
Philosophy 135 Winter 2007 Tony Martin

Introduction to Metalogic

1 The semantics of sentential logic.

The language L of sentential logic.

Symbols of L:

(i) sentence letters p0, p1, p2, . . .

(ii) connectives ¬, ∨
(iii) parentheses (,)

Remarks:
(a) We shall pay little or no attention to the use-mention distinction.

For instance, we are more likely to write “p1 is a sentence letter” than “ ‘p1’
is a sentence letter.”

(b) There are several standard variants of our list of connectives. Trivial
variants can be gotten by using literally different symbols to play the roles
ours play. For example, it is common to use ∼ in place of our ¬. Other
variants can be gotten by using additional symbols that play different roles
from those ours play, e.g., connectives ∧, →, and ↔. We do not do this, in
order to keep definitions and proofs as short and simple as possible. We will,
however, introduce the symbols mentioned above as abbreviations. Instead of
adding connectives to our list, one could replace our connectives with others.
For example, one could drop ∨ and replace it by ∧ We shall occasionally
make remarks on how such changes would affect our definitions of semantic
and deductive concepts.

Formulas of L:

(i) Each sentence letter is a formula.

(ii) If A is a formula, then so is ¬A.

(iii) If A and B are formulas, then so is (A ∨B).

(iv) Nothing is a formula unless its being one follows from (i)–(iii).

1

Let us officially regard formulas as sequences of symbols. Thus the formula
(p1 ∨ ¬p2) is officially a sequence of length 6. This official stance will make
little practical difference.

We often want to prove that all formulas have some property P . A
method for proving this is formula induction. To prove by formula induction
that every formula has property P , we must prove (i), (ii), and (iii) below.

(i) Each sentence letter has property P .

(ii) If A is a formula that has property P , then ¬A has P .

(iii) If A and B are formulas that have property P , then (A ∨B) has P .

If we prove (i)-(iii) for P , then clause (iv) in the definition of formulas
guarantees that all formulas have property P .

The proof of the following lemma is an example of proof by formula
induction.

Lemma 1.1. Every formula contains the same number of (occurrences of)
left parentheses as (occurrences of) right parentheses.

Proof. Let P be the property of being a formula with the same number of
left as right parentheses.

(i) Sentence letters have no parentheses, so clearly they have property P .
(ii) Assume that A is a formula and that A has P . Since ¬A has the

same occurrences of left and right parentheses as does A, ¬A has P .
(iii) Assume that A and B are formulas having property P . The number

of left parentheses in (A ∨ B) is m + n + 1, where m is the number of
left parentheses in A and n is the number of left parentheses in B, and the
number of right parentheses in (A∨B) is m′+n′+1, where m′ is the number
of right parentheses in A and n′ is the number of right parentheses in B. By
assumption, m = m′ and n = n′; so m + n + 1 = m′ + n′ + 1. Thus (A∨B)
has P .

The lemma follows by formula induction. �

Lemma 1.2. For every formula A, exactly one of the following holds.

(1) A is a sentence letter.

(2) There is a formula B such that A is ¬B.

(3) There are formulas B and C such that A is (B ∨ C).

2

Proof. Evidently at most one of (1)–(3) can hold for any formula, so we
need only show that for each formula at least one of (1)–(3) holds. Since
all the formulas given by instances of clauses (i)–(iii) in the definition of
formula are of these forms, the desired conclusion follows by clause (iv).

Lemma 1.3. For every formula A,

(a) every initial segment of A has the at least as many left as right
parentheses;

(b) if A is a disjunction (i.e., is (B ∨C) for some formulas B and C),
then every proper initial segment of A (i.e., every initial segment of A
that is not the whole of A) that has length greater than 0 has more left
than right parentheses.

Proof. Let P be the property of being a formula for which (a) and (b)
hold. We use formula induction to prove that all formulas have P . In each
of steps (i) and (ii), the proof that (a) holds is similar to the corresponding
step of the proof of Lemma 1.1. For steps (i) and (ii), (b) holds vacuously.
We need then only prove that (b) holds for (A∨B) on the assumption that
A and B have property P . Let C be a proper initial segment of (A ∨ B)
of length greater than 0. C contains the initial (and does not contain the
final (. The desired conclusion follows from the assumption that (a) holds
for A and B. �

Lemma 1.4. No proper initial segment of a formula is a formula.

Proof. We use formula induction, with P the property of being a formula
no proper initial segment of which is a formula.

Note that (i) is trivial. Note also that (iii) follows from Lemmas 1.3
and 1.1. This is because part (b) of Lemma 1.3 says that non-zero length
proper initial segments of disjunctions have more left than right parentheses,
while Lemma 1.1 says that formulas have the same number of left as right
parentheses.

For (ii), assume that A has P . Let D be a proper initial segment of
¬A. Since the empty sequence is not a formula, we may assume that D has
length > 0. Thus D is ¬A′, where A′ is a proper initial segment of A. Since
A has P , A′ is not a formula. It follows from this fact and Lemma 1.2 that
¬A′ is not a formula. �

Theorem 1.5 (Unique Readability). Let A be a formula. Then exactly
one of the following holds.

3

(1) A is sentence letter.

(2) There is a unique formula B such that A is ¬B.

(3) There are unique formulas B and C such that A is (B ∨ C).

Proof. If A does not begin with a left parenthesis, then Lemma 1.2 implies
that exactly one of (1) or (2) holds.

Assume that A begins with a left parenthesis. Then there must be
formulas B and C such that A is (B ∨ C). Assume that there are formulas
B′ and C ′ such that B′ is different from B and A is (B′ ∨ C ′). Then one
of B and B′ must be a proper initial segment of the other, contradicting
Lemma 1.4. �

Exercise 1.1. Prove by formula induction that, for every formula A, the
number of occurrences of sentence letters in A is one more than the number
of occurrences of ∨ in A.

Truth and logical implication.

We now know that our language has an unambiguous grammar. Our
next task is to introduce for it semantic notions such as meaning and truth.
The natural way to proceed is from the bottom up: first to give meanings
to the sentence letters; then to give meanings to the connectives and to use
this to give meanings—and truth conditions—to the formulas of L.

Let us first consider the sentence letters. As the name suggests, they
are to be treated as whole (declarative) sentences. To give them a meaning,
we should specify what statement or proposition each of them expresses.
(Sentential logic is sometimes called propositional logic and sentence letters
are sometimes called proposition letters.) One way to do this would be
to assign to each sentence letter a declarative sentence of English whose
translation it would be. The sentence letter would then have the same
meaning, express the same proposition, as the English sentence.

If we did what was just suggested, then each sentence letter would be
given a meaning once and for all. Once we specified the meanings of the
connectives, then L would be a language in the usual sense, albeit an artifi-
cial and a very simplified one. But we do not want to use L in this way, to
express particular propositions. Instead we want to use it to study logical
relations between propositions, to study relations between propositions that
depend only on the logical forms of the propositions. Therefore we shall not
specify a fixed way of assigning a proposition to each sentence letter, but we

4

shall try to consider all ways in which this might be done, all ways in which
the language could be turned into a language in the usual sense.

We want to define the general notion of what we might call an interpre-
tation of L or a model for L, but what we shall actually call a valuation for
L. We could define a valuation to be an assignment of a declarative En-
glish sentence to each sentence letter. This seems, however, too restrictive a
notion, since there are surely many propositions that are not expressed by
any English sentence. We could instead define a valuation as an assignment
of a proposition to each sentence letter. But we shall have no reason to be
concerned with the content of the propositions assigned to the sentence let-
ters. We shall only need to deal with their truth-values, with whether or not
they are true or false. Because we shall be doing truth-functional logic, the
truth conditions for complex formulas will depend only on the truth-values
of the sentence letters that occur in them, and not on what propositions the
sentence letters express.

We define then a valuation v for L to be a function that assigns to each
sentence letter of L a truth-value T or F.

Let v be a valuation for L. The valuation v directly gives us a truth-
value to each sentence letter. We next describe how it indirectly gives a
truth-value to each formula of L. To do this we define a function v∗ that
assigns a truth-value to each formula of L, so that

(a) if A is a sentence letter, then v∗(A) = v(A) ;

(b) v∗(¬A) =
{

F if v∗(A) = T ;
T if v∗(A) = F ;

(c) v∗((A ∨B)) =


T if v∗(A) = T and v∗(B) = T ;
T if v∗(A) = T and v∗(B) = F ;
T if v∗(A) = F and v∗(B) = T ;
F if v∗(A) = F and v∗(B) = F .

