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Appendix 2: V = L, ¢, and Souslin’s Hypothesis

The Axiom of Constructibility settles most interesting set-theoretic ques-
tions. A number of them can be answered using Jensen’s combinatorial
principle ¢. ¢ is the assertion that there is a sequence (A, | @ < wy) (i.e.,
a function a +— A, with domain wj) such that each A, C « and such that,
for any A C w; and any closed, unbounded subset C' of w1,

(FaeC)Ana=A,.

This formulation of ¢ is different from, but equivalent to, that in the
course notes. We will prove our version of ¢ from V = L, and we will
deduce the negation of Souslin’s Hypothesis from ¢.

Exercise. Assume V = L.
(a) Show that if (y; €) < (Ly,; €) then y Nwy is transitive.
(b) Show that
{a <wi | Lay1 NP(w) C La}

has a subset that is closed and unbounded in w;.

Hint. If o < wy, then « is countable. For (a), begin with the definition of
“a is countable.” For (b), observe that L, +1 N P(w) C Ly, . Build a chain
of length w; of elementary submodels of L,,+; and then apply Mostowski
collapse.

Theorem 1. V =L — {.

Proof. Assume V = L. We define A, by recursion. For « not a limit
ordinal, set A, = (). Assume that « is limit ordinal and that Ag is defined
for 5 < «a. Let p, be the least ordinal p such that there are A and C
belonging to L, such that A C «, C'is a closed, unbounded subset of «, and

(VB € C)AN B+ Ag

if such a p exists. In this case let A, and C, be the lexicographically least
A and C (using <r). If p, does not exist, let A, = 0.

Suppose that (A, | @ < wi) does not witness that ¢ holds. Let p be
the least ordinal such that some counterexample sets A and C' belong to L.
Let A and C be the lexicographically least such pair (again using <r,). Note
that p < ws.



Let (y; €) < (Lw,; €) with y countable and with
{w17p7A707 <Aa | a < UJ1>} Cy.

Let z and 7 be such that z is transitive and 7 : (y;€) = (2;€). Let 0 < wy
be such that z = Ls.
Let a = w(wy). By part (a) of Exercise above, we have that o C y. It
follows that
(i) ANna=mn(A);
(ii)) CNa==(C);
(i) (As | B < a) = m((Ag | B <wn)).
Using (i)-(iii), the definitions of p, A, and C, and the fact that 7~! is an

elementary embedding of (Ls; €) into (Ly,; €), we get that 7(p), ANa, and
C N« satisfy in Ls the definitions of p,, Aa, and C, respectively. Thus

(a) m(p) = pa;
(b) ANa = Ay;
(c) CNa=C=C,.

Since CNa = w(C'), CNa is an unbounded subset of . Since C'is closed, it
follows that o € C. This fact and (b) contradict the definitions of A and C.
O

One of the earliest applications of ¢ was to show that Souslin’s Hypoth-
esis fails in L.

To state Souslin’s Hypothesis, we need some definitions. Let R be a
linear ordering of a set X. If every R-bounded subset of X has a least upper
bound, then (X; R) is said to be complete. If every set of disjoint open (in
the obvious sense) R-intervals is countable, then (X; R) is ccc: satisfies the
countable chain condition. Give X the order topology: the basic open sets
are the open intervals. If X has a countable dense subset then (X;R) is
separable.

The set R of reals, with its usual ordering, is—up to isomorphism—
the unique separable, complete, dense linear ordering without endpoints.
Souslin’s hypothesis says this characterization continues to hold when “sep-
arable” is replaced by “ccc.” Clearly the failure of Souslin’s Hypothesis is
equivalent to the existence of a Souslin line, a ccc, complete, dense linear
ordering that is not separable.

The existence of a Souslin line is can be shown equivalent to the existence
of a Souslin tree: a (T; <) such that



1

(1) < is a partial ordering of T

(2) Forallz € T, {y € T | x <y} is wellordered by <;
3)

(4)

3 |T’ = Nl;

4) (T; <) has no uncountable branches and no uncountable antichains.

