
5 Deduction in First-Order Logic

The system FOLC.

Let C be a set of constant symbols. FOLC is a system of deduction for
the language L#

C .

Axioms: The following are axioms of FOLC.

(1) All tautologies.

(2) Identity Axioms:

(a) t = t
for all terms t;

(b) t1 = t2 → (A(x; t1)→ A(x; t2))
for all terms t1 and t2, all variables x, and all formulas A such
that there is no variable y occurring in t1 or t2 such that there is
free occurrence of x in A in a subformula of A of the form ∀yB.

(3) Quantifier Axioms:
∀xA→ A(x; t)

for all formulas A, variables x, and terms t such that there is no
variable y occurring in t such that there is a free occurrence of x in A
in a subformula of A of the form ∀yB.

Rules of Inference:

Modus Ponens (MP)
A , (A→ B)

B

Quantifier Rule (QR)
(A→ B)

(A→ ∀xB)

provided the variable x does not occur free in A.

Discussion of the axioms and rules.

(1) We would have gotten an equivalent system of deduction if instead
of taking all tautologies as axioms we had taken as axioms all instances (in
L#

C ) of the three schemas on page 16. All instances of these schemas are
tautologies, so the change would have not have increased what we could
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deduce. In the other direction, we can apply the proof of the Completeness
Theorem for SL by thinking of all sententially atomic formulas as sentence
letters. The proof so construed shows that every tautology in L#

C is deducible
using MP and schemas (1)–(3). Thus the change would not have decreased
what we could deduce.

(2) Identity Axiom Schema (a) is self-explanatory. Schema (b) is a formal
version of the Indiscernibility of Identicals, also called Leibniz’s Law.

(3) The Quantifer Axiom Schema is often called the schema of Universal
Instantiation. Its idea is that whatever is true of a all objects in the domain
is true of whatever object t might denote. The reason for the odd-looking
restriction is that instances where the restriction fails do not conform to the
idea. Here is an example. Let A be ∃v2 v1 6= v2, let x be v1 and let t be v2.
The instance of the schema would be

∀v1∃v2 v1 6= v2 → ∃v2 v2 6= v2.

The antecedent is true in all models whose domains have more than one
element, but the consequent is not satisfiable.

(MP) Modus ponens is the rule we are familiar with from the system SL.

(QR) As we shall explain later, the Quantifier Rule is not a valid rule.
The reason it will be legitimate for us to use it as a rule is that we shall
allow only sentences as premises of our deductions. How this works will be
explained in the proof of the Soundness Theorem.

Deductions: A deduction in FOLC from a set Γ of sentences is a finite se-
quence D of formulas such that whenever a formula A occurs in the sequence
D then at least one of the following holds.

(1) A ∈ Γ.

(2) A is an axiom.

(3) A follows by modus ponens from two formulas occurring earlier in the
sequence D or follows by the Quantifier Rule from a formula occurring
earlier in D.

A deduction in FOLC of a formula A from a set Γ of sentences is a
deduction D in FOLC from Γ with A on the last line of D. We write
Γ `FOLC

A and say A is deducible in FOLC from Γ to mean that there is a
deduction in FOLC of A from Γ. We write `FOLC

A for ∅ `FOLC
A.
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Announcement. For the rest of this section, we shall omit subscripts
“FOLC.” and phrases “in FOLC” except in contexts where we are consid-
ering more than one set C.

In order to avoid dealing directly with long formulas and long deductions,
it will be useful to begin by justifying some derived rules.

Lemma 5.1. Assume that Γ ` Ai for 1 ≤ i ≤ n and {A1, . . . , An} |=sl B.
Then Γ ` B. (See page 36 for the definition of |=sl.)

Proof. If we string together deductions witnessing that Γ ` Ai for each i,
then we get a deduction from Γ in which each Ai is a line. The fact that
{A1, . . . , An} |=sl B gives us that the formula

(A1 → A2 → · · ·An → B)

is a tautology. Appending this formula to our deduction and applying MP
n times, we get B. �

Lemma 5.1 justifies a derived rule, which we call SL. A formula B follows
from formulas A1, . . . , An by SL iff

{A1, . . . , An} |=sl B.

Lemma 5.2. If Γ ` A then Γ ` ∀xA.

Proof. Assume that Γ ` A. Begin with a deduction from Γ with last
line A. Use SL to get the line (p0 ∨ ¬po) → A. Now apply QR to get
(p0 ∨ ¬po)→ ∀xA. Finally use SL to get ∀xA. �

Lemma 5.2 justifies a derived rule, which we call Gen:

Gen
A

∀xA

Lemma 5.3. For all formulas A and B,

` ∀x(A→ B)→ (∀xA→ ∀xB).

