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Appendix 2: V = L, ♦, and Souslin’s Hypothesis

The Axiom of Constructibility settles most interesting set-theoretic ques-
tions. A number of them can be answered using Jensen’s combinatorial
principle ♦. ♦ is the assertion that there is a sequence 〈Aα | α < ω1〉 (i.e.,
a function α 7→ Aα with domain ω1) such that each Aα ⊆ α and such that,
for any A ⊆ ω1 and any closed, unbounded subset C of ω1,

(∃α ∈ C)A ∩ α = Aα .

This formulation of ♦ is different from, but equivalent to, that in the
course notes. We will prove our version of ♦ from V = L, and we will
deduce the negation of Souslin’s Hypothesis from ♦.

Exercise. Assume V = L.
(a) Show that if (y;∈) � (Lω2 ;∈) then y ∩ ω1 is transitive.
(b) Show that

{α < ω1 | Lα+1 ∩ P(ω) ⊆ Lα}

has a subset that is closed and unbounded in ω1.

Hint. If α < ω1, then α is countable. For (a), begin with the definition of
“α is countable.” For (b), observe that Lω1+1 ∩ P(ω) ⊆ Lω1 . Build a chain
of length ω1 of elementary submodels of Lω1+1 and then apply Mostowski
collapse.

Theorem 1. V = L→ ♦.

Proof. Assume V = L. We define Aα by recursion. For α not a limit
ordinal, set Aα = ∅. Assume that α is limit ordinal and that Aβ is defined
for β < α. Let ρα be the least ordinal ρ such that there are A and C
belonging to Lρ such that A ⊆ α, C is a closed, unbounded subset of α, and

(∀β ∈ C)A ∩ β 6= Aβ

if such a ρ exists. In this case let Aα and Cα be the lexicographically least
A and C (using <L). If ρα does not exist, let Aα = ∅.

Suppose that 〈Aα | α < ω1〉 does not witness that ♦ holds. Let ρ be
the least ordinal such that some counterexample sets A and C belong to Lρ.
Let A and C be the lexicographically least such pair (again using <L). Note
that ρ < ω2.
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Let (y;∈) ≺ (Lω2 ;∈) with y countable and with

{ω1, ρ, A,C, 〈Aα | α < ω1〉} ⊆ y .

Let z and π be such that z is transitive and π : (y;∈) ∼= (z;∈). Let δ < ω1

be such that z = Lδ.
Let α = π(ω1). By part (a) of Exercise above, we have that α ⊆ y. It

follows that

(i) A ∩ α = π(A);

(ii) C ∩ α = π(C);

(iii) 〈Aβ | β < α〉 = π(〈Aβ | β < ω1〉).

Using (i)–(iii), the definitions of ρ, A, and C, and the fact that π−1 is an
elementary embedding of (Lδ;∈) into (Lω2 ;∈), we get that π(ρ), A∩α, and
C ∩ α satisfy in Lδ the definitions of ρα, Aα, and Cα respectively. Thus

(a) π(ρ) = ρα;

(b) A ∩ α = Aα;

(c) C ∩ α = Cα.

Since C∩α = π(C), C∩α is an unbounded subset of α. Since C is closed, it
follows that α ∈ C. This fact and (b) contradict the definitions of A and C.

�

One of the earliest applications of ♦ was to show that Souslin’s Hypoth-
esis fails in L.

To state Souslin’s Hypothesis, we need some definitions. Let R be a
linear ordering of a set X. If every R-bounded subset of X has a least upper
bound, then (X;R) is said to be complete. If every set of disjoint open (in
the obvious sense) R-intervals is countable, then (X;R) is ccc: satisfies the
countable chain condition. Give X the order topology: the basic open sets
are the open intervals. If X has a countable dense subset then (X;R) is
separable.

The set R of reals, with its usual ordering, is—up to isomorphism—
the unique separable, complete, dense linear ordering without endpoints.
Souslin’s hypothesis says this characterization continues to hold when “sep-
arable” is replaced by “ccc.” Clearly the failure of Souslin’s Hypothesis is
equivalent to the existence of a Souslin line, a ccc, complete, dense linear
ordering that is not separable.

The existence of a Souslin line is can be shown equivalent to the existence
of a Souslin tree: a (T ;C) such that
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(1) C is a partial ordering of T ;

(2) For all x ∈ T , {y ∈ T | xC y} is wellordered by C;

(3) |T | = ℵ1;
(4) (T ;C) has no uncountable branches and no uncountable antichains.

Here a branch is a maximal subset of T linearly ordered by C, and an
antichain is a set of pairwise C-incomparable elements of T .

