;

(2) (ϕ(τ1G
, . . . , τnG))M [G] → (∃p ∈G)(p ‖− ϕ(τ1, . . . , τn)) .

Proof. Note before we start the proof that if p ‖− ϕ and r ≤ p then r ‖− ϕ.
We begin by proving the theorem for the special case that ϕ is an atomic

identity formula, which we may assume is v1 = v2. We prove both (1) and
(2) by transfinite induction on the maximum of the ranks of τ1 and τ2.

For (1), assume that p ∈ G and that p ‖− τ1 = τ2. We use clause (i) of
the definition to prove that τ1G

⊆ τ2G
. A similar argument using (ii) gives

that τ2G
⊆ τ1G

. Let a ∈ τ1G
. Then a = σ1G

for some 〈σ1, s1〉 ∈ τ1 such that
s1 ∈ G. Fix such a 〈σ1, s1〉 and let r ∈ G be a common extension of p and
s1. Since r ‖− τ1 = τ2 and since r ≤ s1, (i) gives that the set

E = {q ≤ r | (∃〈σ2, s2〉 ∈ τ2)(q ≤ s2 ∧ q ‖− σ1 = σ2)}
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is dense below r. Let D = E ∪{q∈P | q ⊥ r}. Then D ∈M and D is dense
in P. Let q ∈ G ∩D. Then q must belong to E; thus q ≤ r and there is a
〈σ2, s2〉 ∈ τ2 such that

q ≤ s2 ∧ q ‖− σ1 = σ2 .

For such a 〈σ2, s2〉, s2 ∈ G and so σ2G
∈ τ2G

. Furthermore, we have by
induction that σ1G

= σ2G
. Thus we have shown that a ∈ τ2G

.
For (2), assume that τ1G

= τ2G
. Let D be the set of all r ∈ P such that

one of the following holds:

(i′) For some 〈σ1, s1〉 ∈ τ1,

{q ≤ r | q ≤ s1 → (∃〈σ2, s2〉 ∈ τ2)(q ≤ s2 ∧ q ‖− σ1 = σ2)} = ∅ ;

(ii′) For some 〈σ2, s2〉 ∈ τ2,

{q ≤ r | q ≤ s2 → (∃〈σ1, s1〉 ∈ τ1)(q ≤ s1 ∧ q ‖− σ1 = σ2)} = ∅ ;

(iii′) r ‖− τ1 = τ2.

We first show that D is dense. For this let p ∈ P. We may assume
that p 6‖− τ1 = τ2. Thus either clause (i) or clause (ii) of the definition fails.
Assume that (i) fails. (The other case is similar.) This gives us 〈σ1, s1〉 ∈ τ1

such that the set

{q ≤ p | q ≤ s1 → (∃〈σ2, s2〉 ∈ τ2)(q ≤ s2 ∧ q ‖− σ1 = σ2)}

is not dense below p. Therefore this set is empty below some r ≤ p. Such
an r satisifies (i′).

Since D ∈ M , let r ∈ G ∩D. It suffices to show that (i′) and (ii′) fail.
Suppose that (i′) holds. Let 〈σ1, s1〉 witness this. Note first that r ≤ s1,
which implies that s1 ∈ G. Thus σ1G

∈ τ1G
. But τ1G

= τ2G
by hypothesis.

Hence σ1G
∈ τ2G

. This means that there is a 〈σ2, s2〉 ∈ τ2 such that s2 ∈ G
and σ1G

= σ2G
. It follows by induction that there is a q ∈ G such that

q ‖− σ1 = σ2. Let q′ ∈ G be a common extension of q, r, and s2. Since
q′ ‖− σ1 = σ2, we have a contradiction. The assumption that (ii′) holds
yields a similar contradiction.

Next we prove (1) and (2) for the case that ϕ is an atomic membership
formula, which we may take to be v1 ∈ v2.

For (1), assume that p ∈ G and that p ‖− τ1 ∈ τ2. Thus the set

E = {q ≤ p | (∃〈σ, s〉 ∈ τ2)(q ≤ s ∧ q ‖− σ = τ1)}
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is dense below p. Since p ∈ G, an argument like one in the proof of the
v1 = v2 case gives us a q ∈ G∩E. For this q we have a 〈σ, s〉 ∈ τ2 such that
q ≤ s and q ‖− σ = τ1. But then σG = τ1G

and σG ∈ τ2G
.

For (2), assume that τ1G
∈ τ2G

. Let 〈σ, s〉 ∈ τ2 be such that s ∈ G and
σG = τ1G

. Thus there is an r ∈ G such that r ‖− σ = τ1. Let p ∈ G be
a common extension of r and s. Then p ‖− τ1 ∈ τ2. (Indeed, the set in
question is not merely dense below p ; the single object 〈σ, s〉 witnesses that
it is the whole {q ∈P | q ≤ p}.)

We now prove the theorem by induction on the complexity of the for-
mula ϕ. In the interests of brevity, we shall shall omit “τ1, . . . , τn” and
“τ1G

, . . . , τnG .”
Suppose that ϕ is ¬ψ.
For (1), assume that p ∈ G and p ‖− ϕ. Then there is no q ≤ p such that

q ‖− ψ. Hence there is no q ∈ G such that q ‖− ψ. By (2) for ψ, we get that
ψ does not hold in M [G] and so that ϕM [G].

For (2), assume that ϕM [G]. It is obvious from the definition than {p∈P |
p ‖− ψ ∨ p ‖− ¬ψ} is dense. Hence some p ∈ G belongs to this set. By (1)
for ψ, it is impossible that p ‖− ψ. Therefore p ‖− ϕ.

Next suppose that ϕ is ψ ∧ χ. If p ∈ G is such that p ‖− ϕ, then p ‖− ψ
and p ‖− χ. By (1) for ψ and for χ, it follows that ϕM [G]. If ϕM [G], then (2)
for ψ and for χ gives us elements q and r of G such that q ‖− ψ and r ‖− χ.
If p ∈ G is a common extension of q and r, then p ‖− ϕ.

Finally suppose that ϕ is (∃x)ψ(x).
For (1), assume that p ∈ G and p ‖− ϕ. Then some member of the set

{q ≤ p | (∃σ ∈MP) q ‖− ψ(σ)} belongs to G. Choose such a q and choose a
witness σ. By (1) for ψ, we have that (ψ(σG))M [G]. Hence ϕM [G].

For (2), assume that ϕM [G]. Let σG ∈ M [G] be such that (ψ(σG))M [G].
By (2) for ψ, there is a p ∈ G such that p ‖− ψ(σ). For any such p, p ‖− ϕ.

�

Corollary 1.11. Let M and P be as in Theorem 1.10. Assume that M is
countable. Then for all sentences ϕ(τ1, . . . , τn) of L(P,M) (with only the
indicated constants) and for all p ∈ P, p ‖− ϕ(τ1, . . . , τn) if and only if, for
every G with p ∈ G such that G is P-generic over M , (ϕ(τ1G

, . . . , τnG))M [G]

Proof. We first prove by induction that, for all sentences ϕ of L(P,M),

(∗) p ‖− ϕ ↔ {q ≤ p | q ‖− ϕ} is dense below p .

If p ‖− ϕ, then q ‖− ϕ for every q ≤ p. For the other direction, note that
if the set of q ≤ p such that D is dense below q is dense below p then D
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is dense below p. This directly implies the ← direction of (∗) for all cases
except those where ϕ is a negation or a conjuction. For the case of negation,
assume that p 6‖− 6= ψ. This means that there is an r ≤ p such that r ‖− ψ.
Nothing below r belongs to {q ≤ p | q ‖− ¬ψ}, and so this set is not dense
below p. The the case of a conjunction follows by induction.

The → direction of the Corollary is just part (1) of Theorem 1.10. For
the other direction, suppose that p 6‖− ϕ(τ1, . . . , τn). We show that there is
a G that P-generic over M such that p ∈ G but ϕ(τ1G

, . . . , τnG) does not
hold in M [G]. By (∗) there is a q ≤ p such that there is no r ≤ q satisfying
r ‖− ϕ(τ1, . . . , τn). Fix such a q. By definition, q ‖− ¬ϕ(τ1, . . . , τn). By
Lemma 1.1, let G be P-generic over M with q ∈ G. By (1) of Theorem 1.10,
(¬ϕ(τ1G

, . . . , τnG))M [G]. Since p ∈ G, our proof is complete. �

Theorem 1.12. Let M be a transitive class in which ZFC holds. Let P ∈
M be a poset. Let G be P-generic over M . Then ZFC holds in M [G].

Proof. By Lemma 1.9, we know that Extensionality, Foundation, Pairing,
and Union hold in M [G].

To prove Comprehension, let ϕ(x, z, w1, . . . , wn) be a formula and let σ
and τ1, . . . , τn be elements of MP. We want to prove that X ∈M [G], where

X = {a ∈ σG | (ϕ(a, σG, τ1G
, . . . , τnG))M [G]} .

Let

π = {〈µ, p〉 | µ ∈ domain (σ) ∧ p ‖− (µ ∈ σ ∧ ϕ(µ, σ, τ1, . . . , τn))} .

Assume that a ∈ X. Then a = µG for some µ ∈ domain (σ). By (2) of
Theorem 1.10, there is a p ∈ G such that p ‖− (µ ∈ σ ∧ ϕ(µ, σ, τ1, . . . , τn)).
For such a µ and p, 〈µ, p〉 ∈ π and so µG ∈ πG.

If 〈µ, p〉 ∈ π and p ∈ G then, by (1) of Theorem 1.10, µG ∈ X.
For Replacement, assume that

(∀x ∈ σG)(∃!y ∈M [G])(ϕ(x, y, σG, τ1G
, . . . , τnG))M [G] .

For each µ ∈ domain (σ) and each p ∈ P, let f(µ, p) be the least ordi-
nal α such that there is some ρ ∈ MP with rank(ρ) = α and such that
p‖− ϕ(µ, ρ, σ, τ1, . . . , τn), if such an α exists. Otherwise let f(µ, p) = 0. By
Replacement in M , f ∈M . Let β > f(µ, p) for all 〈µ, p〉 ∈ domain (f). Let
π = (MP ∩ Vβ) × {1}. It is easy to see that πG witnesses that the given
instance of Replacement holds in M [G].
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We now know that ZF − Power Set − Infinity holds in M [G]. Since
ω ∈M ⊆M [G], it follows that Infinity holds in M [G].

For Power Set, let τ ∈MP. Let

S = {σ ∈MP | domain (σ) ⊆ domain (τ)} .

Let π = S × {1}. It is fairly easy to show that P(τG) ∩M [G] ⊆ πG.
For Choice, it is enough to show that for x ∈M [G] there exist an ordinal

α and a function f : α → M [G] such that f ∈ M [G] and x ⊆ range (f).
(This implies that “Every set can be wellordered” holds in M [G], and Choice
in M [G] readily follows.)

Let τ ∈MP. By Choice in M , let g : α→MP be such that α ∈ ON∩M ,
g ∈M , and range (g) = domain (τ). Let

π = {〈op(β̌, g(β)),1〉 | β < α} .

