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Determinacy Consequences of the Existence of 0#

Let α be a countable ordinal. A set A ⊆ ωω is α-Π1
1 if there exists

〈Aβ | β < α〉 such that each Aβ is Π1
1 and

(∀x)(x ∈ A↔ µβ[β = α ∨ x /∈ Aβ] is odd).

For small enough α, say for α < ωCK
1 , we can define a lightface notion, that

of being α-Π1
1, by requiring that {(β, x) | x ∈ Aβ} is Π1

1.
The existence of 0# implies that α-Π1

1 determinacy holds for every α <
ω2. Below we will give the proof for the special case α=2, and we will
describe the auxiliary game used in the proof for α = ωn.

Theorem 1. If 0# exists then 2-Π1
1 determinacy holds.

Let 〈A0, A1〉 witness that A is 2-Π1
1. For i < 2 there there is for each

p ∈ <ωω a linear ordering <ip of `h(p) such that:

(i) 0 is <ip-maximal if `h(p) > 0;

(ii) p ⊆ p′ →<ip=<ip′� `h(p);

(iii) (∀x ∈ ωω)(x ∈ Ai ↔<ix is a wellordering);

(iv) The function p 7→<ip is recursive.

Here < x =
⋃
n < x�n.

Let G be the game in <ωω with A as I’s winning set. Consider the game
G∗ played as follows.

I : 〈x(0), α0〉 〈x(2), α2〉 . . .
II : 〈x(1), α1〉 〈x(3), α3〉 . . .

Each αn must be a countable ordinal. Player I is trying to make n 7→ α2n

an embedding of (ω,<0
x) into (ω1, <), and II is trying to make n 7→ α2n+1

an embedding of (ω,<1
x) into (ω1, <). If either player fails, the first player

to fail (to have the wrong order of the ordinals played) loses. Otherwise II
wins.

Lemma 1. One of the players has a winning strategy that is definable in L
from ω1 (the ω1 of V ).
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The proof of the Lemma, which we omit, is similar to the proof of
Lemma 4.4.1 in the course text.

Assume first that II has a winning strategy τ∗ for G∗ that is definable
in L from ω1.

We define a strategy τ for II for G. Given a position p of length 2k+1 in
G, we define a set of positions p∗ in G∗, all extending p and all having length
2k + 1. Each of these positions is gotten as follows. Let n 7→ α2n embed
(k+1, <0

p) into (Cω1 , <), where Cω1 is the set of all countable indiscernibles.
Let the ordinals α2n+1 be given by τ∗. For each of our positions p∗, there is
a formula ϕ such that τ∗(p∗) = fϕ(p, cγ0 , . . . , cγk

, cω1), where the cγi form an
increasing sequence of countable indiscernibles. Since the first component
of τ∗(p∗) has only countably many possible values, indiscernibility implies
that it has only one possible value. We set τ(p) equal to the first component
of τ∗(p∗).

Assume that x ∈ A is a play of G consistent with τ . Then x ∈ A0, so <0
x

is a wellordering. Extend x to a play x∗ of G∗ consistent with τ∗ by letting
n 7→ α2n embed (ω,<0

x) into (Cω1 , <) and letting the α2n+1 be given by τ∗.
Since τ∗ is a winning strategy, x∗ is a win for II. Hence <1

x is a wellordering,
and so we have the contradiction that x /∈ A.

Now assume that I has a winning strategy σ∗ for G∗ that is definable in
L from ω1.

Note that the ordinal α0 is played by I before II plays any ordinals. Since
0 is maximal in every <0

x, all of I’s remaining ordinals have to be < α0 for
I to win.

We define a strategy σ for I for G. Given a position p of length 2k in G,
we define a set of positions in G∗, all extending p and all having length 2k.
Each of these positions is gotten as follows. Let n 7→ α2n+1 embed (k,<0

p)
into (Cω1 , <), with all the α2n+1 > α0. Let the ordinals α2n be given by
σ∗. Since σ∗ is a winning strategy, all these ordinals are < α0. Since σ∗(p∗)
has only countably many possible values, indiscernibility implies that it has
only one possible value. Set σ(p) equal to the first component of σ∗(p∗).

Assume that x /∈ A is a play of G consistent with σ. We will extend x to
a play x∗ of G∗ consistent with σ∗. By the argument of the last paragraph,
if II’s ordinals are indiscernibles > α0 and are in the right order, then σ∗(p∗)
is independent of which ordinals II plays. Let then I play the α2n that σ∗

would call for if II had played indiscernibles > α0 in the right order. Since σ∗

is a winning strategy, I’s ordinals are in the right order. Thus x ∈ A0. Since
x /∈ A, x ∈ A1. Get x∗ by having n 7→ α2n+1 embed (ω,<1

x) into (Cω1 , <).
This play is a win for II, contradicting the fact that σ∗ is a winning strategy.

�
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Let A be ωn-Π1
1 with n a positive integer, and let 〈Aβ | β < ωn〉 witness

this. Let G be the game in <ωω with A as I’s winning set. For β < ωn, let
p 7→<βp associate a linear ordering of `h(p) with each position p in G in such
a way that conditions (i)-(iv), with “i” replaced by “β,” are satisfied.

Let 〈β, i〉 7→ k(β, i) be a recursive bijection between ωn× ω and ω such
that

(a) β even ↔ k(β, i) even;

(b) i < i′ → k(β, i) < k(β, i′)

(c) j < j′ → (k(ωm+ j, 0) < k(ωm+ j′, i)).

Let G∗ be the game played as follows.

I : 〈x(0), α0〉 〈x(2), α2〉 . . .
II : 〈x(1), α1〉 〈x(3), α3〉 . . .

For βk < ωm, αk must be an ordinal < ω(m + 1). For each even β, I is
trying to make i 7→ αk(β,i) an embedding of (ω,<βx) into (ωn, <). For odd
β, II is trying to make i 7→ αk(β,i) an embedding of (ω,<βx) into (ωn, <). If
either player fails at one of these tasks, then the first player to fail loses.
Otherwise II wins.

The first stated requirement on the αk makes sure that if β is in a lower
ω-block than β′ then there are more ordinals that are available choices for
αk(β′,i′) than for any αk(β,i). Condition (c) guarantees that if β and β′ are
in the same ω-block, then the ordinal αk(β,0) is chosen before any αk(β′,j) is
chosen.

The game G∗ is open. One can prove that one of the players has a
winning strategy that is definable in L from {ω1, . . . , ωn}.

Suppose, e.g., that I has a winning strategy σ∗ for G∗ that is definable
in L from {ω1, . . . , ωn}.

We define a strategy σ∗ for I for G∗ by assuming that II’s ordinal moves
are all indiscernibles and are in the right order. We assume also that
αk(β′,i′) > αk(β,0) for β < β′. By an argument like that in the proof of
the theorem, the natural number moves and the ordinal moves αk(β,i) given
by σ∗ are independent of II’s ordinal moves αk(β′,i′) for β′ > β. This fact
allows us to define a strategy σ for I for G and to prove that it is a winning
strategy.
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