Here a branch is a maximal subset of T linearly ordered by <, and an
antichain is a set of pairwise <-incomparable elements of T'.

Conditions (1) and (2) define the (set-theoretic) concept of a tree. Let
us call a tree (T'; <) wltranormal if

(i) T C wy;

(ii) for fand vy €T, <y — B <;

(iii) T has a <-least element;
)

(iv) For each o < wi, the set of all § € T such that level(8) = «a is
countable, where level(5) is the < order type of {y € T | v < 5};

(v) if B € T then $ has infinitely many immediate successors with respect
to <;

(vi) for each 8 € T and each « such that level(5) < a < wy, there is a
v € T such that level(y) = a and 8 < 7;

(vii) if B and 7 are elements of 7" with the same limit level and the same
<-predecessors, then 5 = ~.

Lemma 1. If there is an ultranormal Souslin tree, then there is a Souslin
line.

Proof. We first observe that it is enough to construct a ccc, dense, linear
ordering (X; R) that is not separable. If we have such an (X; R), then we
can let X’ be the set of all Dedekind cuts in (X;R), i.e., the set of all
bounded initial segments of (X;R) without R-greatest elements, and we
can let 2’ R'y' +» 2’ C 4. Clearly (X’; R') a linear ordering. The function
x+— {y € X | yRa} embeds (X;R) into (X'; R') and has dense range.
Therefore (X'; R') is dense, ccc, and not separable. If A is an R’-bounded
subset of X', then |J A is the R'-least upper bound of A; hence (X'; R') is
complete.
Let (T'; <) be an ultranormal Souslin tree. Let

X ={b|bis abranch of T'}.



To define an ordering R on X, let us first fix, for each 8 € T', an ordering <g
of the the immediate successors of 5 with respect to <. By (iv) and (v), we
can—and do—make <g isomorphic to the standard ordering of the rationals.
Let b and b’ be distinct branches of (T'; <1). By (vii), there is a <-greatest
that belongs to both b and ¥'. Let v and 4/ be the immediate <I-successors
of 3 that belong to b and b’ respectively. Define

bRV + v<g®.

It is easy to see that R is a linear ordering of X. Suppose that I is
an open interval of (X;R). let I = (b,b'). Define 3, v, and + as in the
preceding paragraph. Let 07 be such that v <z d; <g 7. Observe that every
branch containing d; belongs to the interval I. Observe also that if I; and
I are disjoint intervals, then d;, and d;, are <-incomparable. The first fact
implies that the (X; R) is a dense ordering, and the second fact implies that
(X; R) has the ccc. For non-separability, let B be any countable subset of
X. Since every member of B is countable, | J,c b is countable. Let o € T" be
> every member of this countable set. Then the set of branches containing
« is a neighborhood witnessing that B is not dense. O

Theorem 2. If { holds, then there is an ultranormal Souslin tree.

Proof. Let (A, | @ < w;) witness that ¢ holds.

We will define an ultranormal tree (T'; <) by transfinite recursion. More
precisely, we will define for each o < w; a tree (Ty; <), and we will arrange
that

(a) for o/ < a < wy, T, is the set of all elements of T, of <y-level < o,
and <, is the restriction of <, to T;

(b) for o < wy, (i)-(vii) hold with (T}; <) replacing (7%; <) and with the
a + 1 replacing wj..

We will then let T' = (J,,,, To and < = J,.,, <a- The only task that
will remain to us is the verification that (7'; <) satisfies condition (4) in the
definition of a Souslin tree.

Let o < wy and assume that (T,; <) is defined for o/ < « in such a
way that (a) and (b) are not violated.

If « =0 let Tp = {0} and stipulate that 0 does not bear <y to itself.

If @« = o + 1 for some o, then assign to the ordinals 8 € T, of level
o' disjoint countable infinite sets Bz C wi. Do this so that § < v ¢ T, for
each v € Bg. Let

To =Ty U U{Bﬁ | B €Ty Alevel(B) =a'}.
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Let
Do =< U{(B,7) | BE€ Ty Alevel(8) =o' Ay e Bs}.