We define a formula A to be true under the valuation v if v∗(A) = T and
to be false under v if v∗(A) = F.

Have we actually defined the function v∗? We have, for each of the three
kinds of formulas, told by an equation what v∗ assigns to formulas of that
kind. But “v∗” appears on the right side as well as on the left side of these
equations, so this is not an ordinary definition. It is what is called a recursive
or inductive definition.

An example will make it intuitively clear that clauses (a)–(c) determine
what truth-value v∗ assigns to any given formula. Consider

(¬p3 ∨ ¬(p1 ∨ p3)).

5

Assume that v(p1) = T and v(p3) = F. Then

v∗(p1) = T (by (a));
v∗(p3) = F (by (a));

v∗(¬p3) = T (by (b));
v∗((p1 ∨ p3)) = T (by (c));

v∗(¬(p1 ∨ p3)) = F (by (b));
v∗((¬p3 ∨ ¬(p1 ∨ p3))) = T (by (c)).

Thus (¬p3 ∨ ¬(p1 ∨ p3)) is true under v.
The definition of v∗ is an example of definition by recursion on formulas.

This is a method for defining a function h whose domain is the set of all
formulas. To define h by this method, one must

(a) define h(A) from A for sentence letters A;

(b) define h(¬A) from A and h(A) for formulas A;

(c) define h((A ∨B)) from A, B, h(A), and h(B) for formulas A and B.

Here we are being a little imprecise in order to be comprehensible. Re-
maining at the same level of imprecision, let us sketch how to use formula
induction to prove that doing (a)–(c) determines a unique function h whose
domain is the set of all formulas. Suppose (a)–(c) have been done. Let
P be the property of being a formula A for which a unique value h(A) is
determined by the definitions of (a)–(c). For (i) and (ii), use the definitions
of (a) and (b) and the trivial parts of Unique Readability. For (iii), assume
that A and B are formulas that have P . The definition of (c) determines a
value of h((A∨B)) from the values of h(A) and h(B) given by the fact that
A and B have P . The uniqueness of this value follows from the uniqueness
of h(A) and h(B) together with Unique Readability.

It will be convenient to make to introduce some abbreviations:

(A ∧B) for ¬(¬A ∨ ¬B);
(A → B) for (¬A ∨B);
(A ↔ B) for ((A → B) ∧ (B → A)).

Bear in mind that ∧, →, and ↔ are not actually symbols of L. Given a
formula abbreviated by the use of these symbols, one may eliminate the
symbols via the contextual definitions just given, thus getting a genuine
formula.

Let us also consider ⊃ as an “abbreviation” for → and ∼ as an “abbre-
viation” for ¬ (since some students may be more used to these symbols than
to the official ones).

6

It is not hard to see that the defined symbols ∧, →, and ↔ obey the
following rules:

(d) v∗((A ∧B)) =


T if v∗(A) = T and v∗(B) = T ;
F if v∗(A) = T and v∗(B) = F ;
F if v∗(A) = F and v∗(B) = T ;
F if v∗(A) = F and v∗(B) = F ;

(e) v∗((A → B)) =


T if v∗(A) = T and v∗(B) = T ;
F if v∗(A) = T and v∗(B) = F ;
T if v∗(A) = F and v∗(B) = T ;
T if v∗(A) = F and v∗(B) = F ;

(f) v∗((A ↔ B)) =


T if v∗(A) = T and v∗(B) = T ;
F if v∗(A) = T and v∗(B) = F ;
F if v∗(A) = F and v∗(B) = T ;
T if v∗(A) = F and v∗(B) = F .

Exercise 1.2. Let v be the valuation for L defined as follows.

v(pi) =
{

T if i is even;
F if i is odd.

Using the tables above, determine which of the following two formulas are
true under v.

(1) (p1 ↔ (¬p1 ∨ p1)) ;

(2) ((p0 → p3) → (¬p5 → ¬p4)) .

Exercise 1.3. Prove that the formula (¬¬p0 ↔ p0) is true under v for every
valuation v for L.

Exercise 1.4. Use definition by recursion on formulas to define a function
h such that, for every formula A, h(A) is the first sentence letter occurring
in A.

Let Γ be a set of formulas of L and let A be a formula of L. Consider
the argument Γ ∴ A with (set of) premises Γ and conclusion A. We say
that this argument is valid if the formula A is true under every valuation
v for L such that all the formulas in Γ are true under v. To express this
more briefly, let us say that a set of formulas is true under a valuation v
if all the formulas belonging to the set are true under v. Then Γ ∴ A is a

7

valid argument if and only if A is true under every valuation under which Γ
is true.

There is a different way to talk about valid arguments, and we shall
usually talk in this second way. If Γ is a set of formulas and A is a formula,
then say that Γ logically implies A if Γ ∴ A is a valid argument. We write
Γ |= A to mean that Γ logically implies A.

A special case of valid arguments and logical implication occurs when Γ
is the empty set ∅. We usually write |= A instead of ∅ |= A. When |= A we
say that A is valid or that A is a tautology. A formula is a tautology if and
only if it is true under every valuation for L.

A formula is satisfiable if it is true under some valuation. Similarly a set
of formulas is satisfiable if it is true under some valuation, i.e., if there is a
valuation under which all the formulas in the set are true.

Exercise 1.5. Which of the following are tautologies? Prove your answers.

(1) ((p0 → (p1 → p2)) → (p1 → p2)) .

(2) ((p0 → p1) ∨ (p1 → p2)) .

Exercise 1.6. Which of the following are statements are true? Prove your
answers.

(1) {(p0 → ¬p1), ((p2 ∨ p0) → (p1 ∨ p2)), ¬p2} |= ¬p0 .

(2) {((¬p3 ∨ p0) ∨ p1), (¬p1 → ¬p2), (p0 → (p2 ∧ p3))} |= p1 .

If A and B are formulas, then by A |= B we mean that {A} |= B.

Exercise 1.7. Let Γ and ∆ be sets of formulas and let A, B, and A1, . . . , An

be formulas. Prove each of the following.

(1) Γ ∪ {A} |= B if and only if Γ |= (A → B) .

(2) {A1, . . . , An} |= B if and only if |= (A1 → · · · → An → B) .

(3) A is satisfiable if and only if A 6|= (p0 ∧ ¬p0) .

(4) If Γ |= C for every C belonging to ∆ and if ∆ |= B, then Γ |= B.

When we omit parentheses in a formula, as we did in (2), we make use of a
convention that omitted parentheses group to the right. Thus (A1 → · · · →
An → B) abbreviates (A1 → (· · · → (An → B) · · ·).

8

Mathematical induction: To prove that all natural numbers have some prop-
erty P , one may use mathematical induction. To do this one must prove (i)
and (ii) below.

(i) 0 has P .

(ii) If n is a natural number that has P , then n + 1 has P .

One can define functions by definition by recursion on natural numbers
as well as by recursion on formulas. Recursion on natural numbers is a
method for defining a function h whose domain is the set N of all natural
numbers. To define h by this method, one must

(a) define h(0);

(b) define h(n + 1) from n and h(n) for natural numbers n.

Example. The clauses

(i) h(0) = 0 ;

(ii) h(n + 1) = h(n) + 1 + 1 ;

give a definition by recursion of the doubling function (in terms of the suc-
cessor function +1).

Exercise 1.8. The factorial function is the function h with domain N such
that h(0) = 1 and, for every n > 0, h(n) is the product of all the positive
integers ≤ n. Show how to define the factorial function by recursion on
natural numbers.

We now embark on the proof of the Compactness Theorem, one of the main
theorems about our semantics for L. Say that a set Γ of formulas is finitely
satisfiable if every finite subset of Γ is satisfiable. The Compactness Theorem
will assert that every finitely satisfiable set of formulas is satisfiable.

Lemma 1.6. Let Γ be a finitely satisfiable set of formulas and let A be a
formula. Then either Γ ∪ {A} is finitely satisfiable or Γ ∪ {¬A} is finitely
satisfiable.

