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Determinacy Consequences of the Existence of 07

Let o be a countable ordinal. A set A C “w is a-II1 if there exists
(Ag | B < a) such that each Ag is II} and

(Vz)(z € A= ppblB=aVa ¢ Ag|is odd).

For small enough «, say for a < wch, we can define a lightface notion, that
of being a-I1}, by requiring that {(8,z) | x € Az} is I].

The existence of 07 implies that a-I1} determinacy holds for every a <
w?. Below we will give the proof for the special case a=2, and we will

describe the auxiliary game used in the proof for a = wn.
Theorem 1. If 0% exists then 2-I1} determinacy holds.

Let (Ag, A1) witness that A is 2-I1}. For i < 2 there there is for each
p € ““w a linear ordering <}, of /h(p) such that:
(i) 0is <}-maximal if ¢h(p) > 0;
(i
(iii
(iv) The function p l—><§, is recursive.

)
) p Cp —=<p=<}1 th(p);

) (Vz € “w)(z € A; —<’ is a wellordering);
)

Here <, =,, < 2n-

Let G be the game in <“w with A as I's winning set. Consider the game
G* played as follows.

I: (z(0),a0) (#(2), az)
IT: (x(1), 1) (z(3), a3)

Each «, must be a countable ordinal. Player I is trying to make n — g,
an embedding of (w, <?) into (wy, <), and II is trying to make n — ag,41
an embedding of (w,<1) into (wq, <). If either player fails, the first player
to fail (to have the wrong order of the ordinals played) loses. Otherwise II
wins.

Lemma 1. One of the players has a winning strategy that is definable in L
from wy (the wy of V).



The proof of the Lemma, which we omit, is similar to the proof of
Lemma 4.4.1 in the course text.

Assume first that II has a winning strategy 7* for G* that is definable
in L from w;.

We define a strategy 7 for II for G. Given a position p of length 2k +1 in
G, we define a set of positions p* in G*, all extending p and all having length
2k + 1. Each of these positions is gotten as follows. Let n — a9, embed
(k+1,<)) into (Cy,, <), where C,,, is the set of all countable indiscernibles.
Let the ordinals a1 be given by 7*. For each of our positions p*, there is
a formula ¢ such that 7*(p*) = f,(p, Cygs - - - Cyy s Cuy ), Where the ¢y, form an
increasing sequence of countable indiscernibles. Since the first component
of 7*(p*) has only countably many possible values, indiscernibility implies
that it has only one possible value. We set 7(p) equal to the first component
of 7*(p*).

Assume that 2 € A is a play of G consistent with 7. Then x € Ag, so <!
is a wellordering. Extend x to a play ™ of G* consistent with 7* by letting
n — ag, embed (w, <Y) into (C,,, <) and letting the ag,11 be given by 7*.
Since 7* is a winning strategy, z* is a win for II. Hence <. is a wellordering,
and so we have the contradiction that x ¢ A.

Now assume that I has a winning strategy o* for G* that is definable in
L from wy.

Note that the ordinal ag is played by I before II plays any ordinals. Since
0 is maximal in every <9, all of I’s remaining ordinals have to be < ag for
I to win.

We define a strategy o for I for G. Given a position p of length 2k in G,
we define a set of positions in G*, all extending p and all having length 2k.
Each of these positions is gotten as follows. Let n — «g,41 embed (k, <2)
into (C,,, <), with all the agp+1 > «ap. Let the ordinals ag, be given by
o*. Since o* is a winning strategy, all these ordinals are < ag. Since o*(p*)
has only countably many possible values, indiscernibility implies that it has
only one possible value. Set o(p) equal to the first component of o*(p*).

Assume that « ¢ A is a play of G consistent with . We will extend x to
a play z* of G* consistent with o*. By the argument of the last paragraph,
if I’s ordinals are indiscernibles > ag and are in the right order, then o*(p*)
is independent of which ordinals II plays. Let then I play the ao, that o*
would call for if IT had played indiscernibles > «q in the right order. Since o*
is a winning strategy, I’s ordinals are in the right order. Thus = € Ay. Since
r ¢ A, x € Ay. Get z* by having n — ag,11 embed (w, <) into (C,,, <).
This play is a win for II, contradicting the fact that ¢* is a winning strategy.

O



Let A be wn-I1} with n a positive integer, and let (As | 8 < wn) witness
this. Let G be the game in <“w with A as I’s winning set. For 8 < wn, let
D »—><g associate a linear ordering of ¢h(p) with each position p in G in such
a way that conditions (i)-(iv), with “/” replaced by “3,” are satisfied.

Let (3,i) — k(,7) be a recursive bijection between wn x w and w such

that

(a) O even « k(B,1i) even;

(b) i < — k(B,1) < k(B,7)

(¢) j < — (k(wm + j,0) < k(wm + j,1)).
Let G* be the game played as follows.

I: (2(0),a0) (2(2), az)
11 : (x(1), 1) (z(3), as)

For B, < wm, ap must be an ordinal < w(m + 1). For each even f, I is
trying to make i — ayg,) an embedding of (w, <§) into (wp, <). For odd
B, Il is trying to make i — ayg,) an embedding of (w, <§) into (wp,<). If
either player fails at one of these tasks, then the first player to fail loses.
Otherwise II wins.

The first stated requirement on the aj makes sure that if § is in a lower
w-block than (3 then there are more ordinals that are available choices for
ap(p i) than for any oy ;). Condition (c) guarantees that if 3 and B are
in the same w-block, then the ordinal ay,g,) is chosen before any ay g jy is
chosen.

The game G* is open. One can prove that one of the players has a

winning strategy that is definable in L from {wy,...,wy,}.
Suppose, e.g., that I has a winning strategy ¢* for G* that is definable
in L from {w1,...,wn}.

We define a strategy o* for I for G* by assuming that II’s ordinal moves
are all indiscernibles and are in the right order. We assume also that
iy > agpo) for f < B'. By an argument like that in the proof of
the theorem, the natural number moves and the ordinal moves ay,g4) given
by o* are independent of II's ordinal moves ay g ;) for B > (. This fact
allows us to define a strategy o for I for G and to prove that it is a winning
strategy.