Conditions (1) and (2) define the (set-theoretic) concept of a tree. Let
us call a tree (T ;C) ultranormal if

(i) T ⊆ ω1;

(ii) for β and γ ∈ T , β C γ → β < γ;

(iii) T has a C-least element;

(iv) For each α < ω1, the set of all β ∈ T such that level(β) = α is
countable, where level(β) is the C order type of {γ ∈ T | γ C β};

(v) if β ∈ T then β has infinitely many immediate successors with respect
to C;

(vi) for each β ∈ T and each α such that level(β) < α < ω1, there is a
γ ∈ T such that level(γ) = α and β C γ;

(vii) if β and γ are elements of T with the same limit level and the same
C-predecessors, then β = γ.

Lemma 1. If there is an ultranormal Souslin tree, then there is a Souslin
line.

Proof. We first observe that it is enough to construct a ccc, dense, linear
ordering (X;R) that is not separable. If we have such an (X;R), then we
can let X ′ be the set of all Dedekind cuts in (X;R), i.e., the set of all
bounded initial segments of (X;R) without R-greatest elements, and we
can let x′R′ y′ ↔ x′ ⊆ y′. Clearly (X ′;R′) a linear ordering. The function
x 7→ {y ∈ X | y Rx} embeds (X;R) into (X ′;R′) and has dense range.
Therefore (X ′;R′) is dense, ccc, and not separable. If A is an R′-bounded
subset of X ′, then

⋃
A is the R′-least upper bound of A; hence (X ′;R′) is

complete.
Let (T ;C) be an ultranormal Souslin tree. Let

X = {b | b is a branch of T} .
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To define an ordering R on X, let us first fix, for each β ∈ T , an ordering <β
of the the immediate successors of β with respect to C. By (iv) and (v), we
can—and do—make <β isomorphic to the standard ordering of the rationals.
Let b and b′ be distinct branches of (T ;C). By (vii), there is a C-greatest β
that belongs to both b and b′. Let γ and γ′ be the immediate C-successors
of β that belong to b and b′ respectively. Define

bR b′ ↔ γ <β γ
′.

It is easy to see that R is a linear ordering of X. Suppose that I is
an open interval of (X;R). let I = (b, b′). Define β, γ, and γ′ as in the
preceding paragraph. Let δI be such that γ <β δI <β γ

′. Observe that every
branch containing δI belongs to the interval I. Observe also that if I1 and
I2 are disjoint intervals, then δI1 and δI2 are C-incomparable. The first fact
implies that the (X;R) is a dense ordering, and the second fact implies that
(X;R) has the ccc. For non-separability, let B be any countable subset of
X. Since every member of B is countable,

⋃
b∈B b is countable. Let α ∈ T be

> every member of this countable set. Then the set of branches containing
α is a neighborhood witnessing that B is not dense. �

Theorem 2. If ♦ holds, then there is an ultranormal Souslin tree.

Proof. Let 〈Aα | α < ω1〉 witness that ♦ holds.
We will define an ultranormal tree (T ;C) by transfinite recursion. More

precisely, we will define for each α < ω1 a tree (Tα;Cα), and we will arrange
that

(a) for α′ < α < ω1, Tα′ is the set of all elements of Tα of Cα-level ≤ α′,
and Cα′ is the restriction of Cα to T ′α;

(b) for α < ω1, (i)-(vii) hold with (Tα;Cα) replacing (T ;C) and with the
α+ 1 replacing ω1..

We will then let T =
⋃
α<ω1

Tα and C =
⋃
α<ω1

Cα. The only task that
will remain to us is the verification that (T ;C) satisfies condition (4) in the
definition of a Souslin tree.

Let α < ω1 and assume that (Tα′ ;Cα′) is defined for α′ < α in such a
way that (a) and (b) are not violated.

If α = 0 let T0 = {0} and stipulate that 0 does not bear C0 to itself.
If α = α′ + 1 for some α′, then assign to the ordinals β ∈ Tα′ of level

α′ disjoint countable infinite sets Bβ ⊆ ω1. Do this so that β < γ /∈ Tα′ for
each γ ∈ Bβ. Let

Tα = Tα′ ∪
⋃
{Bβ | β ∈ Tα′ ∧ level(β) = α′} .
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Let
Cα = C′α ∪ {〈β, γ〉 | β ∈ Tα′ ∧ level(β) = α′ ∧ γ ∈ Bβ} .

Assume that α is a limit ordinal. The plan is to make sure that if Aα is a
maximal antichain in

⋃
α′<α Tα′ , then Aα is a maximal antichain in T . This

is called ”sealing off” Aα. As we will see later, the fact that 〈Aα | α < ω1〉
witnesses ♦ will guarantee that every maximal antichain in T is sealed off
at some stage.