Proof. Assume for a contradiction neither Γ∪{A} nor Γ∪{¬A} is finitely
satisfiable. It follows that there are finite subsets ∆ and ∆′ of Γ such that
neither ∆ ∪ {A} nor ∆′ ∪ {¬A} is satisfiable. Since Γ is finitely satisfiable,
the finite subset ∆∪∆′ of Γ is satisfiable. Let v be a valuation under which
∆ ∪∆′ is true. If A is true under v, then ∆ ∪ {A} is true under v and so is
satisfiable. Otherwise ∆′ ∪{¬A} is true under v and is satisfiable. In either
case we have a contradiction. �

9

Lemma 1.7. Let Γ be a finitely satisfiable set of formulas. There is a set
Γ∗ of formulas such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is finitely satifiable ;

(3) for every formula A, either A belongs to Γ∗ or ¬A belongs to Γ∗.

Proof. We can list all the formulas in an infinite list as follows. Think of
the symbols of L as forming an infinite “alphabet” with the alphabetical
order

¬, ∨, (,), p0, p1, p2,

First list in alphabetical order all the (finitely many) formulas that have
length 1 and contain no occurrences of sentence letters other than p0. Next
list in alphabetical order all the remaining formulas that have length ≤ 2
and contain no occurrences of sentence letters other than p0 and p1. Next
list in alphabetical order all the remaining formulas that have length ≤ 3
and contain no occurrences of sentence letters other than p0, p1, and p2.
Continue in this way. (If we gave the details, what we would be doing in
describing this list would be to define a function by recursion on natural
numbers—the function that assigns to n the formula called An in following
paragraph.)

Let the formulas of L, in the order listed, be

A0, A1, A2, A3,

We define, by recursion on natural numbers, a function that associates with
each natural number n a set Γn of formulas.

Let Γ0 = Γ.
Let

Γn+1 =
{

Γn ∪ {An} if Γn ∪ {An} is finitely satisfiable;
Γn ∪ {¬An} otherwise.

Let Γ∗ =
⋃

n Γn.
Because Γ = Γ0 ⊆ Γ∗, Γ∗ has property (1).
Γ0 is finitely satisfiable. By Lemma 1.6, if Γn is finitely satisfiable then

so is Γn+1. By mathematical induction, every Γn is finitely satisfiable. If
∆ is a finite subset of Γ∗, then ∆ ⊆ Γn for some n. Since Γn is finitely
satisfiable, ∆ is satisfiable. Thus Γ∗ has property (2).

Because either An or ¬An belongs to Γn+1 for each n and because each
Γn+1 ⊆ Γ∗, Γ∗ has property (3). �

10

It will be convenient to introduce the symbol “∈” as an abbreviation for
“belongs to.”

Lemma 1.8. Let Γ∗ be a set of formulas having properties (2) and (3)
described in the statement of Lemma 1.7. Then Γ∗ is satisfiable.

Proof. Define a valuation v for L by setting

v(A) = T if and only if A ∈ Γ∗

for each sentence letter A. Let P be the property of being a formula A such
that

v∗(A) = T if and only if A ∈ Γ∗ .

We prove by formula induction that every formula has property P .
(i) For sentence letters, this is true by definition of v.
(ii) First we show that ¬A ∈ Γ∗ if and only if A /∈ Γ∗ for any formula

A. By (3) we have that A ∈ Γ∗ or ¬A ∈ Γ∗. Suppose that both A and
¬A belong to Γ∗. Then {A,¬A} is a finite subset of Γ∗. By (2) we get the
contradiction that {A,¬A} is satisfiable.

Now let A be a formula that has property P . Then

v∗(¬A) = T if and only if v∗(A) = F

if and only if A /∈ Γ∗

if and only if ¬A ∈ Γ∗ .

(iii) We first show that (A ∨ B) ∈ Γ∗ if and only if either A ∈ Γ∗

or B ∈ Γ∗, for any formulas A and B. Assume first that (A ∨ B) ∈ Γ∗

but that A /∈ Γ∗ and B /∈ Γ∗. By (3), ¬A ∈ Γ∗ and ¬B ∈ Γ∗. Thus
{(A ∨ B),¬A,¬B} is a finite subset of Γ∗. By (2) we get the contradiction
that {(A∨B),¬A,¬B} is satisfiable. Next assume that A ∈ Γ∗ but (A∨B) /∈
Γ∗. By (3) ¬(A ∨ B) ∈ Γ∗, and so {A,¬(A ∨ B)} is a finite subset of Γ∗.
By (2) we get the contradiction that {A,¬(A ∨B)} is satisfiable. A similar
argument shows that if B ∈ Γ∗ then (A ∨B) ∈ Γ∗.

Now let A and B be formulas that have property P . Then

v∗((A ∨B)) = T if and only if v∗(A) = T or v∗(B) = T

if and only if A ∈ Γ∗ or B ∈ Γ∗

if and only if (A ∨B) ∈ Γ∗ .

Since, in particular, v∗(A) = T for every member of A of Γ∗, we have
shown that Γ∗ is satisfiable. �

11

Exercise 1.9. Suppose that we added ∧ as an official symbol of L, extend-
ing the definition of truth using the table for ∧ on page 7. Then proof by
formula induction would have an extra step: showing that (A∧B) has prop-
erty P if both A and B have P . Supply this (A ∧ B) case for the proof by
formula induction just given.

Theorem 1.9 (Compactness). Let Γ be a finitely satisfiable set of for-
mulas. Then Γ is satisfiable.

Proof. By Lemma 1.7, let Γ∗ have properties (1)–(3) of that lemma. By
Lemma 1.8, Γ∗ is satisfiable. Hence Γ is satisfiable. �

Corollary 1.10 (Compactness, Second Form). Let Γ be a set of for-
mulas and let A be a formula such that Γ |= A. Then there is a finite subset
∆ of Γ such that ∆ |= A.

Exercise 1.10. Prove Corollary 1.10.

12

2 Deduction in Sentential Logic

Though we have not yet introduced any formal notion of deductions (i.e., of
derivations or proofs), we can easily give a formal method for showing that
formulas are tautologies: Construct the truth table of a given formula; i.e.,
compute the truth-value of the formulas for all possible assignments of truth-
values to the sentence letters occurring in it. If all these truth values are
T, then the formula is a tautology. This method extends to give a formal
method for showing that Γ |= A, provided that Γ is finite. The method
even extends to the case Γ is infinite, since the second form of Compactness
guarantees that if Γ |= A then ∆ |= A for some finite ∆ ⊆ Γ.

Nevertheless we are now going to introduce a different system of formal
deduction. This is because we want to gain experience with the metatheory
of a more standard deductive system.

The system SL.

Axioms: From now on we shall often adopt the convention of omitting
outmost parentheses in formulas. For any formulas A, B, and C, each of
the following is an axiom of our deductive sytem.

(1) A → (A ∨B)

(2) B → (A ∨B)

(3) (A ∨B) → (¬A → B)

(4) (¬A → B) → ((¬A → ¬B) → A)

(5) (A → (B → C)) → ((A → B) → (A → C))

Remarks:
(a) Note that (1)–(5) are not axioms but axiom schemas. There are

infinitely many instances of each of these schemas, since A, B, and C may
be any formulas whatsoever.

(b) Note also that we have used abbreviations in presenting these axiom
schemas. For example, the (except for outer parentheses) unabbreviated
Axiom Schema (1) is ¬A ∨ (A ∨B).

Rule of Inference:

Modus Ponens (MP)
A , (A → B)

B

13

For any formulas A and B, we say that B follows by modus ponens from A
and (A → B).

Deductions: A deduction in SL from a set Γ of formulas is a finite sequence
D of formulas such that whenever a formula A occurs in the sequence D
then at least one of the following holds.

(1) A ∈ Γ.

(2) A is an axiom.

(3) A follows by modus ponens from two formulas occurring earlier in the
sequence D.

If A is the nth element of the sequence D, then we say that A is on line n
of D or even that A is line n of D.

A deduction in SL of A from Γ is a deduction D in SL from Γ with A
on the last line of D. We write Γ `SL A and say A is deducible in SL from
Γ to mean that there is a deduction in SL of A from Γ. Sometimes we may
express this by saying Γ proves A in SL. We write `SL A for ∅ `SL A. We
shall mostly omit the subscript “SL” and the phrase “in SL” during our
study of sentential logic, since SL will be the only system we consider until
we get to predicate logic.

Example 1. Let A and B be any formulas. Here is a very short deduction
of A → (B → A) from ∅. This deduction shows that ` A → (B → A).