Then πG is a function with domain α and, for each β < α, πG(β) = (g(β))G.
Thus τG ⊆ range (πG).

�

Exercise 1.5. Let M be a countable transitive model of ZFC. Let P be
the poset of the example on page 2. Show that there is a filter G on P such
that

⋃
G : ω → 2 but M [G] is not a model of ZFC.
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2 Forcing with Partial Functions

Theorem 2.1. Let M be a transitive class such that ZFC holds in M . Let
P be the poset of the example on page 2. Let G be P-generic over M . Then
V 6= L holds in M [G]. Indeed P(ω) 6⊆ L holds in M [G]. Thus if there is a
countable transitive model of ZFC then there is a countable transitive model
of ZFC + P(ω) 6⊆ L.

Proof. P is atomless, and so G /∈M . As we showed on page 2,
⋃
G : ω →

{0, 1}. Now
G = {p ∈P | p ⊆

⋃
G} ,

so it follows that
⋃
G /∈ M . By absoluteness, LM [G] = LM = LON∩M .

Hence (
⋃
G /∈ L)M . If x is the subset of ω whose characteristic function is⋃

G, then (x /∈ L)M . �

For sets I and J with J 6= ∅, let Fn(I, J) be the set of all functions
f : x → J with x a finite subset of I. Partially order Fn(I, J) by reverse
inclusion. (Hence 1 = ∅.)

Lemma 2.2. Let M be a transitive class in which ZFC holds and let I and
J belong to M , with J 6= ∅. Let G be Fn(I, J)-generic over M . Then⋃
G : I → J , and M [G] is the smallest transitive class N such that ZFC

holds in N ,
⋃
G ∈ N , and M ⊆ N .

Proof. The proof of the first assertion is like that for the special case I = ω
and J = 2. The second assertion follows from the corresponding assertion
with “G” replacing “

⋃
G,” which follows from Lemmas 1.3, 1.4, 1.5, and

1.6, together with Theorem 1.12. �

Lemma 2.3. Let M be a transitive class in which ZFC holds. Let α be an
ordinal of M . Let G be Fn(α×ω, 2)-generic over M . Then (2ℵ0 ≥ |α|)M [G].

Proof. For β < α, let gβ : ω → 2 be given by gβ(n) = (
⋃
G)(β, n). For β

and β′ less than α, let Dβ,β′ be the set of all p ∈ Fn(α × ω, 2) such that,
for some n ∈ ω, p(β, n) and p(β′, n) are defined and different. For distinct
β and β′, Dβ,β′ is dense and so meets G. �

A ∆-system is a set A such that, for some set r (the root of the ∆-
system), a ∩ a′ = r for all distinct elements a and a′ of A.
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Lemma 2.4 (∆-System Lemma). Let A be an uncountable set of finite
sets. Then there is an uncountable B ⊆ A such that B is a ∆-system.

Proof. Shrinking A if necessary, we may assume that |A| = ℵ1. Thus
|
⋃
A| ≤ ω1 and we may assume that

⋃
A ⊆ ω1. By further shrinking, we

may assume that, for some n ∈ ω, |a| = n for all a ∈ A. For a ∈ A and
for 1 ≤ m ≤ n, let am be the mth element of a in order of magnitude. By
shrinking A still further, we may assume that there is an m, 1 ≤ m ≤ n,
and there is an r = {r1, . . . , rm−1} such that

(i) (∀a ∈A)(∀k)(1 ≤ k < m→ ak = rk) ;

(ii) (∀a ∈A)(∀a′ ∈A)(a 6= a′ → am 6= a′m) .

Define 〈bα | α < ω1〉 by transfinite recursion as follows. Let bα be some
element b of A such that

(∀β < α) (bβ)n < bm .

The set B = {bα | α < ω1} is a ∆-system. �

A poset P has the countable chain condition (ccc) if every antichain in
P is countable.

Lemma 2.5. Let I and J be sets with J non-empty and countable. Then
Fn(I, J) has the ccc.

Proof. Let {pz | z ∈ Z} be an uncountable antichain in Fn(I, J). Let
az = domain (pz) for z ∈ Z. Since J is countable, {pz | az = a} is countable
for each a. Thus {az | z ∈ Z} is uncountable. Shrinking Z if necessary, we
may assume that the function z 7→ az is one-one. By the ∆-System Lemma,
let X ⊆ Z be uncountable and such that {az | z ∈ X} is a ∆-system. Let r
be the root of this ∆-system There is an uncountable Y ⊆ X such that, for
some fixed p, pz � r = p for all z ∈ Y . If z and z′ belong to Y , then pz ∪ pz′
is a common extension of pz and pz′ . This is a contradiction. �

Lemma 2.6. Let M be a countable transitive model of ZFC. Let P ∈M be
a poset such that “P has the ccc” holds in M . Let G be P-generic over M .
Let X and Y belong to M and let f ∈M [G] with f : X → Y . Then there is
a g such that

(a) g ∈M ;

(b) g : X → P(Y ) ;
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(c) (∀x ∈X) f(x) ∈ g(x) ;

(d) (∀x ∈X) (|g(x)| ≤ ℵ0)M .

Proof. Let f = τG. Let ϕ(v1, v2, v3) be the formula “v1 is a function from
v2 to v3.” Then some p ∈ G is such that p ‖− ϕ(τ, X̌, Y̌ ). For x ∈ X let

g(x) = {y ∈ Y | (∃q ≤ p) q ‖− τ(x̌) = y̌} .

Clauses (a), (b), and (c) are clear. For (d) let x ∈ X. For each y ∈ g(x),
let qy ≤ p be such that q ‖− τ(x̌) = y̌. By the fact that P has the ccc, it
suffices to show that qy and qy′ are incompatible when y and y′ are distinct
elements of g(x). If this fails for some y and y′, then let r be a common
extension of qy and qy′ and let H be P-generic over M with r ∈ H. Then
p, qy, and qy′ all belong to H, and so we have the contradiction that the
function τH has two distinct values on the argument x. �

Remark. As we shall see later, the assumption that M is countable (or
even a set) is unnecessary.

Exercise 2.1. Which of the following have the ccc?

(a) Fn(ω, ω1) ;

(b) The set of all subsets A of [0, 1] such that A is Lebesgue measurable
and has positive Lebesgue measure, ordered by inclusion and with
1 = [0, 1].

Exercise 2.2. Let M be a countable transitive model of ZFC. Let P be the
partial ordering defined in M by the definiton of the partial ordering (b) of
Exercise 2.1. Let G be P-generic over M . Show that M [G] |= P(ω) 6⊆ L.

LetM be a transitive class in which ZFC holds. A poset P ∈M preserves
cardinals (with respect to M) if 1 ‖− “κ̌ is a cardinal” for every cardinal κ of
M . P preserves cofinalities (with respect to M) if 1 ‖− “cf(α̌) = (cf(α))̌ ”
for every limit ordinal α of M .

Lemma 2.7. Let M be countable transitive model of ZFC. Let P ∈M be a
poset.

(1) If P preserves cofinalities, then P preserves cardinals.

(2) If 1 ‖− “cf(κ̌) = κ̌” for every uncountable regular cardinal κ of M ,
then P preserves cofinalities.
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Proof. (1) Suppose P preserves cofinalities. Let κ be a cardinal ofM . Since
M is countable, it is enough to prove that, for every G that is P-generic
over M , every cardinal of M is a cardinal of M [G]. Let G be P-generic over
M . If some cardinal κ of M is not a cardinal of M [G], then the least such
κ is a successor cardinal of M . Hence M [G] |= (cf(κ) 6= κ), and so P does
not preserve cofinalities.

(2) Suppose that the antecedent of (2) holds. Since M is countable, it is
enough to prove that, for every G that is P-generic over M , the function cf
is the same in M and M [G]. Let G be P-generic over M . Let α be a limit
ordinal of M and let κ = cfM (α). Since κ is regular in M , the antecedent
of (2) implies that κ is regular in M [G]. Let κ∗ = cfM [G](α). We have
f : κ → α and g : κ∗ → α such that f ∈ M , g ∈ M [G], both range (f) and
range (g) are unbounded in α, and range (f � γ) is bounded in α for each
γ < κ . Define h : κ∗ → κ by letting h(β) be the least ordinal γ < κ such
that f(γ) ≥ g(β). Then h ∈ M [G] and range (h) is unbounded in κ. Hence
κ∗ ≥ cfM [G](κ) = κ. �

Remark. As was the case with Lemma 2.6, the lemma holds without
the assumption that M is countable or even a set. This is also true of the
results that follow. This will be explained in the next section.

Lemma 2.8. Let M be a countable transitive model of ZFC. Let P ∈M be
a poset such that “P has the ccc” holds in M . Then P preserves cofinalities
and cardinals.

Proof. Let G be P-generic over M . Let κ be an uncountable regular
cardinal ofM . Let λ < κ and let f : λ→ κ with f ∈M [G]. Let g : λ→ P(κ)
be given by Lemma 2.6. Since cfM (κ) > ω, we have that h(β) =

⋃
g(β) < κ

for every β < λ. Since κ is regular in M ,
⋃

range (h) < κ. But f(β) ≤ h(β)
for every β < λ, and so the range of f is bounded in κ. �

If P is a poset and σ ∈ V P, then a nice name for a subset of σ is a
τ ∈ V P such that, for some function π 7→ Aπ defined on all π ∈ domain (σ)
and such that each Aπ is an antichain in P,

τ =
⋃
{{π} ×Aπ | π ∈ domain (σ)},

Remark. Note that being a nice name for a subset of σ depends on P as
well as on σ. Note also that “x ∈ V P and y is a nice name for a subset of
x” is absolute for transitive class models of ZFC to which P belongs.
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Lemma 2.9. Let M be a countable transitive model of ZFC and let P ∈M
be a poset. Let σ and µ belong to MP. Then there is a nice name τ for a
subset of σ such that τ ∈M and

1 ‖− (µ ⊆ σ → µ = τ) .

Proof. For π ∈ domain(σ), let Aπ be an antichain in P such that

(1) (∀r ∈ Aπ) r ‖− π ∈ µ;

(2) (∀r ∈ P)(r ‖− π ∈ µ→ r is compatible with a member of Aπ).

Do this so that the function π 7→ Aπ belongs to M . Let τ be the nice name
for a subset of σ given by π 7→ Aπ.

Let G be P-generic over M . (1) implies that τG ⊆ µG. Assume that
µG ⊆ σG. We must show that µG ⊆ τG. Let a ∈ µG. Since a ∈ σG, there
is a π ∈ domain (σ) such that a = πG. Let D be the set all q ∈ P such
that either q ≤ p for some p ∈ Aπ or q ⊥ p for all p ∈ Aπ. Then D ∈ M
and D is dense in P. Let then q ∈ G ∩ D. Since πG ∈ µG, there must be
an r ∈ G such that r ‖− π ∈ µ, and hence there is such an r that is ≤ q.
By (2), r (and hence q) must be compatible with some element of Aπ. By
the definition of D, there is a p ∈ Aπ such that q ≤ p. But then 〈π, p〉 ∈ τ
and p ∈ G, and so πG ∈ τG. �

Lemma 2.10. Let M be a countable transitive model of ZFC and let P ∈M
be a poset such that “P has the ccc” holds in M . Let κ be an infinite cardinal
of M such that (|P| ≤ κ)M . Let λ be an infinite cardinal of M and let θ be
such that (κλ = θ)M . Let G be P-generic over M . Then 2λ ≤ θ holds in
M [G].