Proof. Here is an abbreviated deduction.

1. ∀x(A→ B)→ (A→ B) QAx
2. ∀xA→ A QAx
3. (∀x(A→ B) ∧ ∀xA)→ B 1,2; SL
4. (∀x(A→ B) ∧ ∀xA)→ ∀xB 3; QR
5. ∀x(A→ B)→ (∀xA→ ∀xB) 4; SL

�
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Lemma 5.4. For all formulas A,

` ∃x∀yA→ ∀y∃xA.

Proof. Here is an abbreviated deduction.

1. ∀yA→ A QAx
2. ¬A→ ¬∀yA 1; SL
3. ∀x(¬A→ ¬∀yA) 2; Gen
4. ∀x(¬A→ ¬∀yA)→ (∀x¬A→ ∀x¬∀yA) Lemma 5.3
5. ∀x¬A→ ∀x¬∀yA 3,4; MP
6. ¬∀x¬∀yA→ ¬∀x¬A 5; SL

[∃x∀yA→ ∃xA]
7. ∃x∀yA→ ∀y∃xA 6; QR

�

Exercise 5.1. Show that ` (∃v1 P 1v1 → ∃v2 P 1v2).

Exercise 5.2. Show that {∀v1 P 1v1} ` ∃v1 P 1v1.

Lemma 5.5. If Γ ` (A→ B) then Γ ` (∀xA→ ∀xB).

Proof. Start with a deduction from Γ with last line (A→ B). Use Gen to
get the line ∀x(A→ B). Then apply Lemma 5.3 and MP. �

Theorem 5.6 (Deduction Theorem). Let Γ be a set of sentences, let A
be a sentence, and let B be a formula. If Γ ∪ {A} ` B then Γ ` (A→ B).

Proof. The proof is similar to the proof of the Deduction Theorem for SL.
Assume that Γ ∪ {A} ` B. Let D be a deduction of B from Γ ∪ {A}. We
prove that

Γ ` (A→ C)

for every line C of D. Assume that this is false. Consider the first line C
of D such that Γ 6` (A→ C).

Assume that C either belongs to Γ or is an axiom. Then Γ ` C and
(A→ C) follows from C by SL. Hence Γ ` (A→ C).

Assume next that C is A. Since A→ A is a tautology, Γ ` (A→ A).
Assume next that C follows from formulas E and (E → C) by MP. These

formulas are on earlier lines of D than C. Since C is the first “bad” line of
D, Γ ` A→ E and Γ ` A→ (E → C). Since

{(A→ E), (A→ (E → C))} |=sl (A→ C),
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Lemma 5.1 gives us that Γ ` (A→ C).
Finally assume that C is (E → ∀xF ) and that C follows by QR from an

earlier line (E → F ) of D. Since C is the first “bad” line of D, Γ ` A →
(E → F ). Starting with a deduction from Γ of A→ (E → F ), we can get a
deduction from Γ of A→ (E → ∀xF ) as follows.

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
n A→ (E → F ) · · ·
n+ 1. (A ∧ E)→ F n; SL
n+ 2. (A ∧ E)→ ∀xF n+ 1; QR
n+ 3. A→ (E → ∀xF ) n+ 2; SL

Note that the variable x has no free occurrences in A because A is a sentence,
and we know that it has no free occurrences in E because we know that QR
was used in D to get E → ∀xF from E → F .

This contradiction completes the proof that the “bad” line C cannot
exist. Applying this fact to the last line of D, we get that Γ ` (A→ B). �

A set Γ of sentences of L#
C is inconsistent in FOLC if there is a formula

B such that Γ `FOLC
B and Γ `FOLC

¬B. Otherwise Γ is consistent.

Theorem 5.7. Let Γ and ∆ be sets of sentences, let A and A1, . . . , An be
sentences, and let B be a formula.

(1) Γ ∪ {A} ` B if and only if Γ ` (A→ B).

(2) Γ ∪ {A1, . . . , An} ` B if and only if Γ ` (A1 → . . .→ An → B).

(3) Γ is consistent if and only if there is some formula C such that
Γ 6` C.

(4) If Γ ` C for all C ∈ ∆ and if ∆ ` B, then Γ ` B.