1. A → (B → A) Ax. 2
[A → (¬B ∨A)]

In square brackets we have rewritten line 1 in a less abbreviated way, in
order to show that it is an instance of Axiom Schema 2. The formula A is
the B of the schema, and the formula ¬B is the A of the schema.

Example 2. Below we give a deduction of A → A from ∅. This deduction
shows that ` A → A.

1. (A → ((A → A) → A)) → ((A → (A → A)) → (A → A)) Ax. 5
2. A → ((A → A) → A) Ax. 2
3. (A → (A → A)) → (A → A) 1,2; MP
4. A → (A → A) Ax. 2
5. A → A 3,4;MP

14

Theorem 2.1 (Deduction Theorem). Let Γ be a set of formulas and let
A and B be formulas. If Γ ∪ {A} ` B then Γ ` (A → B).

Proof. Assume that Γ∪{A} ` B. Let D be a deduction of B from Γ∪{A}.
We prove that

Γ ` (A → C)

for every line C of D. Assume that this is false. Consider the first line C
of D such that Γ 6` (A → C).

Assume that C either belongs to Γ or is an axiom. The following gives
a deduction of (A → C) from Γ.

1. C
2. C → (A → C) Ax. 2
3. A → C 1,2;MP

Assume next that C is A. We have already shown that ` (A → A).
Thus Γ ` (A → A).

Finally assume that C follows from formulas E and (E → C) by MP.
These formulas are on earlier lines of D than C. Since C is the first “bad”
line of D, let D1 be a deduction of (A → E) from Γ and let D2 be a
deduction of (A → (E → C)) from Γ. We get a deduction of (A → C) from
Γ by beginning with D1, following with D2, and then finishing with the lines

(A → (E → C)) → ((A → E) → (A → C)) Ax. 5
(A → E) → (A → C) MP
A → C MP

This contradiction completes the proof that the “bad” line C cannot exist.
Applying this fact to the last line of D, we get that Γ ` (A → B). �

Remarks:
(a) The converse of the Deduction Theorem is also true. Given a de-

duction of (A → B) from Γ, one gets a deduction of B from Γ ∪ {A} by
appending the lines A and B, the latter coming by MP.

(b) The proof of the Deduction Theorem would still go through if we
added or dropped axioms, as long as we did not drop Axiom Schemas 2 and
5. It would not in general go through if we added rules of inference, and it
would not go through if we dropped the rule of modus ponens.

15

Exercise 2.1. Show that the following hold for all formulas A and B.

(a) ` (A → (¬A → B)) ;

(b) ` (¬¬A → A) .

A set Γ of formulas is inconsistent (in SL) if there is a formula B such
that Γ ` B and Γ ` ¬B. Otherwise Γ is consistent.

Theorem 2.2. Let Γ and ∆ be sets of formulas and let A, B, and A1, . . . , An

be formulas.

(1) Γ ∪ {A} ` B if and only if Γ ` (A → B).

(2) Γ ∪ {A1, . . . , An} ` B if and only if Γ ` (A1 → . . . → An → B).

(3) Γ is consistent if and only if there is some formula C such that
Γ 6` C.

(4) If Γ ` C for all C ∈ ∆ and if ∆ ` B, then Γ ` B.

Proof. We begin with (4). Let D be a deduction of B from ∆. We can
turn D into a deduction of B from Γ as follows: whenever a formula C ∈ ∆
is on a line of D, replace that line with a deduction of C from Γ.

(1) is just the combination of the Deduction Theorem and its converse.
For (2), forget the particular Γ, A1, . . . , An, and B for the moment and

let P be the property of being a positive integer n such that (2) holds
for every choice of Γ, A1, . . . , An, and B. By a variant of mathematical
induction (beginning with 1 instead of with 0) we show that every positive
integer has P . The integer 1 has P by (1). Assume that n is a positive
integer that has P . Let Γ, A1, . . . , An+1, and B be given. By (1) we have
that

Γ ∪ {A1, . . . , An+1} ` B if and only if Γ ∪ {A1, . . . , An} ` (An+1 → B) .

Since n has P , this holds if and only if Γ ` (A1 → . . . → An+1 → B).
For the “if” part of (3), assume that Γ is inconsistent. Let B be such

that Γ ` B and Γ ` ¬B. Let C be any formula. Using Axiom Schema 2 and
MP, we get that Γ ` (¬C → B) and Γ ` (¬C → ¬B). The formula

(¬C → B) → ((¬C → ¬B) → C)

is an instance of Axiom Schema 4. Two applications of MP show that Γ ` C.
The “only if” part of (3) is obvious. �

16

Lemma 2.3. For any formulas A and B,

(a) {(¬A → B)} ` (¬B → A) ;

(b) {(A → B)} ` (¬B → ¬A) .

Proof. (a) By the Deduction Theorem, it is enough to show that

{(¬A → B) , ¬B} ` A .

Let Γ = {(¬A → B) , ¬B}. Axiom Schema 2 and MP give that Γ ` (¬A →
¬B). The formula

(¬A → B) → ((¬A → ¬B) → A)

is an instance of Axiom Schema 4. Two applications of MP show that Γ ` A.
(b) Since ` (¬¬A → A) by part (b) of Exercise 2.1, we can use the

Deduction theorem and easily get that

{(A → B)} ` (¬¬A → B) .

But {(¬¬A → B)} ` (¬B → ¬A) by part (a). �

Exercise 2.2. Exhibit a deduction of (¬p2 → p1)) from {(¬p1 → p2). Do
not appeal to the deduction theorem.

Hint. First write out the deduction D of p1 from {(¬p1 → p2) , ¬p2}
that is implicitly given by the proof of part (a) of Lemma 2.3. Now use the
proof of the Deduction Theorem to get the desired deduction. (The proof of
the Deduction Theorem shows us how to put ¬p2 → in front of all the lines
of the given deduction and then to fix things up. There is one simplification
here: If one puts ¬p2 → in front of the formula (¬p1 → ¬p2) that is on
line 3 of D, one gets an axiom. Thus one can forget about lines 1 and 2 of
D and just begin with this axiom.)

Exercise 2.3. Show the following:

(a) ` ¬(A → B) → ¬B ;

(b) ` (A ∨ ¬A).

A system S of deduction for L is sound if, for all sets Γ of formulas and
all formulas A, if Γ `S A then Γ |= A.

An example of a system of deduction that is not sound can be gotten by
adding to the axioms and rules for SL the extra axiom p0. For this system
S, one has that ∅ `S p0, but ∅ 6|= p0.

17

Theorem 2.4 (Soundness). Let Γ be a set of formulas and let A be a
formula. If Γ `SL A then Γ |= A. In other words, SL is sound.

Proof. Let D be a deduction in SL of A from Γ. We shall show that, for
every line C of D, Γ |= C. Applying this to the last line of D, this will give
us that Γ |= A.

Assume that what we wish to show is false. Let C be the first line of D
such that Γ 6|= C.

If C ∈ Γ then trivially Γ |= C (and so we have a contradiction).
It can easily be checked that all of our axioms are tautologies. If C is an

axiom we have then that |= C and so that Γ |= C.
Note that the rule of modus ponens is a valid rule, i.e., {D , (D →

E)} |= E for any formulas D and E. Assume that C follows by MP from B
and (B → C), where B and (B → C) are on earlier lines of D. Since C is
the first “bad” line of D, Γ |= B and Γ |= (B → C). By the validity of MP,
it follows that Γ |= C. �

A system S of deduction for L is complete if, for all sets Γ of formulas
and all formulas A, if Γ |= A then Γ `S A.

Remark. Sometimes the word “complete” used to mean what we mean
by “sound and complete.”

We are now going to embark on the task of proving the completeness
of SL. The proof will parallel the proof of the Compactness Theorem. In
particular, the lemma that follows is the analogue of Lemma 1.6

Lemma 2.5. Let Γ be a consistent (in SL) set of formulas and let A be a
formula. Then either Γ ∪ {A} is consistent or Γ ∪ {¬A} is consistent.

Proof. Assume for a contradiction neither Γ∪{A} nor Γ∪{¬A} is consis-
tent. It follows that there are formulas B and B′ such that

(i) Γ ∪ {A} ` B ;

(ii) Γ ∪ {A} ` ¬B ;

(iii) Γ ∪ {¬A} ` B′ ;

(iv) Γ ∪ {¬A} ` ¬B′ .