Proof. Work in M . (That is, construe our assertions as relativized to M .)
The number of antichains of P is ≤ κℵ0 . Since domain (λ̌) = {α̌ | α < λ},
we have that |domain (λ̌)| = λ. The number of nice names for subsets of λ̌
is thus ≤ (κℵ0)λ = κλ = θ. Let α 7→ τα have domain θ and range the set of
all nice names for subsets of λ̌. Now in M [G] let f(α) = (τα)G for α < θ.
By Lemma 2.9, range (f) ⊇ P(λ) ∩M [G]. �

Theorem 2.11. Let M be a countable transitive model of ZFC and let κ
be any infinite cardinal of M such that κℵ0 = κ holds in M . Let G be
Fn(κ, 2)-generic over M . Then all cardinals of M are cardinals of M [G]
and (2ℵ0 = κ)M [G].
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Proof. The first assertion holds by Lemma 2.8. By Lemmas 2.5 and 2.10,
(2ℵ0 ≤ κ)M [G]. By Lemma 2.3, (2ℵ0 ≥ κ)M [G]. �

Remarks:
(a) If M is a countable transitive model of ZFC then so is LM , and

the GCH holds in LM . The GCH implies that any cardinal κ such that
cf(κ) > ω satisfies the condition κℵ0 = κ.

(b) By a theorem of König, cf(2ℵ0) > ω, so, for M as in the statement
of the theorem, the conclusion (2ℵ0 = κ)M [G] must fail for κ such that
cf(κ) = ω holds in M . In fact, it is easy to see that the conclusion fails for
all κ such that κℵ0 = κ does not hold in M .

For sets I, non-empty sets J , and infinite cardinals λ, let Fn(I, J, λ) be
the set of all functions f : x → J with x ⊆ I and |x| < λ. Partially order
Fn(I, J, λ) by reverse inclusion. For λ > ω, it turns out that Fn(I, J, λ) is
not absolute for transitive M in which ZFC holds.

Lemma 2.12. Let M be a transitive class in which ZFC holds, let I and
J be members of M with J 6= ∅, let λ be an infinite cardinal of M , and let
G be FnM (I, J, λ)-generic over M . Then

⋃
G : I → J , and M [G] is the

smallest class N such that ZFC holds in N ,
⋃
G ∈ N , and M ⊆ N .

Lemma 2.13. Let M be a transitive class in which ZFC holds. Let λ and
λ′ ≤ λ be infinite cardinals of M and let α be an ordinal of M . Let G be
FnM (α× λ, 2, λ′)-generic over M . Then (2λ ≥ |α|)M [G].

Proof. The proof is like that of Lemma 2.3. �

Lemma 2.14 (General ∆-System Lemma). Let κ be an infinite cardi-
nal. Let θ > κ be regular and satisfy (∀γ < θ) |<κγ| < θ. Let A be set of size
≥ θ of sets of size < κ. Then there is an B ⊆ A such that |B| = θ and B is
a ∆-system.

Proof. Shrinking A if necessary, we may assume that |A| = θ. Thus
|
⋃
A| ≤ θ and we may assume that

⋃
A ⊆ θ. By further shrinking, we

may assume that, for some ρ < κ, ot(a) = ρ for all a ∈ A. For a ∈ A let
〈aα | α < ρ〉 enumerate the elements of a in order of magnitude.

By shrinking A still further, we may assume that there is an α < ρ and
there is an r = {rβ | β < α} such that

(i) (∀a ∈A)(∀β < α) aβ = rβ ;
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(ii) (∀a ∈A)(∀a′ ∈A)(a 6= a′ → aα 6= a′α) .

To see this, let α be the least ordinal such that either α = ρ or else
|{aα | a ∈ A}| = θ. The regularity of θ implies that there is a γ < θ such
that {〈aβ | β < α〉 | a ∈ A} is a subset of αγ. By the hypothesis that
(∀γ < θ) |<κγ| < θ, it follows that |{〈aβ | β < α〉 | a ∈ A}| < θ. From this
we get both that α < ρ and that 〈aβ | β < α〉 is constant on a subset of A
of size θ.

Define 〈b(ξ) | ξ < θ〉 by transfinite recursion as follows. Let b(ξ) be some
element b of A such that

(∀η < ξ)
⋃
b(η) < bα .

The set B = {b(ξ) | ξ < θ} is a ∆-system. �

For cardinals θ, a poset P has the θ-chain condition (θ-cc) if every an-
tichain in P has size < θ.

Lemma 2.15. Let I and J 6= ∅ be sets and let λ be an infinite cardinal.
Then Fn(I, J, λ) has the (|J |<λ)+-cc.

Proof. We may assume that |J | ≥ 2. Suppose that {pz | z ∈ Z} is antichain
in Fn(I, J, λ) with |{pz | z ∈ Z}| ≥ (|J |<λ)+ = θ.

Assume first that λ is regular. Let az = domain (pz) for z ∈ Z. Let
A = {az | z ∈ Z}. For each a ∈ A, |{z | az = a}| ≤ |J |<λ. Thus |{az | z ∈
Z}| ≥ θ. Shrinking Z if necessary, we may assume that the function z 7→ az
is one-one. Since λ is regular, (|J |<λ)<λ = |J |<λ < θ. Therefore the General
∆-System Lemma applies with κ = λ. By that application, let X ⊆ Z be
such that |X| = θ and {az | z ∈ X} is a ∆-system. Let r be the root of
this ∆-system. There is a Y ⊆ X such that |Y | = θ and such that, for some
fixed p, pz � r = p for all z ∈ Y . If z and z′ belong to Y , then pz ∪ pz′ is a
common extension of pz and pz′ . This is a contradiction.

Now assume that λ is singular. Since θ is regular and λ is not of the
form δ+, there is a regular λ′ < λ such that |{z ∈ Z | |pz| < λ′}| ≥ θ. The
argument of the preceding paragraph shows that this is impossible. �

Lemma 2.16. Let M be a countable transitive model for ZFC. Let θ be a
cardinal number of M . Let P ∈ M be a poset such that “P has the θ-cc”
holds in M . Let G be P-generic over M . Let X and Y belong to M and let
f ∈M [G] with f : X → Y . Then there is a g such that

(a) g ∈M ;
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(b) g : X → P(Y ) ;

(c) (∀x ∈X) f(x) ∈ g(x) ;

(d) (∀x ∈X) (|g(x)| < θ)M .

Proof. The proof is just like that of Lemma 2.6. �

Let M be a transitive class in which ZFC holds. Let θ be a cardinal of M .
A poset P ∈M preserves cardinals ≥ θ [≤ θ] (with respect to M) if 1 ‖− “κ̌
is cardinal” for every cardinal κ of M such that κ ≥ θ [κ ≤ θ]. P preserves
cofinalities ≥ θ [≤ θ] (with respect to M) if 1 ‖− “cf(α̌) = (cf(α))̌ ” for
every limit ordinal α of M such that cfM (α) ≥ θ [cfM (α) ≤ θ].

Lemma 2.17. Let M be a countable transitive model of ZFC. Let θ be an
infinite cardinal of M . Let P ∈ M be a poset such that “P has the θ-cc”
holds in M . Then P preserves cofinalities ≥ θ, and if θ is regular in M then
P preserves cardinals ≥ θ.

Proof. The proof is like that of Lemma 2.8. �

If λ is a cardinal number, then a poset P is λ-closed if, whenever γ < λ
and 〈pβ | β < γ〉 is a decreasing sequence of elements of P, then there is a
q ∈ P such that q ≤ pβ for all β < γ.

Lemma 2.18. If λ is regular, then Fn(I, J, λ) is λ-closed.

Proof. If λ is regular and γ < λ and 〈pβ | β < γ〉 is a decreasing sequence
of elements of Fn(I, J, λ), then

⋃
{pβ | β < γ} ∈ Fn(I, J, λ). �

Lemma 2.19. Let M be a countable transitive model of ZFC. Let λ be a
cardinal of M . Let P ∈M be a poset such that “P is λ-closed” holds in M .
Let X and Y belong to M with |X|M < λ. Let G be P-generic over M . Let
f : X → Y with f ∈M [G]. Then f ∈M .

Proof. Let τG = f . Let q ∈ G be such that q ‖− τ : X̌ → Y̌ . Work in M .
Let α 7→ xα be a one-one function from some ordinal β < λ onto X.

For p ≤ q, we use transfinite recursion to associate with p a decreasing
sequence 〈pα | α ≤ β〉. Let p0 = p. Given 〈pα | α < γ〉 with γ ≤ β, let
rγ ≤ pα for all α < γ. If γ < β, let pγ ≤ rγ be such that pγ ‖− τ(x̌γ) = y̌γ
for some yγ ∈ Y . If γ = β, let pγ = rγ . Then pβ ‖− τ(x̌γ) = y̌γ for all γ < β.
Thus pβ ‖− τ = ǧ,” where g is γ 7→ yγ . Since the set of all pβ, p ≤ q, is
dense below q and belongs to M , some pβ belongs to G.
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Corollary 2.20. If M , λ, and P are as in Lemma 2.19, then P preserves
cofinalities and cardinals ≤ λ.

Lemma 2.21. Let M be a countable transitive model of ZFC and let I and
J 6= ∅ belong to M . Let λ be an infinite regular cardinal of M such that
(|J |<λ = λ)M . Then FnM (I, J, λ) preserves cofinalities and cardinals.

Proof. Work in M . By Lemma 2.15, Fn(I, J, λ) has the λ+-cc. By
Lemma 2.17, Fn(I, J, λ) preserves cofinalities and cardinals ≥ λ+. By
Corollary 2.20, Fn(I, J, λ) preserves cofinalities and cardinals ≤ λ. �

Theorem 2.22. Let M be a countable transitive model of ZFC. Let λ and
κ be infinite cardinals of M such that, in M , λ is regular, λ < κ, 2<λ = λ,
and κλ = κ. Let G be P-generic over M , where P = Fn(κ×λ, 2, λ)M . Then
cardinals and cofinalities are the same in M and M [G], (2λ

′
)M [G] = (2λ

′
)M

for λ′ < λ, and (2λ = κ)M [G].

Proof. The first assertion follows from Lemma 2.21. The second assertion
then follows from Lemma 2.19.

Work in M . The cardinal of P is ≤ κ<λ · 2<λ = κ · λ = κ. Lemma 2.15
implies that P has the λ+-cc. Hence the set of all antichains in P has
cardinal ≤ κλ = κ. Thus there are no more than κλ = κ nice names for
subsets of λ̌.

