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Appendix 1

We correct the course text’s definition of ordinal number, define a few addi-
tional notions, reorder the text’s treatment of ω, and give alternative proofs
of a few facts. Nothing except the definition of ordinal number is inconsistent
with the course text.

A strict wellordering is a strict linear ordering r such that every non-
empty subset x of Field(r) has an r-least element: a y ∈ x such that
∀z ∈ x〈z, y〉 /∈ r.

A wellordering is a (reflexive) linear ordering r such that the difference
r \ {〈y, y〉 | 〈y, y〉 ∈ r} is a strict wellordering.

If r is a (set or class) relation and A is a class, the r �A = {〈x, y〉 ∈ r | x ∈
A ∧ y ∈ A}.

An ordinal number is a transitive set α such that ∈�α is a strict wellordering.
Here ∈ is the class {〈x, y〉 | x ∈ y}.

ON is the class of all ordinal numbers.

A set z is inductive if 0 ∈ z and ∀y ∈ z y′ ∈ z. Here 0 = ∅ and y′ = y ∪ {y}.
Let Induct be the class of all inductive sets.

Define ω =
⋂

Induct = {x | ∀z(z inductive→ x ∈ z)}.

The Axiom of Infinity says that Induct 6= ∅. Let z∗ ∈ Induct. Then

ω =
⋂

Induct = z∗ ∩
⋂

Induct.

By Comprehension, ω is a set.

Proposition 6C.3 (Induction Principle). If z is an inductive subset of
ω, then z = ω.

Proposition 6C.4. (1) If x ∈ ω then x = 0 or x = k′ for some k ∈ ω.
(2) ω is transitive.

Proof. For (1) Apply the Induction Principle with {x ∈ ω | x = 0 ∨ (∃k ∈
ω)x = k′} as z.

For (2), we apply the Induction Principle with {n ∈ ω | n ⊆ ω} as z.
Since 0 = ∅, 0 ∈ z. Assume that n ∈ ω and n ∈ z. If m ∈ n′ then m ∈ n or
m = n. If m ∈ n, then m ∈ ω because n ⊆ ω. If m = n then m ∈ ω since
n ∈ ω. �
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Proposition 6C.41
2 . Every member of ω is an ordinal number.

Proof. Let z = {k ∈ ω | k is an ordinal number}.
Clearly 0 is transitive and ∈�0 is a strict wellordering. Hence 0 ∈ z.
Assume that n ∈ z. Since n′ = n ∪ {n},

⋃
n′ =

⋃
n ∪ n = n ⊆ n′. Thus

n′ is transitive. To see that ∈�n′ is a strict wellordering, note the following
two facts.

(i) For all m ∈ n, 〈m,n〉 belongs to ∈�n′

(ii) For all m ∈ n′ 〈n,m〉 does not belong to ∈�n′.

(ii) cannot fail for m = n because n ∈ n contradicts the irreflexiveness of
∈�n. If (ii) fails for m ∈ n, then n ∈ m ∈ n and the transitivity of n implies
that n ∈ n. Together (i) and (ii) show that ∈�n′ is just the wellordering ∈�n
with one element added at the end. One can easily check that this implies
that ∈�n′ is a wellordering. �

Proposition 6C.43
4 . Let α and β be ordinal numbers. Then

α ∈ β ∨ α = β ∨ β ∈ α.

Proof. We will show the following:

(a) If α 6⊆ β then α ∩ β is the ∈�α-least member of α \ β.

(b) If β 6⊆ α then α ∩ β is the ∈�β-least member of β \ α.

Assume (a) and (b). Then α ⊆ β or β ⊆ α, and

α ( β ⇒ α = α ∩ β ∈ β;
β ( α ⇒ β = α ∩ β ∈ α;

α ⊆ β ∧ β ⊆ α ⇒ α = β.

We prove (a). The proof of (b) is similar. Let u be the ∈�α-least member
of α \ β. We show that u ⊆ α ∩ β and α ∩ β ⊆ u.

Assume v ∈ u. By the transitivity of α, v ∈ α. If v /∈ β, then v
contradicts the ∈�α-minimality of u, so v ∈ α ∩ β.

Assume v ∈ α ∩ β. Since ∈� α is a linear ordering, u ∈ v or u = v or
v ∈ u. Both u ∈ v and u = v imply the contradiction that u ∈ β. Hence
v ∈ u. �

Theorem 6C.5 ω is an ordinal number.
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Proof. By part (2) of Proposition 6.4, we need only show that ∈� ω is a
strict wellordering.

If n ∈ n ∈ ω, then ∈ � n is not irreflexive. This shows that ∈� ω is
irreflexive.

If l ∈ m ∈ n ∈ ω, then the transitivity of n implies that l ∈ n. Hence
∈�ω is transitive.

By Propositions 6C.41
2 and 6C.43

4 , ∈�ω is connected.
Let x be a non-empty subset of ω. Let k ∈ x. If k ∩ x = ∅, then k is the

∈�ω-least member of x. If k ∩ x 6= ∅, then the ∈�k-least member of x is the
∈�ω-least member of x, for if i ∈ j ∩ x then i ∈ k by the transitivity of k. �
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