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Appendix 2

The following theorem is a special case of the theorem that Problem x6.19
asks for a proof of. What is special about the theorem below is that the
relation E(u, v) of Problem x6.18 is assumed to be ∈�z for some set z. Our
proof of the theorem will use ordinal recursion and induction, rather than
more general forms of transfinite recursion and induction.

Theorem. Let z be a set such that (z,∈�z) satisfies Extensionality and such
that ∈�z is a well-founded relation. There is a unique transitive set w such
that (z,∈�z) ∼= (w,∈�w). Moreover the isomorphism π : (z,∈�z) ∼= (w,∈�w)
is unique.

Proof. Define G : V → V by G(u) = {x ∈ z | x ∩ z ⊆
⋃

Range(u)}. By
ordinal recursion, let F : ON → V be such that F (α) = G(F � α) for all
α ∈ ON. Thus

(∀α ∈ ON)F (α) = {x ∈ z | x ∩ z ⊆
⋃
F [α]}.

For x ∈
⋃
F [ON], let rank(x) = the least α such that x ∈ F (α). Note

that if rank(x) exists then rank(y) exists for each y ∈ x ∩ z and

rank(x) =
⋃
{rank(y) + 1 | y ∈ x ∩ z}.

Lemma 1. (∃α ∈ ON)(∀γ ≥ON α)F (γ) = F (α).

Proof. Assume that no such α exists. Then rank is a surjection of
⋃
F [ON]

onto ON. Since
⋃
F [ON] ⊆ z, this contradicts Replacement. �

Let ρ be the least α such that F (γ) = F (α) for all γ ≥ α.

Lemma 2. F (ρ) = z.

Proof. Otherwise let y = {x ∈ z | x /∈ F (ρ)}. Let x be an ∈-minimal
element of y. Since x ⊆ F (ρ), x ∈ F (ρ′), contradicting the definition of ρ.

�

We define π(x) for x ∈ z by ordinal recursion on rank(x) by setting

π(x) = {π(y) | y ∈ x ∩ z}.
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(More formally stated, here is what we do. We first define by ordinal re-
cursion h : ρ → V such that each h(α) is a function with domain {x ∈ z |
rank(x) = α} and such that (h(α))(x) = {(hrank(y))(y) | y ∈ x ∩ z}. Then
we define π =

⋃
h[ρ+ 1]. )

Let w = Range(π). By ordinal induction, one can easily see that, for
any transitive w′ and any isomorphism π′ : (z,∈�z) ∼= (w ∈�w′), π must
agree with π and so must satisfy w′ = w. Hence we need only show that π
is an isomorphism and that w is transitive.

It is immediate from the definition of π that

x ∈ y ⇒ π(x) ∈ π(y)

for all x and y in z.. The definition also implies that w is transitive, since

t ∈ u ∈ w ⇒ (∃x)u = π(x)⇒ (∃y)t = π(y)⇒ t ∈ w.

To prove that π(y) ∈ π(x) ⇒ y ∈ x for all x and y in z, it is enough to
show that π is injective, and so this will complete the proof that π : (z ∈�
z) ∼= (w,∈�w).

By ordinal induction on the maximum of rank(x1) and rank(x2)}, we
show that π(x1) = π(x2)⇒ x1 = x2. We have

π(x1) = π(x2) ⇒ {π(y) | y ∈ x1 ∩ z} = {π(y) | y ∈ x2 ∩ z}
⇒ (by induction) {y | y ∈ x1 ∩ z} = {y | y ∈ x2 ∩ z}
⇒ (by Extensionality) x1 = x2 . �
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