The argument of just given implies that (2λ ≤ κ)M [G]. Lemma 2.13
implies that (2λ ≥ κ)M [G]. �

Exercise 2.3. Let M be a countable transitive model of ZFC + GCH. Let
λ and κ > λ be infinite cardinals of M with λ regular in M and cfM (κ) ≥ λ.
Let G be FnM (λ, κ, λ)-generic over M . Show the following:

(1) If δ is a cardinal of M and δ ≤ λ or δ > κ, then δ is a cardinal of
M [G] .

(2) (|κ| = λ)M [G] .

Exercise 2.4. Let M be a countable transitive model of ZFC. Let (κ ≥
2ℵ0)M , and let G be FnM (ω1, κ, ω1)-generic over M . Prove that the contin-
uum hypothesis holds in M [G].
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3 Relative Consistency and Boolean Valued Mod-
els

Weakening hypotheses.

Most of the results of §2 have the hypothesis that M is a countable
transitive model of ZFC. Except for results whose conclusions assert the
existence of generic objects, we can always weaken this hypothesis, requiring
only that M is a transitive class in which ZFC holds.

To indicate why this is so, we discuss the case of Lemma 2.6. Suppose
we change the statement of Lemma 2.6 as follows:

(a) Replace the hypotheses that G is P-generic over M , f ∈M [G], and f :
X → Y by the hypothesis that p ∈ P, τ ∈MP, and p ‖− τ : X̌ → Y̌ .

(b) Replace clause (c) of the conclusion by (∀x ∈X) p ‖− τ(x̌) ∈ ǧ(x̌).

It is easy to see that

(i) for M a countable transitive model of ZFC, the modified Lemma 2.6
for M is equivalent to the original Lemma 2.6 for M ;

(ii) forM a transitive class such that ZFC holds inM , the modified Lemma 2.6
for M implies the original Lemma 2.6 for M .

It is also easy to see that there is a sentence σ such that, for each transitive
class M such that ZFC holds in M ,

(iii) the modified Lemma 2.6 for M is equivalent to σM .

It can be verified that there is some m ∈ ω such that our proof of
Lemma 2.6 for a countable transitive M goes through when we require only
that ZFCm holds in M , where ZFCm is the set of the first m axioms of ZFC.
(Fix some reasonable enumeration of the axioms of ZFC.)

Suppose that M is a transitive class in which ZFC holds. By the Re-
flection schema (applied to the VM

α ), the Löwenheim–Skolem Theorem, and
Mostowski Collapse, let N be a countable transitive model of ZFCm such
that σN ↔ σM . Then Lemma 2.6 holds for N . Hence σN holds. Hence σM

holds. Hence Lemma 2.6 holds for M .
Some of the results of §2 are like Lemma 2.6 in that they can be refor-

mulated in the form “for all countable transitive models M of ZFC, σM

holds.” Others are already essentially in this form.
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Relative Consistency.

To see how the results of §2 give relative consistency results, let us as
an example indicate how Theorem 2.1 yields a proof that ZFC + V 6= L is
consistent if ZFC is consistent.

Let P be the partial ordering of Theorem 2.1. One can see that our
proofs give a (computable) function f : ω → ω and, for each n ∈ ω, a
proof in ZFC that if M is a countable transitive model of ZFCf(n) and G
is P-generic over M , then M [G] is a countable transitive model of ZFCn +
V 6= L.

All instances of The Reflection schema are provable in ZFC, and the
Löwenheim–Skolem and Mostowski’s Lemma are provable in ZFC. Thus we
know that for each n ∈ ω there is a proof in ZFC (of a sentence expressing)
that there exists a countable transitive model M of ZFCf(n). Combining
this with the fact mentioned in the preceding paragraph, we get that for
each n there is a proof in ZFC that there exists a countable transitive model
N of ZFCn + V 6= L.

Suppose that ZFC + V 6= L is inconsistent. Then there is an n ∈ ω
such that from ZFCn + V 6= L a contradiction is provable. For this n, it is
provable in ZFC that ZFCn + V 6= L is inconsistent. Since the Soundness
Theorem is provable in ZFC, there is a proof in ZFC that there does not
exist any model of ZFCn + V 6= L. Thus in ZFC both a sentence and its
negation are provable, i.e., ZFC is inconsistent.

Complete embeddings and dense embeddings.

Let 〈P,≤P,1P〉 and 〈Q,≤Q,1Q〉 be posets. A function i : P → Q is a
complete embedding (of 〈P,≤P,1P〉 into 〈Q,≤Q,1Q〉) if

(1) (∀p ∈P)(∀p′ ∈P)(p ≤ p′ → i(p) ≤ i(p′)) ;

(2) (∀p ∈P)(∀p′ ∈P)(p ⊥ p′ ↔ i(p) ⊥ i(p′)) ;

(3) (∀q ∈Q)(∃p ∈P)(∀p′ ≤ p) i(p′) is compatible with q .

(Note that we suppress subscripts on “≤” when there is no danger of con-
fusion.) For q and p as in (3), p is called a reduction of q to P.

Say that 〈P,≤P,1P〉 ⊆c 〈Q,≤Q,1Q〉 if P ⊆ Q, ≤P = ≤Q ∩ (P × P)
and id : P→ Q is a complete embedding.

Lemma 3.1. If I ⊆ I ′ then Fn(I, J, λ) ⊆c Fn(I ′, J, λ).

Proof. (1) and (2) are easily verified. For (3), note that if q ∈ Fn(I ′, J, λ)
then q � I is a reduction of q to P. �
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Lemma 3.2. Let M be transitive and such that ZFC holds in M . Let P
and Q be posets and let i : P → Q be a complete embedding. Assume that
P, Q, and i all belong to M . Let H be Q-generic over M . Then

(a) i−1(H) is P-generic over M ;

(b) M [i−1(H)] ⊆M [H].

Proof. Let G = i−1(H). To prove (a), we use Exercise 1.3.
Assume p ≤ p′ and p ∈ G. Then (1) implies that i(p) ≤ i(p′) and so that

i(p′) ∈ H. Thus p′ ∈ G.
If p and p′ belong to G and p ⊥ p′, then (2) gives the contradiction that

i(p) ⊥ i(p′).
Let D ∈M with D dense in P. Let

E = {q′ ∈Q | (∃p ∈D) q′ ≤ i(p)} .

We show that E is dense in Q. Let q ∈ Q. By (3), let p be a reduction of
q to P. Let p′ ≤ p with p′ ∈ D. Then i(p′) and q are compatible. Let q′ be
a common extension of i(p′) and q. Since p′ ∈ D and q′ ≤ i(p′), we get that
q′ ∈ E.

Now let q ∈ E ∩ H. Let p ∈ D with q ≤ i(p). Then i(p) ∈ H, and so
p ∈ G.

For (b), note that G ∈M [H], and so M [G] ⊆M [H] by Lemma 1.3. �

For posets P and Q, a function i : P→ Q is a dense embedding if

(1) (∀p ∈P)(∀p′ ∈P)(p ≤ p′ → i(p) ≤ i(p′)) ;

(2) (∀p ∈P)(∀p′ ∈P)(p ⊥ p′ ↔ i(p) ⊥ i(p′)) ;

(3) i“P is dense in Q.

Obviously every isomorphism is a dense embedding.

Lemma 3.3. Every dense embedding is a complete embedding.

Proof. If i : P→ Q is a dense embedding and q ∈ Q, then any p ∈ P with
i(p) ≤ q is a reduction of q to P. �

Theorem 3.4. Let M be transitive and such that ZFC holds in M . Let P
and Q be posets and let i : P → Q be a dense embedding. Assume that P,
Q, and i all belong to M . For G ⊆ P, let

ı̃(G) = {q ∈Q | (∃p ∈G) i(p) ≤ q} .

Then
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(a) If H is Q-generic over M , then i−1(H) is P-generic over M and
ı̃(i−1(H)) = H.

(b) If G is P-generic over M , then ı̃(G) is Q-generic over M and
i−1(̃ı(G)) = G.

(c) If G = i−1(H) in (a) or if H = ı̃(G) in (b), then M [G] = M [H].

Proof. (a) By Lemmas 3.2 and 3.3, i−1(H) is P-generic over M . Since
i“i−1(H) ⊆ H and since every member of ı̃(i−1(H)) is ≥ some member of
i“i−1(H),

ı̃(i−1(H)) ⊆ H .

To see that H ⊆ ı̃(i−1(H)) ⊆ H, let q ∈ H. The set {q′ ≤ q | q′ ∈ range(i)}
is dense below q, so some q′ belongs both to this set and to H.

(b) Let H = ı̃(G). We use Exercise 1.3. If q ≤ q′ and q ∈ H, then it
follows directly that q′ ∈ H. Let q and q′ be any members of H. There are
members p and p′ of G such that i(p) ≤ q and i(p′) ≤ q′. Since p and p′ are
compatible in P, property (2) of dense embeddings implies that q and q′ are
compatible in Q. Let E ∈M with E dense in Q. Let

D = {p ∈P | (∃q ∈ E) i(p) ≤ q} .

To see that D is dense in P, let p ∈ P. Let q ∈ E be such that q ≤ i(p). By
property (3) of dense embeddings, let p′ ∈ P with i(p′) ≤ q. By property (2),
p and p′ are compatible. Let p′′ be a common extension of p and p′. By
property (1), i(p′′) ≤ i(p′) ≤ q, and so p′′ ∈ D. By the density of D, let
p ∈ D ∩G. Let q ∈ E with i(p) ≤ q. Then q ∈ H. If p ∈ G then i(p) ∈ ı̃(G)
and so p ∈ i−1(̃ı(G)). For the reverse inclusion, let p ∈ i−1(̃ı(G)). Since
{p′ ∈ P | p′ ≤ p ∨ p′ ⊥ p} is dense in P, some p′ ∈ G belongs to this set.
Both p and p′ belong to i−1(̃ı(G)), and so p′ 6⊥ p, It follows that p ∈ G.

(c) That G ∈ M [H] and H ∈ M [G] is clear. By Lemma 1.3, it follows
that M [G] = M [H]. �

If P and Q are posets and i : P → Q is a complete embedding, define
inductively, for τ ∈ V P,

i∗(τ) = {〈i∗(σ), i(p)〉 | 〈σ, p〉 ∈ τ} .

Lemma 3.5. Let M be a transitive class such that ZFC holds in M . Let P
and Q be posets and let i : P → Q be a complete embedding. Assume that
P, Q, and i all belong to M . Let H be Q-generic over M .

(a) For all τ ∈MP, τi−1(H) = (i∗(τ))H .
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(b) If ϕ(x1, . . . , xn) is asolute for transitive models of ZFC, then

(∀p ∈P)(p ‖− ϕ(τ1, . . . , τn)↔ i(p) ‖− ϕ(i∗(τ1), . . . , i∗(τn))) .

(c) If i is a dense embedding, then the conclusion of (b) holds for all
formulas ϕ(x1, . . . , xn).

Proof. We prove (a) by induction on rank(τ). To show that τi−1(H) ⊆
i∗(τ)H , let 〈σ, p〉 ∈ τ and p ∈ i−1(H). Then 〈i∗(σ), i(p)〉 ∈ i∗(τ) and i(p) ∈
H. Therefore i∗(σ)H ∈ i∗(τ)H . By induction, it follows that σi−1(H) ∈
i∗(τ)H . The proof of the reverse inclusion is similar.