Proof. The proof is like the proof of Theorem 2.2, except that we may now
use the derived rule SL instead of the particular axioms and rules of the
system SL. �

A system S of deduction for L#
C is sound if, for all sets Γ of sentences

and all formulas A, if Γ `S A then Γ |= A. A system S of deduction for L#
C

is complete if, for all sets Γ of sentences and all formulas A, if Γ |= A then
Γ `S A.
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Remark. These definitions are like the definitions of soundness and com-
pleteness of systems for L, except that the new definitions require Γ to
consist of sentences, not just formulas. We hereby make the analoguous
definitions for our other languages.

Exercise 5.3. Prove that all instances of Identity Axiom Schema (b) are
valid.

Exercise 5.4. Prove that all instances of the Quantifier Axiom Schema are
valid.

Hint for Exercises 5.3 and 5.4: For terms t∗ and t and variables x, let t∗(x; t)
be the result of replacing the occurrences of x in t∗ by occurrences of t.

Let M be a model and and let s be variable assignment. Let x be variable
and let t be a term. Assume that s(x) = dens

M(t). Prove by induction on
length that, for all terms t∗,

dens
M(t∗) = dens

M(t∗(x; t)).

Next prove by induction on length that, for all formulas A, if A, x, and
t satisfy the restriction in the statement of the Quantifier Axiom Schema,
then

vs
M(A) = vs

M(A; t).

Theorem 5.8 (Soundness). The systems FOLC are sound.

Proof. The proof is similar to the proof of soundness for SL (Theorem 2.4).
Let D be a deduction in FOLC of a formula A from a set Γ of sentences.
We shall show that, for every line C of D, Γ |= C. Applying this to the last
line of D, this will give us that Γ |= A.

Assume that what we wish to show is false. Let C be the first line of D
such that Γ 6|= C.

Using Exercises 5.3 and 5.4, it is easy to see that all the axioms are valid.
It follows that the cases that C ∈ Γ, that C is an axiom, and that C follows
by MP from earlier lines of D, are just like the corresponding cases in the
proof of Theorem 2.4.

The only remaining case is that C is B → ∀xE and C follows by QR
from an earlier line B → E of D. Since C is the first “bad” line of D,
Γ |= B → E. Let M = (D, v, χ) be any model and let s be any variable
assignment. We assume that vs

M(Γ) = T (i.e., that vs
M(H) = T for each

H ∈ Γ), and we show that vs
M(B → ∀xE) = T. For this, we assume that
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vs
M(B) = T and we show that vs

M(∀xE) = T. Let d be any element of
D and let s′ be any variable assignment that agrees with s except that
s′(x) = d. We must show that vs′

M(E) = T. Since Γ is a set of sentences,
vs′
M(Γ) = T. Since the variable x does not occur free in B, vs′

M(B) = T.
Since Γ |= B → E, it follows that vs′

M(E) = T �

Lemma 5.9. Let Γ be a set of sentences of L#
C consistent in FOLC and

let A be a sentence of L#
C . Then either Γ ∪ {A} is consistent in FOLC or

Γ ∪ {¬A} is consistent in FOLC.

Proof. The proof is like that of Lemma 2.5. �

Lemma 5.10. Let Γ be set of sentences of L#
C consistent in FOLC. Let C∗

be a set gotten from C by adding infinitely many new constants. There is a
set Γ∗ of sentences of L#

C∗ such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is consistent in FOLC∗ ;

(3) for every sentence A of L#
C∗, either A belongs to Γ∗ or ¬A belongs

to Γ∗;

(4) Γ∗ is Henkin.

Proof. Let c0, c1, c2, . . . be all the constants of L#
C∗ . Let

A0, A1, A2, A3, . . .

be the list (defined in the proof of Lemma 4.8) of all the sentences of L#
C∗ .

As in that proof we define, by recursion on natural numbers, a function that
associates with each natural number n a set Γn of formulas.

Let Γ0 = Γ.
As in the proofs of Lemmas 3.5, 4.2, and 4.8, we shall make sure that,

for each n, at most two sentences belong to Γn+1 but not to Γn. As in
the earlier proofs, it follows that for each n only finitely many of the new
constants occur in sentences in Γn.

We define Γn+1 from Γn in two steps. For the first step, let

Γ′n =
{

Γn ∪ {An} if Γn ∪ {An} is consistent in FOLC∗ ;
Γn ∪ {¬An} otherwise.

Let Γn+1 = Γ′n unless both of the following hold.
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(a) ¬An ∈ Γ′n.