Using Axiom Schema (4) together with (iii), (iv), and the Deduction The-
orem, we can show that

Γ ` A .

18

This fact, together with (i) and (ii), allows us to show that Γ ` B and
Γ ` ¬B. Thus we have the contradiction that Γ is inconsistent. �

Now we turn to the analogue of Lemma 1.7.

Lemma 2.6. Let Γ be a consistent set of formulas. There is a set Γ∗ of
formulas such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is consistent ;

(3) for every formula A, either A belongs to Γ∗ or ¬A belongs to Γ∗.

Proof. Let
A0, A1, A2, A3, . . .

be the list (defined in the proof of Lemma 1.7) of all the formulas of L . As
in that proof we define, by recursion on natural numbers, a function that
associates with each natural number n a set Γn of formulas.

Let Γ0 = Γ.
Let

Γn+1 =
{

Γn ∪ {An} if Γn ∪ {An} is consistent;
Γn ∪ {¬An} otherwise.

Let Γ∗ =
⋃

n Γn.
Because Γ = Γ0 ⊆ Γ∗, Γ∗ has property (1).
Γ0 is consistent. By Lemma 2.5, if Γn is consistent then so is Γn+1. By

mathematical induction, every Γn is consistent. Suppose, in order to obtain
a contradiction, that Γ∗ is inconsistent. Let B be a formula such that Γ∗ ` B
and Γ∗ ` ¬B. Let D1 and D2 be respectively deductions of B from Γ∗ and
of ¬B from Γ∗. Let ∆ be the set of all formulas belonging to Γ∗ that are
on lines of D1 or of D2. Then ∆ is a finite subset of Γ∗, and so ∆ ⊆ Γn for
some n. But then Γn ` B and Γn ` ¬B. This contradicts the consistency
of Γn. Thus Γ∗ has property (2).

Because either An or ¬An belongs to Γn+1 for each n and because each
Γn+1 ⊆ Γ∗, Γ∗ has property (3). �

Next comes the analogue of Lemma 1.8.

Lemma 2.7. Let Γ∗ be a set of formulas having properties (2) and (3)
described in the statement of Lemma 2.6. Then Γ∗ is satisfiable.

19

Proof. Define a valuation v for L by setting

v(A) = T if and only if A ∈ Γ∗

for each sentence letter A. Let P be the property of being a formula A such
that

v∗(A) = T if and only if A ∈ Γ∗ .

We prove by formula induction that every formula has property P .
(i) For sentence letters, this is true by definition of v.
(ii) First we show that ¬A ∈ Γ∗ if and only if A /∈ Γ∗ for any formula

A. By (3) we have that A ∈ Γ∗ or ¬A ∈ Γ∗. If both A and ¬A belong to
Γ∗, then Γ∗ is inconsistent, contrary to (2).

Now let A be a formula that has property P . Then

v∗(¬A) = T if and only if v∗(A) = F

if and only if A /∈ Γ∗

if and only if ¬A ∈ Γ∗ .

(iii) We first show that (A ∨ B) ∈ Γ∗ if and only if either A ∈ Γ∗ or
B ∈ Γ∗, for any formulas A and B. Assume first that (A ∨ B) ∈ Γ∗ but
that A /∈ Γ∗ and B /∈ Γ∗. By (3), ¬A ∈ Γ∗ and ¬B ∈ Γ∗. Using the
instance (A ∨ B) → (¬A → B) of Axiom Schema (3) and two applications
of MP, we see that Γ∗ ` B. Since Γ∗ ` ¬B, we get the contradiction that
Γ∗ is inconsistent. Next assume that A ∈ Γ∗ but (A ∨ B) /∈ Γ∗. By (3)
¬(A ∨ B) ∈ Γ∗. Using the instance A → (A ∨ B) of Axiom Schema (1),
we again get the contradiction that Γ∗ is inconsistent. The assumption that
B ∈ Γ∗ but (A ∨ B) /∈ Γ∗ yields a similar contradiction with the aid of
Axiom Schema (2).

Now let A and B be formulas that have property P . Then

v∗((A ∨B)) = T if and only if v∗(A) = T or v∗(B) = T

if and only if A ∈ Γ∗ or B ∈ Γ∗

if and only if (A ∨B) ∈ Γ∗ .

Since, in particular, v∗(A) = T for every member of A of Γ∗, we have
shown that Γ∗ is satisfiable. �

Theorem 2.8. Let Γ be a consistent set of formulas. Then Γ is satisfiable.

Proof. By Lemma 2.6, let Γ∗ have properties (1)–(3) of that lemma. By
Lemma 2.7, Γ∗ is satisfiable. Hence Γ is satisfiable. �

20

Theorem 2.9 (Completeness). Let Γ be a set of formulas and let A be a
formula such that Γ |= A. Then Γ `SL A. In other words, SL is complete.

Proof. Since Γ |= A, Γ∪{¬A} is not satisfiable. By Theorem 2.8, Γ∪{¬A}
is inconsistent. Let B be a formula such that Γ∪{¬A} ` B and Γ∪{¬A} `
¬B. By the Deduction Theorem, Γ ` (¬A → B) and Γ ` ¬A → ¬B). Using
Axiom Schema 4, we can use these facts to show that Γ ` A. �

Exercise 2.4. Derive Theorem 2.8 from Theorem 2.9.

Remark. Soundness and completeness imply compactness. To see this,
assume that Γ is a set of formulas that is not satisfiable. By part (3) of
Exercise 1.7, Γ |= (p0 ∧ ¬p0). By completeness, Γ ` (p0 ∧ ¬p0). Let D be a
deduction of (p0 ∧¬p0) from Γ. Let ∆ be the set of all formulas C ∈ Γ such
that C is on a line of D. Then ∆ is a finite subset of Γ and ∆ ` (p0∧¬p0). By
soundness, ∆ |= (p0∧¬p0). By part (3) of Exercise 1.7, ∆ is not satisfiable.
Thus Γ is not finitely satisfiable.

Exercise 2.5. Prove that {¬(¬A∧¬B)} ` (A∨B) and that {(A∨B)} `
¬(¬A ∧ ¬B). You may use any of our theorems, lemmas, etc.

Exercise 2.6. We define by recursion on natural numbers a function that
assigns to each natural number n a set Formulan of formulas. Let Formula0

be the set of all sentence letters. Let A belong to Formulan+1 if and only
if at least one of the following holds:

(i) A ∈ Formulan;

(ii) there is a B ∈ Formulan such that A is ¬B;

(iii) there are B ∈ Formulan and C ∈ Formulan such that A is
(B ∨ C).

It is not hard to prove that A is a formula if and only if A belongs to
Formulan for some n. (You may assume this.)

Use mathematical induction to prove that every formula has an even
number of parentheses.

Exercise 2.7. Show, without using Completeness and Soundness, that `
(¬(¬B → A) → ¬(A ∨B)).

21

Exercise 2.8. Suppose we changed our system of deduction by replacing
the Axiom Schemas 1 and 2 by the rules

A

(A ∨B)
B

(A ∨B)

Would the resulting system be sound? Would it be complete?

Exercise 2.9. Show, without using completeness and soundness, that

{(A → C) , (B → C)} ` ((A ∨B) → C) .

Exercise 2.10. Use the Deduction Theorem and its converse (and none of
our other results) to give a brief proof that ` (B → (A → A)).

22

3 The semantics of pure first-order predicate logic

We now begin our study of what is called, among other things, predicate
logic, quantificational logic, and first-order logic. We shall use the term “first-
order logic” for our subject. The term “predicate logic” suggests formal
languages that have predicate lettrers but not function letters, and we do not
want to leave out the latter. Both “predicate logic” and “quantificational
logic” fail to suggest that higher-order and infinitary logics are excluded,
and—except for a brief consideration of second-order logic at the end of the
course—we do intend to exclude them.

In order that our first pass through first-order logic be as free of complex-
ities as possible, we study in this section a simplified version of first-order
logic, one whose formal languages lack two important kinds of symbols:

(a) function letters;

(b) an identity symbol.

We call this simplified logic “pure first-order predicate logic.” In the next
section, we shall see what changes have to be made in our definitions and
proofs to accommodate the presence of these symbols.

The languages L∗
C of pure predicate logic.

For each any set C of constant symbols, we shall have a language L∗
C.

Symbols of L∗
C:

(i) sentence letters p0, p1, p2, . . .

