Mathematics 220C Spring 2014
Appendix 1

We correct the course text’s definition of ordinal number, define a few addi-
tional notions, reorder the text’s treatment of w, and give alternative proofs
of a few facts. Nothing except the definition of ordinal number is inconsistent
with the course text.

A strict wellordering is a strict linear ordering r such that every non-
empty subset = of Field(r) has an r-least element: a y € x such that
Vz € x(z,y) ¢r.

A wellordering is a (reflexive) linear ordering r such that the difference
r\{(y,y) | (y,y) € r} is a strict wellordering.

If r is a (set or class) relation and A is a class, the r [ A = {{z,y) € r |z €
ANye A}

An ordinal number is a transitive set o such that €[« is a strict wellordering.
Here € is the class {(z,y) | z € y}.

ON is the class of all ordinal numbers.

A set z is inductive if 0 € z and Vy € 2 ¢/ € 2. Here 0 = 0 and 3y = y U {y}.
Let Induct be the class of all inductive sets.

Define w = () Induct = {z | Vz(z inductive — z € z)}.
The Axiom of Infinity says that Induct # (). Let z* € Induct. Then

w= ﬂ Induct = z* N ﬂ Induct.
By Comprehension, w is a set.

Proposition 6C.3 (Induction Principle). If z is an inductive subset of
w, then z = w.

Proposition 6C.4. (1) If x € w then x =0 or x =k’ for some k € w.
(2) w is transitive.

Proof. For (1) Apply the Induction Principle with {z € w |z =0V (Jk €
w)x =k} as z.

For (2), we apply the Induction Principle with {n € w | n C w} as z.
Since 0 = (), 0 € z. Assume that n € w and n € 2. If m € n’ then m € n or
m =mn. If m € n, then m € w because n C w. If m = n then m € w since
n e w. |



Proposition 60.4%. Every member of w is an ordinal number.

Proof. Let z = {k € w | k is an ordinal number}.
Clearly 0 is transitive and €[0 is a strict wellordering. Hence 0 € z.
Assume that n € z. Since n’ =nU{n}, Jn' =UnUn =n Cn’. Thus
n’ is transitive. To see that €[ n’ is a strict wellordering, note the following
two facts.

(i) For all m € n, (m,n) belongs to €[n’

(i) For all m € n’ (n,m) does not belong to €[n’.
(ii) cannot fail for m = n because n € n contradicts the irreflexiveness of
€[n. If (ii) fails for m € n, then n € m € n and the transitivity of n implies
that n € n. Together (i) and (ii) show that €[ n' is just the wellordering €| n

with one element added at the end. One can easily check that this implies
that €[n’ is a wellordering. O

Proposition 60.4%. Let o and 3 be ordinal numbers. Then

aefVa=0VLca.

Proof. We will show the following:

(a) If « € 8 then N 3 is the €] a-least member of « \ f.
(b) If 8 € o then N (3 is the €] (-least member of 3\ a.

Assume (a) and (b). Then o C § or 5 C «, and

aCf = a=anpeps
bCa = f=anfeuq
aCBANBCa = a=4.

We prove (a). The proof of (b) is similar. Let u be the €] a-least member
of a\ B. We show that u Canpgand an g C u.

Assume v € u. By the transitivity of o, v € a. If v ¢ [, then v
contradicts the €[ a-minimality of u, so v € a N .

Assume v € N B. Since €] « is a linear ordering, u € v or u = v or
v € u. Both v € v and v = v imply the contradiction that v € 3. Hence
v E U. O

Theorem 6C.5 w is an ordinal number.



Proof. By part (2) of Proposition 6.4, we need only show that €[ w is a
strict wellordering.

If n € n € w, then € [ n is not irreflexive. This shows that €] w is
irreflexive.

If ] € m € n € w, then the transitivity of n implies that [ € n. Hence
€l w is transitive.

By Propositions 6C.4% and 60.4%, €] w is connected.

Let z be a non-empty subset of w. Let k € z. If kNx = (), then k is the
€ [w-least member of x. If kN z # (), then the €] k-least member of z is the
€l w-least member of z, for if i € j Nx then i € k by the transitivity of k. O