(b) An is ∀xnBn for some variable xn and formula Bn.

Suppose that both (a) and (b) hold. Let in be the least i such that the
constant ci does not occur in any formula belonging to Γ′n. Such an i must
exist, since only finitely many of the infinitely many new constants occur in
sentences in Γ′n. Let

Γn+1 = Γ′n ∪ {¬Bn(xn; cin)}.

Let Γ∗ =
⋃

n Γn.
Because Γ = Γ0 ⊆ Γ∗, Γ∗ has property (1).
We prove by mathematical induction that Γn is consistent for each n.
Γ0 (i.e., Γ) is consistent in FOLC by hypothesis, but we must prove that

it is consistent in FOLC∗ . Observe that any deduction D from Γ in FOLC∗

of a formula of L#
C can be turned into a deduction from Γ in FOLC of the

same formula: just replace the new constants occurring in D by distinct
variables that do not occur in D. It follows easily that Γ is inconsistent in
FOLC if it is inconsistent in FOLC∗ .

Assume that Γn is consistent in FOLC∗ . Lemma 5.9 implies that Γ′n is
consistent. If Γn+1 = Γ′n, then Γn+1 is consistent. Assume then that Γn+1 =
Γ′n∪{¬Bn(xn; cin)} and, in order to derive a contradiction, assume that Γn+1

is not consistent. By Theorem 5.7, every formula of L#
C∗ is deducible from

Γn+1 in FOLC∗ . Hence Γn+1 `FOLC∗ (p0 ∧ ¬p0). In other words,

Γ′n ∪ {¬Bn(xn; cin)} `FOLC∗ (p0 ∧ ¬p0).

By the Deduction Theorem,

Γ′n `FOLC∗ ¬Bn(xn; cin)→ (p0 ∧ ¬p0).

Let D be a deduction from Γ′n in FOLC∗ with last line ¬Bn(xn; cin) →
(p0 ∧ ¬p0). Let y be a variable not occurring in D. Let D′ come from d
by replacing every occurrence of cin by an occurrence of y. Since cin does
not occur Γ′n or in ¬Bn, D′ is a deduction from Γ′n in FOLC∗ with last
line ¬Bn(xn; y)→ (p0 ∧ ¬p0). We can turn D′ into a deduction from Γ′n in
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FOLC∗ with last line ¬∀xnBn → (p0 ∧ ¬p0) as follows.

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
n. ¬Bn(xn; y)→ (p0 ∧ ¬p0) · · ·
n+ 1. ¬(p0 ∧ ¬p0)→ Bn(xn; y) n; SL
n+ 2. ¬(p0 ∧ ¬p0)→ ∀yBn(xn; y) n+ 1; QR
n+ 3. ∀yBn(xn; y)→ Bn QAx
n+ 4. ¬(p0 ∧ ¬p0)→ Bn n+ 2,n+ 3; SL
n+ 5. ¬(p0 ∧ ¬p0)→ ∀xnBn n+ 4; QR
n+ 6. ¬∀xnBn → (p0 ∧ ¬p0) n+ 5; SL

This shows that Γ′n `FOLC∗ ¬∀xnBn → (p0∧¬p0). But Γ′n = Γ∪{¬∀xnBn},
so it follows that Γ′n `FOLC∗ (p0 ∧ ¬p0). By SL, we get the contradiction
that Γ′n is inconsistent in FOLC∗ .

As in the proof of Lemma 2.6, the consistency of all the Γn implies that
consistency of Γ∗. Hence Γ∗ has property (2).

Because either An or ¬An belongs to Γn+1 for each n and because each
Γn+1 ⊆ Γ∗, Γ∗ has property (3).

If An /∈ Γ∗, then An /∈ Γn+1 and so ¬An ∈ Γn+1. But this implies that
¬Bn(xn; cin) ∈ Γn+1 ⊆ Γ∗ if An = ∀xnBn. Hence Γ∗ has property (4). �

Exercise 5.5. Show that

{∀v1∀v2(P 2v1v2 ∨ P 2v2v1)} ` ∀v1P 2v1v1.

Exercise 5.6. Show that

` ∀v1∃v2F 1v1 = v2.

Exercise 5.7. Let c1 and c2 be constants. Show that

{c1 = c2} ` c2 = c1.

Lemma 5.11. Let Γ∗ be a set of sentences of a language L#
C∗ having prop-

erties (2), (3), and (4) described in the statement of Lemma 5.10. Then Γ∗

is satisfiable.