(ii) for each n ≥ 1, n-place predicate letters Pn
0 , Pn

1 , Pn
2 , . . .

(iii) variables v0, v1, v2, . . .
(iv) constant symbols (constants) all members of C
(v) connectives ¬, ∨
(vi) quantifier ∀
(vii) parentheses (,)

Constants and variables will more or less play the role played in natural
languages by nouns and pronouns respectively. Predicate letters will more or
less play the role that predicates play in natural languages. In combination,
these symbols will give our formal language a new kind of basic formulas,
the simplest of which will play the role that subject-predicate sentences play

23

in natural languages. The quantifier ∀ will play the role that the phrase “for
all” can play in natural languages.

Formulas of L∗
C

(1) Each sentence letter is a formula.

(2) For each n and i, if t1, . . . , tn are variables or constants, then Pn
i t1 . . . tn

is a formula.

(3) If A is a formula, then so is ¬A.

(4) If A and B are formulas, then so is (A ∨B).

(5) If A is a formula and x is a variable, then ∀xA is a formula.

(6) Nothing is a formula unless its being one follows from (1)–(5).

The formulas given by (1) and (2) are called atomic formulas.

The method of proof by formula induction applies to L∗
C as it does to L.

To prove by formula induction that every formula of L∗
C has property P , we

must prove (i), (ii), (iii), and (iv) below.

(i) Each atomic formula has property P .

(ii) If A is a formula that has property P , then ¬A has P .

(iii) If A and B are formulas that have property P , then (A ∨B) has P .

(iv) If x is a variable and A is a formula that has property P , then ∀xA
has P .

Not only is there a step, step (iv), that was absent in the case of L, but also
there is an extra part to step (ii), the part corresponding to atomic formulas
of the form Pn

i t1 . . . tn.

Unique readability holds for L∗
C as it does for L. Here are the new ver-

sions of the Lemmas 1.1–1.4 that were used to prove the unique readability
theorem, Theorem 1.5. The proofs are similar to the proofs of the earlier
lemmas and theorem.

Lemma 3.1. Every formula of L∗
C contains the same number of (occur-

rences of) left parentheses as (occurrences of) right parentheses.

Lemma 3.2. For every formula A of L∗
C,

(a) every initial segment of A has the at least as many left as right
parentheses;

24

(b) if A is a disjunction (i.e., if A is (B ∨C) for some B and C), then
every proper initial segment of A (i.e., every initial segment of A that
is not the whole of A) that has length greater than 0 has more left than
right parentheses.

Lemma 3.3. For every formula A of L∗
C, exactly one of the following holds.

(1) A is an atomic formula.

(2) There is a formula B such that A is ¬B.

(3) There are formulas B and C such that A is (B ∨ C).

(4) There is a formula B and there is a variable x such that A is ∀xB.

Lemma 3.4. No proper initial segment of a formula of L∗
Cis a formula of

L∗
C.

Theorem 3.5 (Unique Readability). Let A be a formula of L∗
C. Then

exactly one of the following holds.

(1) A is an atomic formula.

(2) There is a unique formula B such that A is ¬B.

(3) There are unique formulas B and C such that A is (B ∨ C).

(4) There is a unique formula B and there is a unique variable x such
that A is ∀xB.

Remark. Note that we could have phrased Lemma 1.3 exactly as Lemma 3.2
is phrased without altering its content in any significant way.

Truth and logical implication.

As we did with the sentential language L, we want to introduce semantic
notions for the languages L∗

C. If we want to keep as close as possible to the
methods of §1, then we might try to extend the notion of a valuation v so
that v assigns a truth-value to all atomic formulas, not just all sentence
letters. But consider an atomic formula like P 2

1 v3c. The symbol v3 is a
variable, i.e., we are not going to use it to denote any particular object.
The language of arithmetic does not provide a truth-value for an expression
like “x < 3,” and the English language does not provide a truth-value for
sentences like “He is fat.” To get a truth-value for the former, one needs to
assign the variable x to some particular number. To get a truth-value for

25

the latter, one needs a context in which “he” denotes a particular person (or
animal or whatever). Similarly, the semantics of L∗

C will not by itself provide
a truth-value for P 2

1 v3c. In addition, there will have to be an assignment of
v3 to some particular object.

What are the objects over which our variables are to range? A natural
answer would be that they range over all objects. If we made this choice,
then we could interpret ∀v3 as saying “for all objects v3.” However, there
are reasons for not wanting to make a matter of logic that, e.g., there are
more than 17 objects, and requiring that our variables range over all objects
would make this a matter of logic. Therefore we allow the variables to range
over any set of objects, and we make the specification of such a set part of
any interpretatation of our language.

The first step in providing an interpretation of L∗
C (or, as we shall say,

a model for L∗
C) is thus to specify a set D as the domain or universe of the

model. It is standard to require that D be a non-empty set, because doing
so avoids certain technical complexities. We make this requirement.

The second step is to provide a way to assign truth-values to atomic
formulas when their variables are assigned to particular members of D.
To accomplish this (in an indirect way), (i) we specify the truth-values of
sentence letters and (ii) we specify what property of elements of D or relation
among elements of D each predicate letter is to stand for. We do this by
telling, for each n and i, which n-tuples (d1, . . . , dn) of elements of D the
predicate Pn

i is true of.
The final step in determining a model for L∗

C is to specify what element
of D each constant denotes.

Here is the formal definition. A model for L∗
C is a triple M = (D, v, χ),

where

(i) D is a non-empty set (the domain or universe of M);

(ii) v is a function (the valuation of M) that assigns a truth-value to each
sentence letter and each (n + 1)-tuple of the form (Pn

i , d1, . . . , dn) for
d1, . . . , dn members of D.

(iii) χ is a function (the constant assignment of M) that assigns to each
constant an element of D.

Note that, except for the sentence letters, the things to which v assigns
truth-values are not actually formulas.

In describing the v of a model, we shall often find it convenient to list
the set of things to which v assigns T. Let us call this the v-truth set.

26

Examples:

(a) Let Ca = {c}. Let Ma = (Da, va, χa), where:

Da = {d1, d2}
va-truth set = {p2, (P 1, d1), (P 2, d1, d2), (P 2, d2, d2)}

χa(c) = d2

(b) Let Cb = {c, c′}. Let Mb = (Db, vb, χb), where:

Db = {0, 1, 2, . . .}
vb-truth set = {(P 1, 0)} ∪ {(P 2,m, n) | m ≥ n}

χb(c) = 0
χb(c′) = 1

Whenever we omit the subscript of a predicate letter, as we have done in
describing these two models, let us take the omitted subscript to be 0.

Let M = (D, v, χ) be a model for L∗
C. Let s be a variable assignment,

a function that assigns a member s(x) of D to each variable x. For each
variable or constant t, let

dens
M(t) =

{
s(t) if t is a variable;
χ(t) if t is a constant.

By recursion on formulas, we define a function vs
M that assigns a truth-value

to each formula.

(i) The case of A atomic:

(a) vs
M(pi) = v(pi) ;

(b) vs
M(Pn

i t1 . . . tn) = v((Pn
i ,dens

M(t1), . . . ,dens
M(tn))) ;

(ii) vs
M(¬A) =

{
F if vs

M(A) = T ;
T if vs

M(A) = F ;

(iii) vs
M((A ∨B)) =


T if vs

M(A) = T and vs
M(B) = T ;

T if vs
M(A) = T and vs

M(B) = F ;
T if vs

M(A) = F and vs
M(B) = T ;

F if vs
M(A) = F and vs

M(B) = F ;

27

(iv) vs
M(∀xA) =

 T if for all d ∈ D, vs′
M(A) = T,

where s′ is like s except that s′(x) = d;
F otherwise .

M satisfies A under s if and only if vs
M(A) = T.

An occurrence of a variable x in a formula A is free if the occurrence
is not within any subformula of A of the form ∀xB. A sentence or closed
formula is a formula with no free occurrences of variables.

Example. The third occurrence of v1 in the formula

∀v2(∀v1P
1
3 v1 ∨ P 2

1 v1v2)

is free, and so this formula is not a sentence.