For M countable, (b) and (c) follow from part (b) of Lemma 3.2 and
part (c) of Theorem 3.4. For general M they can be proved using the
method sketched at the beginning of this section. �

A poset P is separative if

(a) (∀p ∈P)(∀q ∈P)((p ≤ q ∧ q ≤ p)→ p = q) ;

(b) (∀p ∈P)(∀q ∈P)(p 6≤ q → (∃r ≤ p) r ⊥ q) .

Exercise 3.1. Let P and Q be separative posets and let i : P → Q be a
complete embedding. Show that i is one-one, that i(1P) = 1Q, and that

(∀p ∈P)(∀p′ ∈P)(p ≤ p′ ↔ i(p) ≤ i(p′)) .

Lemma 3.6. Let P be a poset. There is a separative poset Q such that
|Q| ≤ |P| and such that there is a dense embedding i : P→ Q.

Proof. Let ≤ = ≤P and let 1 = 1P. For elements p1 and p2 of P, set

p1 ≤′ p2 ↔ (∀r ≤ p1) r 6⊥ p2 .

It is easy to check that ≤′ is a partial ordering of P, that 〈P,≤′,1〉 satisfies
clause (b) in the definition of “separative,” and that the identity is a dense
embedding of 〈P,≤,1〉 into 〈P,≤′,1〉.

For elements p1 and p2 of P, set

p1 ∼ p2 ↔ (p1 ≤′ p2 ∧ p2 ≤′ p1) .

Let Q be the set of all equivalence classes with respect to the equivalence
relation ∼, let ≤Q be the induced partial ordering of the equivalence classes,
and let 1Q be the equivalence class of 1. One readily verifies that 〈Q,≤Q
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,1Q〉 is a separative poset and that the function i : P → Q that sends
each p ∈ P to its equivalence class is a dense embedding of 〈P,≤′,1〉 into
〈Q,≤Q,1Q〉 and hence is a dense embedding of 〈P,≤,1〉 into 〈Q,≤Q,1Q〉.
�

Boolean-Valued Models

A Boolean algebra is a separative poset 〈B,≤,1〉 with the following prop-
erties.

(a) Any two elements b and c of B have a lub b ∨ c and a glb b ∧ c.
(b) ∨ and ∧ distribute over one another.

(c) There is an operation b 7→ b′ such that b ∨ b′ = 1, (b′)′ = b, (b ∨ c)′ =
b′ ∧ c′, and (b ∧ c)′ = b′ ∨ c′ for any elements b and c of B.

It is not hard to see that the operation ′ is uniquely determined by (c).

Remark. The definition just given has redundancies. For example,
clause (b) from the definition of “separative” is redundant.

A Boolean algebra B is complete if every subset S of B has a lub
∨
S

and a glb
∧
S.

Example. If A and B are Lebesgue measurable subsets of the unit inter-
val, set

A ∼ B ↔ µ(A4B) = 0

where µ is Lebesgue measure and A4B is the symmetric difference of A and
B. Let M be the set of all equivalence classes with respect to ∼. Partially
order M by letting the equivalence class of A be ≤ that of B if µ(A\B) = 0.
Then M is a complete Boolean algebra. Indeed, this follows from the fact
that M is a σ-algebra (

∨
S and

∧
S exist for all countable S ⊆M) together

with the fact (Exercise 2.1) that M \ {0} has the ccc.

Lemma 3.7. Let P be a poset. There is a complete Boolean algebra B such
that there is a dense embedding i : P→ B \ {0}, where 0 = 1′. Moreover B
is unique up to isomorphism.

Proof. If X is a topological space, a subset Y of X is regular open if
Y = int(cl(Y )), where int(Z) is the interior of Z and cl(Z) is the closure
of Z. The regular open algebra of X, ro(X), is the poset of regular open
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subsets of X, ordered by inclusion (and with 1 = X). It is fairly easy to
check that ro(X) is a complete Boolean algebra and that

b ∧ c = b ∩ c ;
b ∨ c = int(cl(b ∪ c)) ;
b′ = int(X \ b) ;∧
S = int(

⋂
S) ;∨

S = int(cl(
⋃
S)) .

We make P into a topological space by taking as a base all sets of the
form Np, p ∈ P , where

Np = {q ∈ P | q ≤ p} .

Let B = ro(P). Define i : P→ B \ {0} by

i(p) = int(cl(Np)) .

We have that p ≤ q ⇒ Np ⊆ Nq ⇒ int(cl(Np)) ⊆ int(cl(Nq)) ⇒ i(p) ⊆
i(q). Moreover, p ⊥ q ⇒ Np ∩Nq = ∅ ⇒ cl(Np) ∩Nq = ∅ ⇒ int(cl(Np)) ∩
Nq = ∅ ⇒ int(cl(Np)) ∩ cl(Nq) = ∅ ⇒ int(cl(Np)) ∩ int(cl(Nq)) = ∅ ⇒
i(p) ∩ i(q) = ∅ ⇒ i(p) ⊥ i(q). For the converse, note that i(p) ⊥ i(q) ⇒
int(cl(Np)) ∩ int(cl(Nq)) = ∅ ⇒ Np ∩Nq = ∅. To see that the range of i is
dense in B \ {0}, let b ∈ B \ {0}. Since b is open, there is a p ∈ P such that
Np ⊆ b. But then int(cl(Np)) ⊆ int(cl(b)) = b, since b is regular open.

For the uniqueness of B, note that if i : P→ B\{0} is a dense embedding
and b ∈ B, then ∨

{i(p) | p ∈ P ∧ i(p) ≤ b} = b ;

for otherwise b ∧ (
∨
{i(p) | p ∈ P ∧ i(p) ≤ b})′ 6= 0 , and so range (i) is not

dense in B \ {0}. This fact tells us how to define an isomorphism beteween
B and B′, given dense embeddings i : P→ B \ {0} and i′ : P to B′ \ {0}.

�

If P is a poset, then the complete Boolean algebra given by Lemma 3.7
is called the completion of P.

If B is a complete Boolean algebra and ϕ is a sentence of L(B \ {0}, V ),
then let us make the convention that 0 ‖− ϕ.

Lemma 3.8. Let B be a complete Boolean algebra. Let ϕ be a sentence of
L(B \ {0}, V ). There is a greatest element b of B such that b ‖− ϕ.
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Proof. Let b =
∨
{c | c ‖− ϕ}. It is easy to check that b is as required. �

For each ϕ, let us call the b given by Lemma 3.8 the truth-value of ϕ and
denote it by [[ϕ]].

If B is a complete Boolean algebra, and σ ∈ V B\{0}, a very nice name
for a subset of σ is an element of V B\{0} of the form

{〈π, f(π)〉 | π ∈ domain(σ) ∧ f(π) 6= 0} ,

where f : domain (σ) → B. For complete Boolean algebras, Lemma 2.9
holds with “very nice name” replacing “nice name”: given µ, let τ be the
very nice name gotten by setting f(π) = [[π ∈ µ]].

Using only very nice names, we one can construct an alternative version
of V B\{0}. For any ordinal α, Vα+1 is the collection of all sets of the form
{x ∈ Vα | f(x) = 1}, for f : Vα → {0, 1}}. If we think of {0, 1} as the two-
element complete Boolean algebra and if we ignore the difference between a
set and its characteristic function, then we can regard the following definition
as a generalization of that of the Vα hierarchy.

V B
0 = ∅ ;

V B
α+1 = {τ | τ : Vα → B} ;

V B
λ =

⋃
{V B

β | β < λ} for limit λ ;

V B =
⋃
{V B

α | α ∈ ON} .

An important difference between the general case and that of B = {0,1} is
that we can have τ ∈ V B

α+1 and σ ∈ V B
α such that [[σ ∈ τ ]] > τ(σ).

Instead of using V B as an alternative version of the class of B \ {0}-
names, one can simply construe it a a Boolean-valued model. If B is a com-
plete Boolean algebra, then a B-valued model A (for a relational language)
is a set A together with an assignment to each n-ary relation symbol P of a
function PA : nA → B. Satisfaction (truth-value relative to an assignment
of variables to elements of A) is defined using the Boolean operations, e.g.,
[[ϕ ∧ ψ]] = [[ϕ]] ∧ [[ψ]]. One can show that if a sentence ϕ follows logically
from a set Σ of sentences, then

∧
{[[ψ]] | ψ ∈ Σ} ≤ [[ϕ]]. Thus using V B as a

Boolean-valued (class) model, we can prove our relative consistency results
by an inner model method, as one can prove relative consistency results
using L, except now the inner model is Boolean-valued.

A complete homomorphism between complete Boolean algebras B and
B′ is an i : B→ B′ such that i preserves all the finite and infinite Boolean
operations. We omit the routine proof of the following lemma.
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Lemma 3.9. Let B and B′ be complete Boolean algebras and let i : B→ B′.
Then i � B \ {0} is a complete embedding (into B′ \ {0}) if and only if i is
a one-one complete homomorphism, and i � B \ {0} is a dense embedding if
and only if i is an isomorphism.

Lemma 3.10. Let M be a transitive class in which ZFC holds. In M , let
B be a complete Boolean algebra. Let G be B \ {0}-generic over M . Let
X ∈M and let Y ∈M [G] with Y ⊆ X.

In M there is a complete subalgebra C of B with the following properties.
Let H = G∩C. Then H is C\{0}-generic over M , and M [H] is the smallest
transitive class N such that M ⊆ N , Y ∈ N , and ZFC holds in N .

Proof. Let τG = Y . In M , let C be the complete subalgebra of B generated
by

{[[x̌ ∈ τ ]] | x ∈ X} .

ThatH is C\{0}-generic overM follows from Lemma 3.9 and Lemma 3.2.
Since x ∈ Y if and only if [[x̌ ∈ τ ]] ∈ H, we have that Y ∈M [H].
Let N be transitive and such that M ⊆ N , Y ∈ N , and ZFC holds in

N . In N , define h : C→ {0,1} by

h([[x̌ ∈ τ ]]) =
{

1 if x ∈ Y ;
0 otherwise;

h(c′) = (h(c))′

h(
∨
S) =

∨
h(S).

It is easy to show by transfinite induction that, for all c ∈ C, c ∈ H if and
only if h(c) = 1. �
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4 Products, Iterations, and Measurability

Products.

Let us fix, for the first part of this section, posets 〈P0,≤0,10〉 and
〈P1,≤1,11〉. Define the product

〈P0 ≤0,10〉 × 〈P1 ≤1,11〉

of these two posets to be

〈P0 ×P1,≤,1〉 ,

where 1 = 〈10,11〉 and

〈p0, p1〉 ≤ 〈q0, q1〉 ↔ (p0 ≤0 q0 ∧ p1 ≤1 q1) .

Define i0 : P0 → P0 ×P1 and i1 : P1 → P0 ×P1 by

i0(p0) = 〈p0,11〉 ;
i1(p1) = 〈10, p1〉 .

We omit the easy proof of the following lemma.