Let 〈αi | i ∈ ω〉 be a strictly increasing sequence of ordinals with supre-
mum α. Let

T ∗α =
⋃
α′<α Tα′ ( =

⋃
i∈ω Tαi);

C∗α =
⋃
α′<αCα′ ( =

⋃
i∈ω Cαi).

For β ∈ T ∗α, define 〈βi | i ∈ ω〉 by recursion as follows. If Aα is not a
maximal antichain in the tree (T ∗α;C∗α) or if there is a ξ ∈ Aα such that
ξ C∗α β, then set β0 = β. Otherwise there is a ξ ∈ Aα such that β C∗α ξ. Let
β0 be some such ξ. If level(βi) ≥ αi, then let βi+1 = βi. If level(βi) < αi, let
βi+1 ∈ Tαi be such that βiCαi βi+1 and level(βi+1) = αi. (Such a βi+1 exists
by condition (vi) on (Tαi ;Cαi).) Let bβ be the unique branch containing all
the βi. Let Bα be the set of all the bβ for β ∈ T ∗α. For each b ∈ Bα, let γb be
a countable ordinal γ such that γ /∈ T ∗α and γ > every member of b. Make
sure that the function b 7→ γb is one-one. Let

Tα = T ∗α ∪ {γb | b ∈ Bα} .

Let
Cα = C∗α ∪ {〈δ, γb〉 | (b ∈ Bα ∧ δ ∈ b)} .

To verify that (T ;C) satisfies condition (4), we first show that if (T ;C)
has an uncountable branch then it has an uncountable antichain. Let b be
an uncountable branch. By condition (v), each β ∈ b has an immediate
C-successor that does not belong to b. Let

A = {γ | γ /∈ b ∧ (∃β ∈ b) γ is an immediate C-successor of β} .

The uncountable set A is clearly an antichain of (T ;C).
Since every antichain can be extended to a maximal antichain, it suffices

to prove that (T ;C) has no uncountable maximal antichains.
Let A be a maximal antichain of (T ;C). For limit α < ω1, let (T ∗α;C∗α)

be defined as above. Note that T ∗α is the set of β ∈ T such that, with respect
to C, level(β) < α. Note also that C∗α is just the restriction of C to T ∗α.

Let C be the set of all limit α < ω1 such that
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(a) T ∗α = T ∩ α;

(b) A ∩ α is a maximal antichain of (T ∗α;C∗α).

We will prove that C is closed and unbounded in ω1.
By the definition of T ∗α, it is clear that {α | T ∗α = T ∩ α} is closed in

ω1. To show that C is closed, it is therefore enough to show that the set of
all α that satisfy (b) is closed in ω1. Suppose that 〈αi | i ∈ ω〉 is a strictly
increasing sequence of countable ordinals such that for each i, A ∩ αi a
maximal antichain of (T ∗αi

;C∗αi
). Let α =

⋃
i∈ω αi. Let β ∈ T ∗α. For any

sufficiently large i ∈ ω, β ∈ T ∗αi
. Thus β is comparable with some γ ∈ A∩αi

⊆ A ∩ α. This shows that A ∩ α is a maximal antichain in (T ∗α;C∗α).
For α < ω1, let

f(α) = µδ (∀β ∈ T ∗α)β < δ;

g(α) = µδ (∀β ∈ T ∗α)(∃γ ∈ A ∩ δ) γ is C-comparable with β.

That f(α) and g(α) are defined for every α follows from the fact that T ∗α is
countable (by (iv)) and the fact that A is an maximal antichain of (T ;C).
By an argument like one in the proof of Reflection, the set C ′ of all countable
ordinals closed under f and g is an unbounded subset of ω1. By (ii), T ∩α ⊆
T ∗α for every α < ω1. Therefore every α ∈ C ′ satisfies (a) and (b).

Since 〈Aα | α < ω1〉 witnesses the truth of ♦, let α ∈ C be such that
A ∩ α = Aα. By (b), Aα is a maximal antichain of T ∗α. By the definition of
Bα, every b ∈ Bα contains a member of Aα. For b ∈ Bα, every member of b
is Cα γb and so is C γb. Hence for each b ∈ Bα there is a ξ ∈ Aα such that
ξ C γb. If β ∈ T \ Tα, then there is a b such that γb C β. Putting all these
facts together, we get that every element of T is C-comparable with some
element of Aα. In other words, Aα—i.e., A ∩ α—is a maximal antichain of
T . But this means that A = A ∩ α. Hence A is countable. �
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