Proof. As in the proof of Lemma 2.7, it follows from (2) and (3) that Γ∗

is deductively closed: for all sentences A, if Γ∗ ` A then A ∈ Γ∗.
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As in the proofs of Lemmas 4.4 and 4.9, we shall define a model whose
domain is a set of equivalence classes of constants. As in the proof of
Lemma 4.4, let R be the relation on C∗ defined by

Rc1c2 holds iff c1 = c2 ∈ Γ∗.

We shall prove that R is an equivalence relation on C∗.
For reflexivity, we must show that c = c belongs to Γ∗ for all members c

of C∗. Since c = c is an instance of Identity Axiom Schema (a), ` c = c and
so Γ∗ ` c = c. By deductive closure, c = c ∈ Γ∗.

For symmetry, we must show that, for all members c1 and c2 of Γ∗, if
c1 = c2 ∈ Γ∗, then c2 = c1 ∈ Γ∗. Assume that c1 = c2 ∈ Γ∗. By Exercise 5.7,
Γ∗ ` c2 = c1. By deductive closure, c2 = c1 ∈ Γ∗.

Before proving transitivity, we show that

{c1 = c2, c2 = c3} ` c1 = c3

for any constants c1, c2, and c3.

1. c1 = c2 Premise
2. c2 = c3 Premise
3. c2 = c1 1; Exercise 5.7
4. c2 = c1 → (c2 = c3 → c1 = c3) IdAx(b)
5. c1 = c3 2,3,4; SL

For transitivity, we must show that, for all members c1, c2, and c3 of
Γ∗, if c1 = c2 ∈ Γ∗ and c2 = c3 ∈ Γ∗, then c1 = c3 ∈ Γ∗. Assume that
c1 = c2 ∈ Γ∗ and c2 = c3 ∈ Γ∗. By what we have just proved, Γ∗ ` c1 = c3.
By deductive closure, c1 = c3 ∈ Γ∗.

We define a model M = (D, v, χ) exactly as in the proof of Lemma 4.9,
that is:

(i) D = {[c]R | c ∈ C∗}.
(ii) (a) v(pi) = T if and only if pi ∈ Γ∗.

(b) v((Pn
i , [c1]R, . . . , [cn]R)) = T if and only if Pn

i c1 . . . cn ∈ Γ∗.

(iii) (a) χ(c) = [c]R for each c ∈ C∗.
(b) χ((Fn

i , [c1]R, . . . , [cn]R)) = [c]R if and only if Fn
i c1 . . . cn = c ∈ Γ∗.

We must show that the definitions given in clauses (ii)(b) and (iii)(b) do
not depend on the choice of elements of equivalence classes. In the case of
clause (iii)(b), we need to show something additional. (See below.)
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A special case of the proof that clause (iii)(b) is independent of the
choice of elements of equivalence classes is Exercise 5.8, and the proof for
the general case is merely an elaboration of the proof for the special case.
The case of (ii)(b) is a bit simpler.

The additional fact we to show concerning clause (iii)(b) is that, for all
Fn

i and all c1, . . . cn, that there is a c such that

Fn
i c1 . . . cn = c ∈ Γ∗.

Suppose there is no such c. By property (3) of Γ∗,

Fn
i c1 . . . cn 6= c ∈ Γ∗

for all c ∈ C∗. By property (4) of Γ∗,

∀v1Fn
i c1 . . . cn 6= v1 ∈ Γ∗.

Since
∀v1Fn

i c1 . . . cn 6= v1 → Fn
i c1 . . . cn 6= Fn

i c1 . . . cn

is an instance of the Quantifier Axiom Schema,

Γ∗ ` Fn
i c1 . . . cn 6= Fn

i c1 . . . cn.

But Fn
i c1 . . . cn 6= Fn

i c1 . . . cn is an instance of Identity Axiom Schema (a),
and so Γ∗ is inconsistent, contradicting property (2) of Γ∗.

Let P be the property of being a sentence A such that

vM(A) = T if and only if A ∈ Γ∗ .

We prove by induction on length that every sentence has property P .
The case of atomic sentences is like that case in the proof of Lemma 4.9,

except for one change. Recall that in proving atomic cases (i)(b) and (i)(c),
we first used induction on length to demonstrate that all terms without
variables have property Q, where t has property Q if and only if, for every
c ∈ C∗,

if denM(t) = [c]R then c = t ∈ Γ∗.