Lemma 4.1. i0 and i1 are complete embeddings.

Corollary 4.2. Let M be transitive and such that ZFC holds in M . Assume
that P0 and P1 belong to M . Let G be P0 ×P1-generic over M . Then

(i) i0
−1(G) is P0-generic over M ;

(ii) i1
−1(G) is P1-generic over M ;

(iii) G = i0
−1(G)× i1−1(G) .

Proof. (i) and (ii) follow from Lemma 4.1 and Lemma 3.2. For (iii), observe
that

〈p0, p1〉 ∈ i0−1(G)× i1−1(G) ↔ 〈p0,11〉 ∈ G ∧ 〈10, p1〉 ∈ G
↔ 〈p0, p1〉 ∈ G . �

Lemma 4.3. Let M be transitive and such that ZFC holds in M . Assume
that P0 and P1 belong to M . Let G0 ⊆ P0 and G1 ⊆ P1. Then the following
are equivalent:
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(1) G0 ×G1 is P0 ×P1-generic over M .

(2) G0 is P0-generic over M , and G1 is P1-generic over M [G0].

(3) G1 is P1-generic over M , and G0 is P0-generic over M [G1].

If (1)–(3) hold, then

M [G0 ×G1] = M [G0][G1] = M [G1][G0] .

Proof. We first show that (1) implies (2). Assume that (1) holds. That G0

andG1 are filters and thatG0 is P0-generic overM follow from Corollary 4.2.
Thus we need only show that G1 is P1-generic over M [G0].

Let D1 ∈ M [G0] be dense in P1. Let τ ∈ MP0 be such that τG0 = D1.
We may assume that domain (τ) ⊆ domain (P̌1). Let p0 ∈ G0 be such that
p0 ‖− “τ is dense in P̌1.” Let

D = {〈q0, q1〉 | q0 ≤0 p0 ∧ q0 ‖− q̌1 ∈ τ} .

We argue as follows that D is dense below 〈p0,11〉 in P0 × P1: Let
〈r0, r1〉 ≤ 〈p0,11〉. Since r0 ≤0 p0,

r0 ‖− (∃x ∈ P̌1)(x ∈ τ ∧ x(≤1)̌ ř1) .

By the definition of forcing, there are q0 ≤0 r0 and q1 ∈ P1 such that

q0 ‖− q̌1 ∈ τ ∧ q̌1(≤1)̌ ř1 .

Hence q1 ≤1 r1 and 〈q0, q1〉 ∈ D. Moreover 〈q0, q1〉 ≤ 〈r0, r1〉.
Since 〈p0,11〉 ∈ G0 × G1, there is a 〈q0, q1〉 ∈ (G0 × G1) ∩ D. Since

q0 ∈ G0 and q0 ‖− q̌1 ∈ τ , we have that q1 ∈ D1 and so that q1 ∈ G1 ∩D1.
The proof that (1) implies (3) is like the proof that (1) implies (2).
The proof that (2) implies (1) is left as Exercise 4.1. The proof that (3)

implies (1) is similar.
The last assertion of the lemma is easily verified. �

Exercise 4.1. Do the (2)⇒ (1) case of the proof of Lemma 4.3.

Two-stage iterations.

Let P be a poset. A P-name for a poset is a triple

〈π, π′, π′′〉 ,
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where π, π′, and π′′ are all P-names such that 1P ‖− “π′ is a partial ordering
of π with π′′ a greatest element.” We often write π for the triple, and we
write ≤π for π′ and 1π for π′′.

If P is a poset and π is a P-name for a poset, then let

P ∗ π = {〈p, τ〉 | p ∈ P ∧ τ ∈ domain (π) ∧ p ‖− τ ∈ π} .

Partially order P ∗ π by

〈p, τ〉 ≤ 〈q, σ〉 ↔ (p ≤P q ∧ p ‖− τ ≤π σ) .

Let 1P∗π = 〈1P,1π〉 . Define the canonical embedding i : P→ P ∗ π by

i(p) = 〈p,1π〉 .

Lemma 4.4. Let P be a poset and let π be a P-name for a poset. Then the
canonical embedding i is a complete embedding.

Proof. We have the following facts:

(a) p ≤ p′ ↔ 〈p,1π〉 ≤ 〈p′,1π〉 ;
(b) i(1P) = 1P∗π ;

(c) p ⊥ p′ → 〈p, τ〉 ⊥ 〈p′, τ ′〉 ;
(d) p ⊥ p′ ↔ 〈p, τ〉 ⊥ 〈p′,1π〉 ;
(e) p ⊥ p′ ↔ i(p) ⊥ i(p′) .

(a), (b), and (c) follow readily from the definitions. The → part of (d)
follows from (c). For the ← part of (d), note that

(q ≤ p ∧ q ≤ p′) → (〈q, τ〉 ≤ 〈p, τ〉 ∧ 〈q, τ〉 ≤ 〈p′,1π〉) .

(e) follows from (d). The lemma follows from (a), (e), and (d), since (d)
implies that p is a reduction to P of 〈p, τ〉. �

Let M be transitive and such that ZFC holds in M . Suppose that in
P ∈ M is a poset and that, in M , π is a P-name for a poset. Let G be
P-generic over M and let H ⊆ πG. Define

G ∗H = {〈p, τ〉 ∈P ∗ π | p ∈ G ∧ τG ∈ H} .
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Exercise 4.2. Let M be transitive and such that ZFC holds in M . Let
P ∈ M be a poset. In M let π be a P-name for a poset. Let K be P ∗ π-
generic over M . Let i be the canonical embedding and let G = i−1(K).
Let

H = {τG | τ ∈ domain (π) ∧ (∃q) 〈q, τ〉 ∈ K} .

Let τ ∈ domain (π) be such that τG ∈ H. Prove that there is a q ∈ P
such that 〈q, τ〉 ∈ K.

Lemma 4.5. Let M , P, π, K, i, G, and H be as in Exercise 4.2. Then
G is P-generic over M , H is πG-generic over M [G], K = G ∗ H, and
M [K] = M [G][H].

Proof. We shall write ≤ for ≤P, for ≤P?π, and for the name ≤π (i.e., π′).
Since i is a complete embedding, G is P-generic over M .
To see that H ⊆ πG, assume that a ∈ H. There are q and τ such that

a = τG, τ ∈ domain(π), and 〈q, τ〉 ∈ K. Thus q ∈ G and q ‖− τ ∈ π. It
follows that τG ∈ πG.

Next let us show that H is a filter.
Let a ≤πG b with a ∈ H. There are q, τ , and σ such that a = τG,

b = σG, and 〈q, τ〉 ∈ K. There is a p ∈ G such that p ‖− τ ≤ σ. Since
〈p,1π〉 ∈ K, there is an 〈r, µ〉 ∈ K such that 〈r, µ〉 is a common extension
of 〈p,1π〉 and 〈q, τ〉. Since r ≤ p, r ‖− τ ≤ σ. By the definition of ≤,
r ‖− µ ≤ τ . Hence r ‖− µ ≤ σ. But then 〈r, µ〉 ≤ 〈r, σ〉, and so 〈r, σ〉 ∈ K.
This implies that σG ∈ H.

For the other filter property, let a and b belong to H. Let p, q, σ, and τ
be such that a = σG, b = τG, 〈p, σ〉 ∈ K, and 〈q, τ〉 ∈ K. Let 〈r, µ〉 ∈ K be
a common extension of 〈p, σ〉 and 〈q, τ〉. Then µG ∈ H and µG is a common
extension of σG and τG.

The following proof that H meets every dense subset of πG that belongs
to M [G] is similar to the analogous part of the argument that (1) ⇒ (2) in
the proof of Lemma 4.3.

Let D1 ∈ M [G] be dense in πG. Let τG = D1. We may assume that
domain (τ) ⊆ domain (π). Let p ∈ G be such that p ‖− “τ is dense in π.”
Let

D = {〈q, σ〉 ∈P ∗ π | q ≤ p ∧ q ‖− σ ∈ τ} .

To see that D is dense below 〈p,1π〉 in P ∗ π, let 〈r, µ〉 ≤ 〈p,1π〉. Since
r ≤ p,

r ‖− (∃x ∈ π)(x ∈ τ ∧ x ≤ µ) .
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By the definition of forcing, there are q ≤ r and σ ∈ domain (π) such that

q ‖− (σ ∈ τ ∧ σ ≤ µ) .

Hence 〈q, σ〉 ≤ 〈r, µ〉 and 〈q, σ〉 ∈ D.
Since 〈p,1π〉 ∈ K, there is a 〈q, σ〉 ∈ K ∩D. Since q ∈ G and q ‖− σ ∈ τ ,

we have that σG ∈ D1 and so that σG ∈ H ∩D1.
To see that K = G ∗H, first observe that

〈p, τ〉 ∈ K → 〈p, τ〉 ∈ P ∗ π ∧ p ∈ G ∧ τG ∈ H
→ 〈p, τ〉 ∈ G ∗H .

Next assume that 〈p, τ〉 ∈ G ∗H. Then

τ ∈ domain (π) ∧ 〈p, τ〉 ∈ P ∗ π ∧ p ∈ G ∧ τG ∈ H .

By Exercise 4.2, let q be such that 〈q, τ〉 ∈ K. Let 〈r, σ〉 ∈ K be a common
extension of 〈p,1π〉 and 〈q, τ〉. Then r ‖− σ ≤ τ , so 〈r, σ〉 ≤ 〈p, τ〉. Hence
〈p, τ〉 ∈ K.

Since G and H belong to M [K], M [G][H] ⊆M [K]. Since K = G ∗H ∈
M [G][H], M [K] ⊆M [G][H]. �

Lemma 4.6. Let M be transitive and such that ZFC holds in M . In M , let
B and C be complete Boolean algebras such that C is a complete subalgebra
of B. For b ∈ B \ {0}, let h(b) ∈ C \ {0} be given by

h(b) =
∧
{c ∈ C | b ≤ c} .

Let K be (B \ {0})-generic over M . Let G = K ∩C. In M [G] let

Q = {b ∈B \ {0} | h(b) ∈ G} .

Then G is (C \ {0})-generic over M , K is Q-generic over M [G], and
M [G][K] = M [K].

Proof. Lemmas 3.2 and 3.9 imply that G is (C \ {0})-generic over M .
Note that K ⊆ Q, since b ∈ K ⇒ h(b) ∈ K ⇒ h(b) ∈ G. Since K is a

filter on B \ {0}, it follows that K is a filter on Q.
Let π ∈MC\{0} be given by

π = {〈b̌, h(b)〉 | b ∈ B \ {0}} .

For b ∈ B \ {0}, [[b̌ ∈ π]] = h(b), and thus πG = Q.
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Let σG be dense in πG. Changing σ if necessary, we may assume (a) that
domain (σ) ⊆ domain (π) = {b̌ | b ∈ B\{0}} and (b) that 1C\{0} ‖− “σ ⊆ π
and σ is dense in π.” (Clearly we may assume (a). Suppose (a) holds and
(b) fails. For some c ∈ C \ {0}, (b) holds with c replacing 1C\{0}. Replace
σ by {〈b̌, c ∧ c1〉 | 〈b, c1〉 ∈ σ ∧ c ∧ c1 6= 0} ∪ {〈b̌, c′ ∩ h(b)〉 | b ∈ B \ {0}}.)