Assume that « is a limit ordinal. The plan is to make sure that if A, is a
maximal antichain in | J, ., To, then A, is a maximal antichain in 7". This
is called "sealing off” A,. As we will see later, the fact that (A, | & < wy)
witnesses () will guarantee that every maximal antichain in T is sealed off
at some stage.

Let (o | i € w) be a strictly increasing sequence of ordinals with supre-

mum «. Let

Tct = Ua’<a TO/ ( = Uiew Tai);

<]Z = Ua’<a <o ( = UiEw qai)‘
For § € T7, define (8; | ¢ € w) by recursion as follows. If A, is not a
maximal antichain in the tree (T7; <) or if there is a £ € A, such that
& <% B, then set Sy = B. Otherwise there is a £ € A, such that 8 <7, £. Let
Bo be some such &. If level(5;) > i, then let 511 = G;. If level(5;) < ay, let
Bi+1 € Ty, be such that 8; <q, Si+1 and level(B;+1) = ;. (Such a §;41 exists
by condition (vi) on (T4,; <q,).) Let bg be the unique branch containing all
the 3;. Let B, be the set of all the bg for 8 € T};. For each b € B,, let v, be
a countable ordinal 4 such that v ¢ T¥ and v > every member of b. Make
sure that the function b+ ~; is one-one. Let

To =T U {y|beBa}.

Let
o =< U A{{0,1) | (be By, NdEDb)}.

To verify that (T'; <) satisfies condition (4), we first show that if (7'; <)
has an uncountable branch then it has an uncountable antichain. Let b be
an uncountable branch. By condition (v), each § € b has an immediate
<J-successor that does not belong to b. Let

A={y|v¢b A (38 €b)~y is an immediate <-successor of £} .

The uncountable set A is clearly an antichain of (T; ).

Since every antichain can be extended to a maximal antichain, it suffices
to prove that (7'; <) has no uncountable maximal antichains.

Let A be a maximal antichain of (7'; ). For limit o < wy, let (T7; <?)
be defined as above. Note that T7; is the set of 5 € 1" such that, with respect
to <, level(8) < a. Note also that <1, is just the restriction of < to 7.

Let C be the set of all limit «« < wy such that



a) T =TNaq;
«

(b) ANa is a maximal antichain of (T7; <7).

We will prove that C' is closed and unbounded in w.

By the definition of T}, it is clear that {a | T} = T N a} is closed in
wi. To show that C' is closed, it is therefore enough to show that the set of
all o that satisfy (b) is closed in w;. Suppose that (o, | i € w) is a strictly
increasing sequence of countable ordinals such that for each i, AN a; a
maximal antichain of (T} ;<,). Let a = [J;c, @i- Let 8 € T,. For any
sufficiently large i € w, 8 € T,,. Thus 3 is comparable with some v € ANa;
C AN a. This shows that AN« is a maximal antichain in (77; <}).

For a < wyq, let

fle) = pé(VpeTy)B <d;
glay = po (VB eT))(Fye ANJ)~ is <-comparable with 5.

That f(a) and g(«) are defined for every a follows from the fact that 77 is
countable (by (iv)) and the fact that A is an maximal antichain of (7'; <).
By an argument like one in the proof of Reflection, the set C” of all countable
ordinals closed under f and g is an unbounded subset of wy. By (ii), TNa C
T for every av < wy. Therefore every o € C’ satisfies (a) and (b).

Since (Aq | @ < wi) witnesses the truth of ¢, let & € C' be such that
ANa=A,. By (b), A, is a maximal antichain of 7). By the definition of
B, every b € B, contains a member of A,. For b € B,, every member of b
is <lq v, and so is <1-y,. Hence for each b € B, there is a £ € A, such that
E<y. If B € T\ T,, then there is a b such that 7, < 5. Putting all these
facts together, we get that every element of T' is <-comparable with some
element of A,. In other words, A,—i.e., AN a—is a maximal antichain of
T. But this means that A = AN «. Hence A is countable. g



