Mathematics 220C

Spring 2014

Appendix 1

We correct the course text's definition of *ordinal number*, define a few additional notions, reorder the text's treatment of ω , and give alternative proofs of a few facts. Nothing except the definition of ordinal number is inconsistent with the course text.

A strict wellordering is a strict linear ordering r such that every nonempty subset x of Field(r) has an r-least element: a $y \in x$ such that $\forall z \in x \langle z, y \rangle \notin r$.

A wellordering is a (reflexive) linear ordering r such that the difference $r \setminus \{ \langle y, y \rangle \mid \langle y, y \rangle \in r \}$ is a strict wellordering.

If r is a (set or class) relation and A is a class, the $r \upharpoonright A = \{ \langle x, y \rangle \in r \mid x \in A \land y \in A \}.$

An ordinal number is a transitive set α such that $\in \uparrow \alpha$ is a strict wellordering. Here \in is the class $\{\langle x, y \rangle \mid x \in y\}$.

ON is the class of all ordinal numbers.

A set z is *inductive* if $0 \in z$ and $\forall y \in z \ y' \in z$. Here $0 = \emptyset$ and $y' = y \cup \{y\}$. Let Induct be the class of all inductive sets.

Define $\omega = \bigcap$ Induct = $\{x \mid \forall z(z \text{ inductive} \rightarrow x \in z)\}.$

The Axiom of Infinity says that Induct $\neq \emptyset$. Let $z^* \in$ Induct. Then

$$\omega = \bigcap \text{Induct} = z^* \cap \bigcap \text{Induct}.$$

By Comprehension, ω is a set.

Proposition 6C.3 (Induction Principle). If z is an inductive subset of ω , then $z = \omega$.

Proposition 6C.4. (1) If $x \in \omega$ then x = 0 or x = k' for some $k \in \omega$. (2) ω is transitive.

Proof. For (1) Apply the Induction Principle with $\{x \in \omega \mid x = 0 \lor (\exists k \in \omega) x = k'\}$ as z.

For (2), we apply the Induction Principle with $\{n \in \omega \mid n \subseteq \omega\}$ as z. Since $0 = \emptyset$, $0 \in z$. Assume that $n \in \omega$ and $n \in z$. If $m \in n'$ then $m \in n$ or m = n. If $m \in n$, then $m \in \omega$ because $n \subseteq \omega$. If m = n then $m \in \omega$ since $n \in \omega$. **Proposition 6C.4** $\frac{1}{2}$. Every member of ω is an ordinal number.

Proof. Let $z = \{k \in \omega \mid k \text{ is an ordinal number}\}.$

Clearly 0 is transitive and $\in [0]$ is a strict wellordering. Hence $0 \in z$.

Assume that $n \in z$. Since $n' = n \cup \{n\}, \bigcup n' = \bigcup n \cup n = n \subseteq n'$. Thus n' is transitive. To see that $\in \upharpoonright n'$ is a strict wellordering, note the following two facts.

- (i) For all $m \in n$, $\langle m, n \rangle$ belongs to $\in \upharpoonright n'$
- (ii) For all $m \in n' \langle n, m \rangle$ does not belong to $\in [n']$.

(ii) cannot fail for m = n because $n \in n$ contradicts the irreflexiveness of $\in \upharpoonright n$. If (ii) fails for $m \in n$, then $n \in m \in n$ and the transitivity of n implies that $n \in n$. Together (i) and (ii) show that $\in \upharpoonright n'$ is just the wellordering $\in \upharpoonright n$ with one element added at the end. One can easily check that this implies that $\in \upharpoonright n'$ is a wellordering.

Proposition 6C.4 $\frac{3}{4}$. Let α and β be ordinal numbers. Then

$$\alpha \in \beta \lor \alpha = \beta \lor \beta \in \alpha.$$

Proof. We will show the following:

- (a) If $\alpha \not\subseteq \beta$ then $\alpha \cap \beta$ is the $\in \uparrow \alpha$ -least member of $\alpha \setminus \beta$.
- (b) If $\beta \not\subseteq \alpha$ then $\alpha \cap \beta$ is the $\in \beta$ -least member of $\beta \setminus \alpha$.

Assume (a) and (b). Then $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$, and

$$\begin{array}{rcl} \alpha \subsetneq \beta & \Rightarrow & \alpha = \alpha \cap \beta \in \beta; \\ \beta \subsetneq \alpha & \Rightarrow & \beta = \alpha \cap \beta \in \alpha; \\ \alpha \subseteq \beta \land \beta \subseteq \alpha & \Rightarrow & \alpha = \beta. \end{array}$$

We prove (a). The proof of (b) is similar. Let u be the $\in \uparrow \alpha$ -least member of $\alpha \setminus \beta$. We show that $u \subseteq \alpha \cap \beta$ and $\alpha \cap \beta \subseteq u$.

Assume $v \in u$. By the transitivity of α , $v \in \alpha$. If $v \notin \beta$, then v contradicts the $\in \upharpoonright \alpha$ -minimality of u, so $v \in \alpha \cap \beta$.

Assume $v \in \alpha \cap \beta$. Since $\in \uparrow \alpha$ is a linear ordering, $u \in v$ or u = v or $v \in u$. Both $u \in v$ and u = v imply the contradiction that $u \in \beta$. Hence $v \in u$.

Theorem 6C.5 ω is an ordinal number.

Proof. By part (2) of Proposition 6.4, we need only show that $\in \omega$ is a strict wellordering.

If $n \in n \in \omega$, then $\in \upharpoonright n$ is not irreflexive. This shows that $\in \upharpoonright \omega$ is irreflexive.

If $l \in m \in n \in \omega$, then the transitivity of n implies that $l \in n$. Hence $\in \upharpoonright \omega$ is transitive.

By Propositions $6C.4\frac{1}{2}$ and $6C.4\frac{3}{4}$, $\in \uparrow \omega$ is connected. Let x be a non-empty subset of ω . Let $k \in x$. If $k \cap x = \emptyset$, then k is the $\in \upharpoonright \omega$ -least member of x. If $k \cap x \neq \emptyset$, then the $\in \upharpoonright k$ -least member of x is the $\in \upharpoonright \omega$ -least member of x, for if $i \in j \cap x$ then $i \in k$ by the transitivity of k. \Box