We show that K ∩ σG 6= ∅. Let

D = {b ∈B \ {0} | (∃b∗ ∈B \ {0})(b ≤ b∗ ∧ h(b) ‖− b̌∗ ∈ σ)} .

To prove that D is dense in B \ {0}, let b0 ∈ B \ {0}. Since h(b0) ‖− b̌0 ∈ π,
we get from (b) that

h(b0) ‖− (∃x ∈ π)(x ≤ b̌0 ∧ x ∈ σ) .

The definition of forcing and (a) give us a c ∈ C \ {0} and a b∗ ∈ B \ {0}
such that

c ≤ h(b0) ∧ c ‖− (b̌∗ ≤ b̌0 ∧ b̌∗ ∈ σ) .

Hence b∗ ≤ b0 and c ‖− b̌∗ ∈ σ. The latter fact and (b) imply that

c ≤ [[b̌∗ ∈ π]] = h(b∗) .

If c ⊥ b∗, then b∗ ≤ c′, and so h(b∗) ≤ c′. Hence c and b∗ are compatible.
Let b ∈ B \ {0} be a common extension of b∗ and c. Since h(b) ≤ c,
h(b) ‖− b̌∗ ∈ σ. Because b ≤ b0, our proof that D is dense is complete.

By the density of D, let b ∈ D ∩K. Thus h(b) ∈ G. By the definition of
D, there is a b∗ ≥ b such that h(b) ‖− b̌∗ ∈ σ. For such a b∗, b∗ ∈ K and so
b∗ ∈ K ∩ σG.

The last assertion of the lemma obviously holds. �

Corollary 4.7. Let M , B, C, K, and G be as in Lemma 4.6. Let P ⊆
B \ {0} with id : P→ B \ {0} a complete embedding. There is a subset Q of
P such that Q ∈M [G], K∩Q is Q-generic over M [G], and M [G][K∩Q] =
M [K].

Lemma 4.8. Let M be a transitive model of ZFC and let P ∈ M be a
poset. Let ϕ(x, y1, . . . , yn) be a formula of the language of set theory and let
σ1, . . . , σn be elements of MP. Let p ∈ P be such that

p ‖− (∃x)ϕ(x, σ1, . . . , σn) .

Then there is a τ ∈MP such that

p ‖− ϕ(τ, σ1, . . . , σn) .
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Proof. Let A ⊆ P be a maximal antichain below p such that, for each
q ∈ A,

(∃µ)(q ‖− ϕ(µ, σ1, . . . , σn) .

For each q ∈ A, let µq be such that q ‖− ϕ(µq, σ1, . . . , σn). Now let

τ = {〈ρ, r〉 | (∃q ∈A)(∃s ∈P)(r ≤ q ∧ r ≤ s ∧ 〈ρ, s〉 ∈ µq)} .

For q ∈ A, q ‖− τ = µq and so q ‖− ϕ(τ, σ1, . . . , σn). �

Theorem 4.9. Let M be transitive and such that ZFC holds in M . Let λ
be an uncountable cardinal number of M . Let Pλ be the dense subposet of
Fn(ω, λ) consisting of those p ∈ Fn(ω, λ) whose domain belongs to ω. Let
Q ∈ M be a separative poset such that (|Q| = λ)M and such that, in M ,
Q collapses λ to ω (i.e., such that, in M , 1Q ‖− |λ̌| = ω̌). Then there is a
dense embedding i : Pλ → Q such that i ∈M .

Proof. Work in M . For q ∈ Q, let Qq = {r | r ≤ q}. Note that 〈Qq,≤, q〉
is a poset. We first show:

(†) (∀q ∈ Q)(∃A)(A is an antichain in Qq ∧ |A| = λ).

Proof of (†). Assume that (†) fails for q. This means that Qq has the
λ-cc. If λ is regular, then Lemma 2.17 implies that Qq preserves cardinals
≥ λ, and this contradicts the hypothesis that Q collapses λ to ω. Assume
then that λ is singular. If Qq has the λ′-cc for some cardinal λ′ < λ, then
Lemma 2.17 again yields a contradiction. Thus Qq has antichains of every
size < λ. Let A be an antichain in Qq of size cf(λ). Let f : A → λ with
range(f) unbounded in λ. For each a ∈ A, let Ba be an antichain in Qa

with |Ba| = f(a). Then
⋃
{Ba | a ∈ A} is antichain in Qq of size λ. �

The hypotheses of the theorem imply that

1Q ‖− (∃f) f : ω̌ onto−→ Γ .

(Recall that Γ is the canonical name for the generic of object.) By Lemma 4.8,
let τ ∈MP be such that

1Q ‖− τ : ω̌ onto−→ Γ .

We define i(p) by induction on `h(p). Let i(∅) = 1Q. Suppose that i(p)
is defined and that `h(p) = n. By (†) let A be a maximal antichain in Qi(p)

such that |A| = λ. For each a ∈ A, let Ba be a maximal antichain in Qa
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such that every r ∈ Ba decides τ(ň), i.e., such that for all r ∈ Ba there is an
s ∈ Q such that r ‖− τ(ň) = š. Such an antichain exists because the set of
all r ≤ a that decide τ(ň) is dense below a. Let B =

⋃
{Bq | q ∈ A}. Then

B is a maximal antichain in Qi(p), |B| = λ, and each member of B decides
τ(ň). Let α 7→ qα be a bijection between λ and B. Define

i(p ∪ {〈n, α〉}) = qα

for each α < λ.
Note that induction on n yields that {i(p) | p ∈ P ∧ `h(p) = n} is a

maximal antichain in Q for each n ∈ ω. Note also that (∀p)(∀p′)(p ≤ p′ ↔
i(p) ≤ i(p′).

To check that i is a dense embedding it is thus enough to check that
the range of i is dense in Q. Let q ∈ Q. Clearly q ‖− q̌ ∈ Γ. Hence q ‖−
(∃y ∈ ω̌) τ(y) = q̌. Thus there are n ∈ ω and r ≤ q such that r ‖− τ(ň) = q̌.
Since {i(p) | p ∈ P ∧ `h(p) = n + 1} is a maximal antichain in Q, there is
a p ∈ P such that `h(p) = n + 1 and i(p) is compatible with r. Since i(p)
decides τ(ň), it must be that i(p) ‖− τ(ň) = q̌. Thus i(p) ‖− q̌ ∈ Γ. Since Q
is separative, it follows that i(p) ≤ q. �

Corollary 4.10. Let M be transitive and such that ZFC holds in M . Let
α be an ordinal of M that is uncountable in M . Let G∗ be Fn(ω, α)-generic
over M . Let R ∈ M be a poset and suppose that G ∈ M [G∗] is R-generic
over M . Assume that α is uncountable in M [G]. Then there is an H ∈
M [G∗] such that H is Fn(ω, α)-generic over M [G] and such that M [G][H] =
M [G∗].

Proof. Let B be the completion in M of Fn(ω, α). We may assume that
Fn(ω, α) ⊆ B \ {0} and that the identity is a dense embedding. The filter
K on B \ {0} that is generated by G∗ is (B \ {0})-generic over M and
M [K] = M [G∗].

Apply Lemma 3.10 with K, R, and G as the G, X, and Y respectively
of Lemma 3.10. This gives us a C that is in M a complete subalgebra of B
and is such that M [K ∩C] = M [G].

Now apply Corollary 4.7 with with P = Fn(ω, α). We get a poset Q
such that

(i) Q ∈M [G];

(ii) Q ⊆ Fn(ω, α);

(iii) K ∩Q is Q-generic over M [G];
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(iv) M [G][K ∩Q] = M [K].

Since α is countable in M [G∗] = M [K], we may assume, replacing Q by a
subordering if necessary, that 1Q ‖− |α̌| = ω̌. This, together with the fact
that α is uncountable in M [G] = M [K ∩C], implies that |Q|M [G] = |α|M [G].
Clause (ii) implies that Q is separative. We may thus apply Theorem 4.9 to
conclude that Q has the same completion in M [G] as Fn(ω, |α|M [G]). The
latter is isomorphic in M [G] to Fn(ω, α), so the results of §3 give us our H.

�

For any ordinal α, let Lv(α) be the set of all finite functions f such that

(i) domain (f) ⊆ α× ω ;

(ii) (∀〈β, n〉 ∈ domain (f)) f(β, n) < β .

Exercise 4.3. Let M be transitive and such that ZFC holds in M . Let κ
be an uncountable regular cardinal of M . Let G be Lv(κ)-generic over M .

(a) Prove that κ is the ω1 of M [G].

(b) Let X ⊆ α < κ with x ∈ M [G]. Show that there is an ordinal
κ′ < κ such that x ∈M [G ∩ Lv(κ′)].

Hint. Show that Lv(κ) has the κ-cc.

Lemma 4.11. Let M be transitive and such that ZFC holds in M . Let κ be
inaccessible in M . Let G̃ be Lv(κ)-generic over M . Let R ∈ M be a poset
such that |R|M < κ. Suppose that G ∈ M [G̃] is R-generic over M . Then
there is an H̃ ∈ M [G̃] such that H̃ is Lv(κ)-generic over M [G] and such
that M [G][H̃] = M [G̃].

Proof. Observe that, for α < κ, Lv(κ) is isomorphic to the product of
Lv(α) and Lvα(κ), where Lvα(κ) = {p ∈ Lv(κ) | domain (p)∩(α×ω) = ∅}.
By part (b) of Exercise 4.3, there is a β < κ such that G ∈M [G̃∩Lv(β)]. We
shall show that there is an α and there is anH∗ ∈M [G̃] such that β ≤ α < κ,
such that H∗ is Lv(α)-generic over M [G], and such that M [G][H∗] = M [G̃∩
Lv(α)]. This will suffice, as we see as follows. By Lemma 4.3, G̃∩Lvα(κ) is
Lvα(κ)-generic over M [G̃ ∩ Lv(α)], and so over M [G][H∗]. By Lemma 4.3
again, H∗ × (G̃ ∩ Lvα(κ)) is (Lv(α)× Lvα(κ))-generic over M [G].

Let α be such that β ≤ α < κ and such that α is uncountable in M [G]
but α is not a cardinal in M . By Theorem 4.9, Lv(α) and Fn(ω, α) have
the same completion in M . Hence there is a G∗ ∈M [G̃ ∩ Lv(α)] such that
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G∗ is Fn(ω, α)-generic over M and such that M [G∗] = M [G̃ ∩ Lv(α)]. By
Corollary 4.10, there is an H ∈ M [G̃ ∩ Lv(α)] such that H is Fn(ω, α)-
generic over M [G] and such that M [G][H] = M [G∗]. Since Lv(α) and
Fn(ω, α) have the same completion in M [G], we get our H∗. �

Lemma 4.12. Let M be transitive and such that ZFC holds in M . Let κ be
any infinite ordinal of M . Let ϕ be a sentence of L(Lv(κ),M) all of whose
constants are of the form x̌ for elements x of M . Then

1 ‖− ϕ ∨ 1 ‖− ¬ϕ .