In the course of this demonstration, we got a contradiction from the assump-
tion that ∆ ⊆ Γ∗, where

∆ = {c1 = t1, . . . , cn = tn, F
n
i c1 . . . cn = c, c 6= Fn

i t1 . . . tn}.

This assumption contradicted the hypothesis that Γ∗ was finitely satisfi-
able. What we need to show in our new context is that it contradicts
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the hypothesis that Γ∗ is consistent. Obviously ∆ ` c 6= Fn
i t1 . . . tn, so

∆ ` Fn
i t1 . . . tn 6= c. Thus it is enough to show that ∆ ` Fn

i t1 . . . tn = c.

1. c1 = t1 Premise
.. · · · · · ·
.. · · · · · ·
.. · · · · · ·
n. cn = tn Premise
n+ 1. c1 = t1 →

(Fn
i c1c2 . . . cn = c→ Fnt1c2 . . . cn = c) IdAx(b)

.. · · · · · ·

.. · · · · · ·

.. · · · · · ·
2n. tn = cn →

(Fn
i t1t2 . . . tn−1cn = c→ Fnt1t2 . . . tn−1tn = c) IdAx(b)

2n+ 1. Fn
i t1 . . . tn = c 1,. . . ,2n; SL

Cases cases (ii) and (iii) of the proof that all formulas have property P
are like the corresponding cases in the proof of Lemma 2.7.

Case (iv) is like the corresponding case in the proof of Lemma 4.9, except
for one change. The last step in case (iv) proof was to show that

for all c ∈ C∗, B(x; c) ∈ Γ∗ iff ∀xB ∈ Γ∗.

The “if” part of this “iff” was proved using the fact that Γ∗ was finitely
satisfiable. In the new context, we must prove it using the fact that Γ∗ is
consistent. To do this, assume that ∀xB ∈ Γ∗ and let c ∈ C∗. Notice that
the sentence

∀xB → B(x; c)

is an instance of the Quantifier Axiom Schema. Thus Γ∗ ` B(x; c). By
deductive closure, B(x; c) ∈ Γ∗.

As in our earlier proofs, we have in particular that vM(A) = T for every
member of A of Γ∗, and this means we have shown that Γ∗ is satisfiable. �

Theorem 5.12. Let Γ be a consistent set of sentences of L#
C . Then Γ is

satisfiable, i.e., true in a model for L#
(C).

Proof. By Lemma 5.10, let Γ∗ have properties (1)–(3) of that lemma. By
Lemma 5.11, Γ∗ is satisfiable (true in a model L#

(C)). As in the proof of

Theorem 3.7 Γ is true in a model for L#
(C). �
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Theorem 5.13 (Completeness). Let Γ be a set of sentences of L#
C and

let A be a formula of L#
C such that Γ |= A. Then Γ `FOLC

A. In other
words, FOLC is complete.

Proof. Since Γ |= A, for every model M and every variable assignment
s, if Γ is true in M, then vs

M(A) = T. Let x1, . . . , xn be all the variables
occurring free in A. Let M be any model in which Γ is true. For every
variable assignment s, vs

M(A) = T. This means that ∀x1 . . . ∀xnA is true in
M. Thus

Γ |= ∀x1 . . . ∀xnA.

Since Γ |= ∀x1 . . . ∀xnA, Γ∪{¬∀x1 . . . ∀xnA} is not satisfiable. By Theo-
rem 5.12, Γ∪{¬∀x1 . . . ∀xnA} is inconsistent. Let B be a formula such that
Γ∪ {¬∀x1 . . . ∀xnA} ` B and Γ∪ {¬∀x1 . . . ∀xnA} ` ¬B. By the Deduction
Theorem, Γ ` (¬∀x1 . . . ∀xnA→ B) and Γ ` ¬∀x1 . . . ∀xnA→ ¬B). By SL,
Γ ` ∀x1 . . . ∀xnA. Using the Quantifier Axiom Schema and MP n times, we
get that Γ ` A. �

Exercise 5.8. In the proof of Lemma 5.11, clause (iii)(b) of the definition
of the model M says that

χ((Fn
i , [c1]R, . . . , [cn]R)) = [c]R iff Fn

i c1 . . . cn = c ∈ Γ∗.

Show, in the special case n = 2 and i = 0, that this definition does not
depend on the choice of elements of equivalence classes. In other words,
assume that

(1) [c1]R = [c′1]R and [c2]R = [c′2]R;

(2) F 2c1c2 = c ∈ Γ∗ and F 2c′1c
′
2 = c′ ∈ Γ∗,

and prove that
[c]R = [c′]R.
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