Mathematics 220C

Spring 2014

Appendix 2

The following theorem is a special case of the theorem that Problem x6.19 asks for a proof of. What is special about the theorem below is that the relation E(u, v) of Problem x6.18 is assumed to be $\in |z|$ for some set z. Our proof of the theorem will use ordinal recursion and induction, rather than more general forms of transfinite recursion and induction.

Theorem. Let z be a set such that $(z, \in |z)$ satisfies Extensionality and such that $\in |z$ is a well-founded relation. There is a unique transitive set w such that $(z, \in |z) \cong (w, \in |w)$. Moreover the isomorphism $\pi : (z, \in |z) \cong (w, \in |w)$ is unique.

Proof. Define $G: V \to V$ by $G(u) = \{x \in z \mid x \cap z \subseteq \bigcup \operatorname{Range}(u)\}$. By ordinal recursion, let $F: \operatorname{ON} \to V$ be such that $F(\alpha) = G(F \upharpoonright \alpha)$ for all $\alpha \in \operatorname{ON}$. Thus

$$(\forall \alpha \in \mathrm{ON}) F(\alpha) = \{ x \in z \mid x \cap z \subseteq \bigcup F[\alpha] \}.$$

For $x \in \bigcup F[ON]$, let rank(x) = the least α such that $x \in F(\alpha)$. Note that if rank(x) exists then rank(y) exists for each $y \in x \cap z$ and

$$\operatorname{rank}(x) = \bigcup \{ \operatorname{rank}(y) + 1 \mid y \in x \cap z \}.$$

Lemma 1. $(\exists \alpha \in ON)(\forall \gamma \ge_{ON} \alpha) F(\gamma) = F(\alpha).$

Proof. Assume that no such α exists. Then rank is a surjection of $\bigcup F[ON]$ onto ON. Since $\bigcup F[ON] \subseteq z$, this contradicts Replacement.

Let ρ be the least α such that $F(\gamma) = F(\alpha)$ for all $\gamma \ge \alpha$.

Lemma 2. $F(\rho) = z$.

Proof. Otherwise let $y = \{x \in z \mid x \notin F(\rho)\}$. Let x be an \in -minimal element of y. Since $x \subseteq F(\rho), x \in F(\rho')$, contradicting the definition of ρ .

We define $\pi(x)$ for $x \in z$ by ordinal recursion on rank(x) by setting

$$\pi(x) = \{\pi(y) \mid y \in x \cap z\}.$$

(More formally stated, here is what we do. We first define by ordinal recursion $h: \rho \to V$ such that each $h(\alpha)$ is a function with domain $\{x \in z \mid \operatorname{rank}(x) = \alpha\}$ and such that $(h(\alpha))(x) = \{(h_{\operatorname{rank}}(y))(y) \mid y \in x \cap z\}$. Then we define $\pi = \bigcup h[\rho+1]$.)

Let $w = \text{Range}(\pi)$. By ordinal induction, one can easily see that, for any transitive w' and any isomorphism $\pi' : (z, \in \upharpoonright z) \cong (w \in \upharpoonright w'), \pi$ must agree with π and so must satisfy w' = w. Hence we need only show that π is an isomorphism and that w is transitive.

It is immediate from the definition of π that

$$x \in y \Rightarrow \pi(x) \in \pi(y)$$

for all x and y in z.. The definition also implies that w is transitive, since

$$t \in u \in w \Rightarrow (\exists x)u = \pi(x) \Rightarrow (\exists y)t = \pi(y) \Rightarrow t \in w.$$

To prove that $\pi(y) \in \pi(x) \Rightarrow y \in x$ for all x and y in z, it is enough to show that π is injective, and so this will complete the proof that $\pi : (z \in \uparrow z) \cong (w, \in \uparrow w)$.

By ordinal induction on the maximum of $\operatorname{rank}(x_1)$ and $\operatorname{rank}(x_2)$, we show that $\pi(x_1) = \pi(x_2) \Rightarrow x_1 = x_2$. We have

$$\pi(x_1) = \pi(x_2) \quad \Rightarrow \quad \{\pi(y) \mid y \in x_1 \cap z\} = \{\pi(y) \mid y \in x_2 \cap z\} \\ \Rightarrow \quad \text{(by induction)} \ \{y \mid y \in x_1 \cap z\} = \{y \mid y \in x_2 \cap z\} \\ \Rightarrow \quad \text{(by Extensionality)} \ x_1 = x_2. \qquad \Box$$