Appendix 2

The following theorem is a special case of the theorem that Problem x 6.19 asks for a proof of. What is special about the theorem below is that the relation $E(u, v)$ of Problem x6.18 is assumed to be $\in\lceil z$ for some set z. Our proof of the theorem will use ordinal recursion and induction, rather than more general forms of transfinite recursion and induction.

Theorem. Let z be a set such that $(z, \in\lceil z)$ satisfies Extensionality and such that $\in \upharpoonright z$ is a well-founded relation. There is a unique transitive set w such that $(z, \in\lceil z) \cong(w, \in\lceil w)$. Moreover the isomorphism $\pi:(z, \in\lceil z) \cong(w, \in\lceil w)$ is unique.

Proof. Define $G: V \rightarrow V$ by $G(u)=\{x \in z \mid x \cap z \subseteq \bigcup$ Range $(u)\}$. By ordinal recursion, let $F: \mathrm{ON} \rightarrow V$ be such that $F(\alpha)=G(F \upharpoonright \alpha)$ for all $\alpha \in \mathrm{ON}$. Thus

$$
(\forall \alpha \in \mathrm{ON}) F(\alpha)=\{x \in z \mid x \cap z \subseteq \bigcup F[\alpha]\}
$$

For $x \in \bigcup F[\mathrm{ON}]$, let $\operatorname{rank}(x)=$ the least α such that $x \in F(\alpha)$. Note that if $\operatorname{rank}(x)$ exists then $\operatorname{rank}(y)$ exists for each $y \in x \cap z$ and

$$
\operatorname{rank}(x)=\bigcup\{\operatorname{rank}(y)+1 \mid y \in x \cap z\}
$$

Lemma 1. $(\exists \alpha \in \mathrm{ON})\left(\forall \gamma \geq_{\mathrm{ON}} \alpha\right) F(\gamma)=F(\alpha)$.
Proof. Assume that no such α exists. Then rank is a surjection of $\bigcup F[O N]$ onto ON. Since $\bigcup F[\mathrm{ON}] \subseteq z$, this contradicts Replacement.

Let ρ be the least α such that $F(\gamma)=F(\alpha)$ for all $\gamma \geq \alpha$.
Lemma 2. $F(\rho)=z$.
Proof. Otherwise let $y=\{x \in z \mid x \notin F(\rho)\}$. Let x be an \in-minimal element of y. Since $x \subseteq F(\rho), x \in F\left(\rho^{\prime}\right)$, contradicting the definition of ρ.

We define $\pi(x)$ for $x \in z$ by ordinal recursion on $\operatorname{rank}(x)$ by setting

$$
\pi(x)=\{\pi(y) \mid y \in x \cap z\}
$$

(More formally stated, here is what we do. We first define by ordinal recursion $h: \rho \rightarrow V$ such that each $h(\alpha)$ is a function with domain $\{x \in z \mid$ $\operatorname{rank}(x)=\alpha\}$ and such that $(h(\alpha))(x)=\left\{\left(h_{\text {rank }}(y)\right)(y) \mid y \in x \cap z\right\}$. Then we define $\pi=\bigcup h[\rho+1]$.)

Let $w=\operatorname{Range}(\pi)$. By ordinal induction, one can easily see that, for any transitive w^{\prime} and any isomorphism $\pi^{\prime}:(z, \in \upharpoonright z) \cong\left(w \in \upharpoonright w^{\prime}\right), \pi$ must agree with π and so must satisfy $w^{\prime}=w$. Hence we need only show that π is an isomorphism and that w is transitive.

It is immediate from the definition of π that

$$
x \in y \Rightarrow \pi(x) \in \pi(y)
$$

for all x and y in z.. The definition also implies that w is transitive, since

$$
t \in u \in w \Rightarrow(\exists x) u=\pi(x) \Rightarrow(\exists y) t=\pi(y) \Rightarrow t \in w .
$$

To prove that $\pi(y) \in \pi(x) \Rightarrow y \in x$ for all x and y in z, it is enough to show that π is injective, and so this will complete the proof that $\pi:(z \in \uparrow$ $z) \cong(w, \in\lceil w)$.

By ordinal induction on the maximum of $\operatorname{rank}\left(x_{1}\right)$ and $\left.\operatorname{rank}\left(x_{2}\right)\right\}$, we show that $\pi\left(x_{1}\right)=\pi\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$. We have

$$
\begin{aligned}
\pi\left(x_{1}\right)=\pi\left(x_{2}\right) & \Rightarrow\left\{\pi(y) \mid y \in x_{1} \cap z\right\}=\left\{\pi(y) \mid y \in x_{2} \cap z\right\} \\
& \Rightarrow \text { (by induction) }\left\{y \mid y \in x_{1} \cap z\right\}=\left\{y \mid y \in x_{2} \cap z\right\} \\
& \Rightarrow \text { (by Extensionality) } x_{1}=x_{2} .
\end{aligned}
$$