It is not hard to verify that whether or not M satisfies A under s does
not depend on the whole of s but only on the values s(x) for variables x that
have free occurrences in A. For sentences A, we may then define vM(A) to
be the common value of all vs

M(A). We define a sentence A to be true in M

if vM(A) = T and false in M if vM(A) = F. M satisfies a set Γ of formulas
under s if and only if all M satisfies each member of Γ under s. A set of
sentences is true in M if and only if all its members are true in M.

We introduce one more abbreviation:

∃xA for ¬∀x¬A.

It is not hard to verify that the defined symbol ∃ obeys the following rule:

(v) vs
M(∃xA) =

 T if for some d ∈ D, vs′
M(A) = T,

where s′ is like s except that s′(x) = d;
F otherwise .

Example. Here are some sentences true in the model Ma described on
page 27: ¬P 1c; ∀v1∃v2 P 2v1v2; ∃v1(p2 ∧ P 2v1v1).

Exercise 3.1. For each of the following sentences, tell in which of the mod-
els Ma and Mb the sentence is true. Explain your answers briefly and infor-
mally.

(a) ∃v1∀v2 P 2v2v1 (b) ∀v1(P 1v1 ∨ P 2cv1)
(c) ∀v1(P 1v1 → p2) (d) ∃v1(P 1v1 → p2)

28

If Γ is a set of formulas and A is a formula, then we say that Γ logically
implies A (in symbols, Γ |= A) if and only if, for every model M and every
variable assignment s,

if M satisfies Γ under s, then M satisfies A under s .

A formula or set of formulas is valid if it is satisfied in every model under
every variable assignment; it is satisfiable if it is satisfied in some model
under some variable assignment. As in sentential logic, a formula A is valid
if and only if ∅ |= A, and we abbreviate ∅ |= A by |= A. We shall be
interested in the notions of implication, validity, and satisfiability mainly
for sets of sentences and sentences. In this case variable assignments s play
no role. For example, a set Σ of sentences implies a sentence A if and only
if, for every model M,

if Σ is true in M, then A is true in M .

Exercise 3.2. For each of the following pairs (Γ, A), tell whether Γ |= A.
If the answer is yes, explain why. If the answer is no, then describe a model
or a model and a variable assignment showing that the answer is no.

(a) Γ: {∀v1∃v2 P 2v1v2}; A: ∃v2∀v1 P 2v1v2.

(b) Γ: {∃v1∀v2 P 2v1v2}; A: ∀v2∃v1 P 2v1v2.

(c) Γ: {∀v1 P 2v1v1, P
2c1c2}; A: P 2c2c1;

(d) Γ: {∀v1∀v2 P 2v1v2}; A: ∀v2∀v1 P 2v1v2;

(e) Γ: {P 1v1}; A: ∀v1 P 1v1.

Exercise 3.3. Describe a model in which the following sentences are all
true.

(a) ∀v1∃v2 P 2v1v2.

(b) ∀v1∀v2(P 2v1v2 → ¬P 2v2v1).

(c) ∀v1∀v2∀v3((P 2v1v2 ∧ P 2v2v3) → P 2v1v3).

Can these three sentences be true in a model whose universe is finite? Ex-
plain.

Exercise 3.4. Show that the four statements of Exercise 1.7 hold for for-
mulas of L∗

C.

29

For sentential logic, valid formulas and tautologies are by definition the
same. For predicate logic, the notion of a tautology is different from that of
a valid formula. We now explain how this difference arises.

Call a formula of any of our formal languages sententially atomic if it is
neither a negation nor a disjuction, i.e., if it is not ¬A for any A and it is
not (A ∨ B) for any A and B. The sententially atomic formulas of L are
the sentence letters. The sententially atomic formulas of L∗

C are the atomic
formulas and the quantifications (the formulas of the form ∀xA). Note that
every formula can be gotten from the sententially atomic formulas using
only negation and conjunction.

An extended valuation for any of our languages is a function that assigns
a truth-value to each sententially atomic formula.

Let v be an extended valuation. We as follows define a function v∗ that
assigns a truth-value to each formula.

(a) if A is sententially atomic, then v∗(A) = v(A) ;

(b) v∗(¬A) =
{

F if v∗(A) = T ;
T if v∗(A) = F ;

(c) v∗((A ∨B)) =


T if v∗(A) = T and v∗(B) = T ;
T if v∗(A) = T and v∗(B) = F ;
T if v∗(A) = F and v∗(B) = T ;
F if v∗(A) = F and v∗(B) = F .

We define a formula A to be true under the extended valuation v if v∗(A) =
T and to be false under v if v∗(A) = F. We define a set Γ of formulas to be
true under v if and only if all members of Γ are true under v.

If Γ is a set of formulas and A is a formula, then say that Γ sententially
implies A if and only if A is true under every extended valuation under
which Γ is true. We write Γ |=sl A to mean that Γ sententially implies A. A
formula A is a tautology if and only if ∅ |=sl A, i.e., if and only if A is true
under every extended valuation. We usually write |=sl A instead of ∅ |=sl A.

For the language L, the new definition of tautology agrees with the old
definition. It is easy to see that for both L and L∗

C every tautology is valid.
The converse, while true for L, is false for L∗

C. For example, the formula

∀v1(P 1v1 ∨ ¬P 1v1)

is valid but is not a tautology.

30

We now begin the proof of the Compactness Theorem for L∗
C. As we did

with L, we call a set Γ of formulas of L∗
C finitely satisfiable if every finite

subset of Γ is satisfiable. The Compactness Theorem we shall prove states
that every finitely satisfiable set of sentences is satisfiable. The stronger
statement with “sentences” replaced by “formulas” is true. The reasons why
we prove only the weaker one are (a) simplicity and (b) considerations—to
be explained later—involving the theory of deduction.

The analogue for formulas of the following lemma is true and has a proof
like that of the lemma.

Lemma 3.6. Let Γ be a finitely satisfiable set of sentences of L∗
C and let A

be a sentence of L∗
C. Then either Γ ∪ {A} is finitely satisfiable or Γ ∪ {¬A}

is finitely satisfiable.

Proof. The proof is like the proof of Lemma 1.6. Assume for a contradiction
neither Γ∪ {A} nor Γ∪ {¬A} is finitely satisfiable. It follows that there are
finite subsets ∆ and ∆′ of Γ such that neither ∆ ∪ {A} nor ∆′ ∪ {¬A} is
satisfiable. Since Γ is finitely satisfiable, the finite subset ∆ ∪ ∆′ of Γ is
satisfiable. Let M be a model in which ∆ ∪∆′ is true. If vM(A) = T, then
∆ ∪ {A} is true in M and so ∆ ∪ {A} is satisfiable. Otherwise ∆′ ∪ {¬A}
is true in M and so ∆′ ∪ {¬A} is satisfiable. In either case we have a
contradiction. �

Simplifying assumption. From now on we assume that the members of
the set C can be arranged in a finite or infinite list. In the technical jargon
of set theory, this is the assumption that C is countable. Most of the facts we
shall prove can be proved without this assumption, but the proofs involve
concepts beyond the scope of this course.

Our next lemma is the analogue for L∗
C of Lemma 1.7. The main dif-

ference from the earlier lemma is that the set Γ∗ has a fourth property.
This property will be needed for the proof of Lemma 3.8, the analogue of
Lemma 1.8. If A is a formula, x is a variable, and t is a variable or constant,
then A(x; t) is the result of replacing each free occurrence of x in A by an
occurrence of t. A set Γ of formulas is Henkin if and only if, for each formula
A and each variable x, if (i) below holds, then (ii) also holds.

(i) A(x; c) ∈ Γ for all c ∈ C.

(ii) ∀xA ∈ Γ.

31

Lemma 3.7. Let Γ be a finitely satisfiable set of sentences of L∗
C. Let C∗

be a set gotten from C by adding infinitely many new constants. There is a
set Γ∗ of sentences of L∗

C∗ such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is finitely satifiable ;

(3) for every sentence A of L∗
C∗, either A belongs to Γ∗ or ¬A belongs

to Γ∗;

(4) Γ∗ is Henkin.

Proof. In keeping with our simplying assumption, let c0, c1, . . . , be all the
constants of L∗

C∗ .
Since L∗

C∗ has symbols that are not symbols of L, we need to specify an
alphabetical order for the symbols of L∗

C∗ . Let that order be as follows.

¬, ∨, (,), ∀,
v0, v1, v2, . . . ,
c0, c1, c2, . . . ,
p0, p1, p2, . . . ,
P 1

0 , P 1
1 , P 1

2 , . . . ,
P 2

0 , P 2
1 , P 2

2 , . . . ,
. . . .