Proof. We may assume that M is countable. Suppose that p ‖− ϕ. Let
G be Lv(κ)-generic over M . The proof will be complete if we show that
ϕM [G]. Let q ∈ G with domain (q) = domain (p). Let F : κ \ {0} × ω → κ
be given by

F (α, n) =
{
p(α, n) if 〈α, n〉 ∈ domain (p) ;
(
⋃
G)(α, n) otherwise.

Let G′ = {r ∈ Lv(κ) | r ⊆ F} . It is clear that G′ is a filter on Lv(κ), that
p ∈ G′, and that M [G′] = M [G]. If we show that G′ is Lv(κ)-generic over
M then we will know that ϕM [G′] and so that ϕM [G].

Let D′ be dense in Lv(κ). Let

D = {(r \ p) ∪ q | r ∈ D′ ∧ p ⊆ r} .

Then D is dense below q and so G ∩D 6= ∅. But then G′ ∩D′ 6= ∅. �

Let µ be Lebesgue measure on [0, 1] until further notice. Let us say that
a set A satisfies condition C if A is a set of pairwise disjoint closed subsets
of [0, 1] of positive Lebesgue measure and µ(

⋃
A) = 1. Note that any such

A must be countable.
For transitive M such that ZFC holds in M , a member x of [0, 1] is

random over M if, for every A ∈ M such that “A satisfies condition C”
holds in M , x ∈

⋃
{cl(p) | p ∈ A}. (Here cl(p) is the closure of p.)

Lemma 4.13. Let M be transitive and such that ZFC holds in M . Assume
that (2ℵ0)M is countable. Then the set of x ∈ [0, 1] such that x is random
over M has Lebesgue measure 1.

Proof. We first prove three absoluteness results, the last of which will not
be needed until the proof of Lemma 4.14. Let p and q be subsets of [0, 1]M

that are closed in M . Then
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(a) µ(cl(p)) = µM (p);

(b) p ∩ q = ∅ → cl(p) ∩ cl(q) = ∅;
(c) cl(p ∩ q) = cl(p) ∩ cl(q).

If r ⊆ [0, 1] is open, then r is representable in a unique way as a disjoint
union of open intervals. The Lebesgue measure of r is the sum of the lengths
of the associated open intervals. The intervals of M associated in M with the
complement of p in M are the same as those associated with the complement
of cl(p) in V , in the sense that they have the same endpoints. From this
(a) follows. If p ∩ q = ∅, then there are disjoint open sets of M , p′ and
q′, such that p ⊆ p′ and q ⊆ q′. The open sets in V whose associated
intervals are the same as (have the same enpoints as) those for p′ and q′ in
M are disjoint and cover cl(p) and cl(q) respectively. This gives (b). Finally,
suppose x /∈ cl(p ∩ q). Then x belongs to interval I with endpoints in M
that is disjoint from p ∩ q. Assuming x ∈ cl(p) ∩ cl(q), one can get the
contradiction that some y ∈M belongs to I ∩ p ∩ q.

If A ∈M and “A satisfies condition C” holds in M , then (a) and (b) give
that µ(

⋃
{cl(p) | p ∈ A}) =

∑
p∈A µ(cl(p)) =

∑
p∈A µ

M (p) = µM (
⋃
A) = 1.

Since (2ℵ0)M is countable, there are only countably many such A. Hence
the conclusion of the lemma follows by the countable additivity of µ. �

Lemma 4.14. Let M be transitive and such that ZFC holds in M . In M let
P be the set of all Lebesgue measurable subsets of [0, 1] of positive measure,
ordered by inclusion. An element x of [0, 1] is random over M if and only if
there is a G that is P-generic over M and such that {x} =

⋂
{cl(p) | p ∈ G}.

Proof. Assume first that G is P-generic over M and {x} =
⋂
{cl(p) | p ∈

G}. If A ∈M and “A satisfies condition C” holds in M , then A is a maximal
antichain in P. Thus there is a p ∈ A ∩G. For such p, x ∈ cl(p).

Before proving the converse, we note that a filter G on P is P-generic
over M just in case G meets every A ∈ M that satisfies condition C in M .
This follows from the fact that for every B ∈M that is a maximal antichain
in P there is an A ∈M such that “A satisfies condition C” holds in M and
every element of A is ≤ some element of B. This fact can in turn be proved
from the facts that the set of elements of P that are closed in M is dense in
P and that P has the ccc in M .

Assume that x is random over M . Let G = {p ∈P | x ∈ cl(p)}. If p ≤ q
and p ∈ G, then q ∈ G. Suppose that p and q belong to G. By (c) from
the proof of Lemma 4.13, cl(p ∩ q) = cl(p) ∩ cl(q), and so x ∈ cl(p ∩ q). If
µM (p ∩ q) > 0, then p ∩ q belongs to G and is a common extension of p
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and q. Assume that µM (p ∩ q) = 0. Then there is an A ∈ M that satisfies
condition C in M and whose members are disjoint from p ∩ q. Since x is
random over M , there is an r ∈ A such that x ∈ cl(r). By (b) from the proof
of Lemma 4.13, we get the contradiction that cl(r) and cl(p∩ q) are disjoint.
We have now shown that G is a filter on P. By the remark in the preceding
paragraph, G is P-generic over M . To show that {x} =

⋂
{cl(p) | p ∈ G},

assume for definiteness that y > x. If a is any rational number such that
x < a < y, then [0, a]M ∈ G. Thus y /∈

⋂
{cl(p) | p ∈ G}. �

Lemma 4.15. Let M be transitive and such that ZFC holds in M . Let κ
be inaccessible in M . Let G̃ be Lv(κ)-generic over M . Let ϕ(v0, . . . , vn) be
a formula and let α1, . . . , αn be ordinals of M .

Then “{x ∈ [0, 1] | ϕ(x, α1, . . . , αn)} is Lebesgue measurable” holds in
M [G̃].

Proof. Work in M [G̃].
By Lemma 4.13, the set of x ∈ [0, 1] that are random over M has

Lebesgue measure one. Thus we need only find a measurable set X such
that, for every x random over M ,

ϕ(x, α1, . . . , αn) ↔ x ∈ X .

Le P be as in Lemma 4.14.
For G that is P-generic over M , the set

⋂
{cl(p) | p ∈ G} is a singleton.

The argument of the last step of the proof of Lemma 4.14 shows that this set
has at most one member. That it is non-empty follows from the compactness
of [0, 1] and the fact that any finite intersection of closures of members of G
is non-empty. Let x(G) be the unique member of

⋂
{cl(p) | p ∈ G} and let

τ ∈ MP be such that τG = x(G) for all P-generic G. (The existence of τ
follows from Lemma 4.8.)

Using Lemma 4.12 and using once more the density in M of the sets
closed in M and the fact that P has the ccc in M , we get an A ∈ M
satisfying condition C in M and be such that, for every p ∈ A,

p ‖− (1Lv(κ̌) ‖− ϕ(τ, α̌1, . . . , α̌n)) ∨ p ‖− (1Lv(κ̌) ‖− ¬ϕ(τ, α̌1, . . . , α̌n)) .

(Here we are being careless with notation: we should have written τ̌ instead
of τ , and we should have put two checks on the αi.) Let

A1 = {p ∈ A | p ‖− (1Lv(κ̌) ‖− ϕ(τ, α̌1, . . . , α̌n))}

and let
A2 = {p ∈ A | p ‖− (1Lv(κ̌) ‖− ¬ϕ(τ, α̌1, . . . , α̌n))} .
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Let
X =

⋃
{cl(p) | p ∈ A1}.

To show that X has the required property, let x be random over M . Let
px be the unique p ∈ A such that x ∈ cl(p). We must prove that

ϕ(x, α1, . . . , αn) ↔ p ∈ A1 .

By Lemma 4.14, let G be P-generic over M and such that x(G) = x. Then
p ∈ G.

Let us quit working in M [G̃], in order to talk about it. Assume that
p ∈ A1. (The case that p ∈ A2 is similar.) Then in M [G] it is true that

1Lv(κ) ‖− ϕ(τ, α̌1, . . . , α̌n) .

By Lemma 4.11, there is H̃ ∈M [G̃] such that H̃ is Lv(κ)-generic over M [G]
and such that M [G][H̃] = M [G̃]. Thus ϕM [G̃](x, α1, . . . , αn) holds. �

Lemma 4.16. Let M , κ, and G̃ be as in the statement of Lemma 4.15. Let
ϕ(v0, . . . , vm+n) be a formula, let y1, . . . ym be elements of [0, 1]∩M [G̃], and
let α1, . . . , αn be ordinals of M . Then “{x ∈ [0, 1] | ϕ(x, y1, . . . , ym, α1, . . . , αn)}
is Lebesgue measurable” holds in M [G̃].

Proof. By Exercise 4.3, we get that there is an α < κ such that every yi
belongs toM [G∩Lv(α)]. By Lemma 4.11, there is an H̃ ∈M [G̃] such that H̃
is Lv(κ)-generic over M [G∩Lv(α)] and such that M [G∩Lv(α)][H̃] = M [G̃].
Thus it suffices to prove the lemma in the special case that the yi belong to
M . But then the proof of Lemma 4.15 works, since that proof did not need
that the αi were ordinals but only that they belonged to M . �

A set X is called ordinal definable if there is an ordinal α such that X
is definable in Vα from ordinal parameters. (The parameters aren’t really
needed.) IfX is a set definable in V from ordinal parameters, then Reflection
implies that X is ordinal definable. The converse is obvious.

The hereditarily ordinal definable sets are those sets x such that x and
all members of its transitive closure are ordinal definable. HOD is the class
of all hereditarily ordinal definable sets.

Lemma 4.17. HOD is transitive and ZFC holds in HOD.

We omit the proof, which is not difficult. (A proof is in Kunen’s book.)
The class of sets ordinal definable from reals and the class HOD(R) are

defined as were the class of ordinal definable sets and the class HOD, except
that real as well as ordinal parameters are allowed.
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Lemma 4.18. HOD(R) is transitive and ZF holds in HOD(R).

Theorem 4.19. Let M be transitive and such that ZFC holds in M . Let κ
be inaccessible in M . Let G̃ be Lv(κ)-generic over M .

(1) “All subsets of [0, 1] ordinal definable from reals are Lebesgue mea-
surable” holds in M [G̃].

(2) “ZF + all subsets of [0, 1] are Lebesgue measurable” holds in the
inner model (HOD(R))M [G̃].

Proof. (1) is a restatement of Lemma 4.16. (2) follows from (1), Lemma 4.18,
and the fact that measurability is absolute for HOD(R). �

Theorem 4.20. (1) If “ZFC + there is an inaccessible cardinal” is consis-
tent, then so is “ZFC + all subsets of [0, 1] ordinal definable from reals are
Lebesgue measurable.”

(2) If “ZFC + there is an inaccessible cardinal” is consistent, then so is
“ZF + all subsets of [0, 1] are are Lebesgue measurable.”
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