Now we give a method for listing all the sentences of L∗
C∗ in an infinite

list. First list in alphabetical order all the sentences that have length 1
and contain no occurrences of variables, constants, sentence letters, or pred-
icate letters with any subscript or superscript larger than 0. Next list in
alphabetical order all the sentences that have length ≤ 2 and contain no oc-
currences of variables, constants, sentence letters, or predicate letters with
any subscript or superscript larger than 1. Next list in alphabetical order
all the sentences that have length ≤ 3 and contain no occurrences of vari-
ables, constants, sentence letters, or predicate letters with any subscript or
superscript larger than 2. Continue in this way.

Let the sentences of L∗
C∗ , in the order listed, be

A0, A1, A2, A3,

We define, by recursion on natural numbers, a function that associates with
each natural number n a set Γn of sentences of L∗

C.
Let Γ0 = Γ.

32

For each n, we shall make sure that at most two sentences belong to
Γn+1 but not to Γn. Since none of the constants added to C to get C∗ occur
in sentences in Γ, it follows that for each n only finitely many of the new
constants occur in sentences in Γn.

We define Γn+1 from Γn in two steps. For the first step, let

Γ′
n =

{
Γn ∪ {An} if Γn ∪ {An} is finitely satisfiable;
Γn ∪ {¬An} otherwise.

Let Γn+1 = Γ′
n unless both of the following hold.

(a) ¬An ∈ Γ′
n.

(b) An is ∀xnBn for some variable xn and formula Bn.

Suppose that both (a) and (b) hold. Let in be the least i such that the
constant ci does not occur in any formula belonging to Γ′

n. Such an i must
exist, since only finitely many of the infinitely many new constants occur in
sentences in Γ′

n. Let

Γn+1 = Γ′
n ∪ {¬Bn(xn; cin)}.

Let Γ∗ =
⋃

n Γn.
Because Γ = Γ0 ⊆ Γ∗, Γ∗ has property (1).
We prove by mathematical induction that Γn is finitely satisfiable for

each n. Γ0 is finitely satifiable by hypothesis.1 Assume that Γn is finitely sat-
isfiable. Lemma 3.6 implies that Γ′

n is finitely satisfiable. If Γn+1 = Γ′
n, then

Γn+1 is finitely satisfiable. Assume then that Γn+1 = Γ′
n ∪ {¬Bn(xn; cin)}

and, in order to derive a contradiction, assume that Γn+1 is not finitely sat-
isfiable. For some finite subset ∆ of Γ′

n, ∆∪{¬Bn(xn; cin)} is not satisfiable.
Since Γ′

n is finitely satisfiable and ¬An ∈ Γ′
n, ∆ ∪ {¬An} is satisfiable. Let

M = (D, v, χ) be a model for L∗
C∗ in which ∆ ∪ {¬An} is true. Since An

is ∀xnBn, ∀xnBn is false in M. This means that there is a d ∈ D such
that vs

M(Bn) = F for any variable assignment s such that s(xn) = d. Let
M′ = (D, v, χ′) be just like M, except let

χ(cin) = d.

1Actually there is a subtlety here. The assumption that Γ is finitely satisfiable, if
precisely formulated, says that every finite subset of Γ is true in some model for L∗

C. But
we want Γ0 to be finitely satisfiable in the sense that every finite subset of Γ0 is true in a
model for L∗

C∗ . Nevertheless, there is no problem. Any model for L∗
C can be made into a

model for L∗
C∗ by defining χ of the new constants in an arbitrary way. Since Γ0 contains

none of the new constants, subsets of it will be true in the resulting model if and only if
they are true in the given one.

33

Since cin does not occur in Bn,

vM′(Bn(xn; cin)) = F.

Since cin does not occur in ∆, ∆ is true in M′. Thus we have the contra-
diction that ∆ ∪ {¬Bn(xn; cin)} is satisfiable.

If ∆ is any finite subset of Γ∗, then ∆ ⊆ Γn for some n. Since Γn is
finitely satisfiable, ∆ is satisfiable. Thus Γ∗ has property (2).

Because either An or ¬An belongs to Γn+1 for each n and because each
Γn+1 ⊆ Γ∗, Γ∗ has property (3).

Suppose that An is ∀xnBn. If An /∈ Γ∗, then An /∈ Γn+1 and so ¬An ∈
Γn+1. But this implies that ¬Bn(xn; cin) ∈ Γn+1 ⊆ Γ∗. By property (2)
of Γ∗, it follows that Bn(xn; cin) /∈ Γ∗. This argument shows that Γ∗ has
property (4). �

Lemma 3.8. Let Γ∗ be a set of sentences of a language L∗
C∗ having proper-

ties (2), (3), and (4) described in the statement of Lemma 3.7. Then Γ∗ is
satisfiable.

Proof. Define a model M = (D, v, χ) for L∗
C∗ as follows.

(i) D = C∗.

(ii) (a) v(pi) = T if and only if pi ∈ Γ∗.
(b) v((Pn

i , c1, . . . , cn)) = T if and only if Pn
i c1 . . . cn ∈ Γ∗.

(iii) χ(c) = c for each c ∈ C∗.

Let P be the property of being a sentence A such that

vM(A) = T if and only if A ∈ Γ∗ .

We prove, by a variant of formula induction, that every sentence of L∗
C∗ has

property P .
(i)(a) Sentence letters have P because vM(pi) = v(pi).
(i)(b) Atomic sentences Pn

i c1 . . . cn have P because

vM(Pn
i c1 . . . cn) = v((Pn

i , χ(c1), . . . , χ(cn))) = v((Pn
i , c1, . . . , cn)).

(ii) and (iii) The proof that ¬A has P if A has P and that (A ∨B) has
P if A and B have P are just like the corresponding steps of the proof of
Lemma 1.8.

34

(iv) Let A be a formula with no free occurrences of variables other than
the variable x. Assume that, for every c ∈ C∗, A(x; c) has P . We prove that
∀xA has P .

vM(∀xA) = T iff for all s, vs
M(A) = T

iff for all c ∈ C∗, for all s with s(x) = c, vs
M(A) = T

iff for all c ∈ C∗, vM(A(x; c)) = T

iff for all c ∈ C∗, A(x; c) ∈ Γ∗

iff ∀xA ∈ Γ∗

The first “iff” is by the definition of vM and the fact that no variable
besides x occurs free in A. The second “iff” is by the fact that no variable
besides x occurs free in A and the fact that D = C∗. The third “iff” is by
the fact that χ(c) = c for each c ∈ C∗. The fourth “iff” is by the fact that
the sentences A(x; c) have property P .

To see that the “if” part of the last “iff” holds, assume that ∀xA ∈ Γ∗

and that, for some c ∈ C∗, A(x; c) /∈ Γ∗. By (3), ¬A(x; c) ∈ Γ∗. Thus
{∀xA,¬A(x; c)} is a finite subset of Γ∗. But this subset is not satisfiable,
contradicting (2).

The “only if” part of the last “iff” holds by (4).
Since, in particular, vM(A) = T for every member of A of Γ∗, we have

shown that Γ∗ is satisfiable. �

Theorem 3.9 (Compactness). Let Γ be a finitely satisfiable set of sen-
tences of L∗

C. Then Γ is satisfiable, i.e., true in a model for L∗
C.

Proof. By Lemma 3.7, let Γ∗ have properties (1)–(4) of that lemma. By
Lemma 3.8, Γ∗ is satisfiable. Let M∗ be a model for L∗

C∗ in which Γ∗ is true.
By (1), Γ is true in M∗. We can turn M∗ into a model for L∗

C in which Γ
is true by throwing away the part of the χ of Γ∗ that assigns objects to the
constants in C∗ that do not belong to C. (The resulting model M is called
the reduct of M∗ to L∗

C.) �

Corollary 3.10 (Compactness, Second Form). Let Γ be a set of sen-
tences of L∗

C and let A be a sentence such that Γ |= A. Then there is a finite
subset ∆ of Γ such that ∆ |= A.

Proof. The proof is just like that of Corollary 1.10. �

35

Exercise 3.5. For each of the following pairs (Γ, A), tell whether Γ |=sl A.
Prove your answers.

(a) Γ: {∀v1 P 1v1, ∀v1(P 1v1 → P 1v2}; A: P 1v2;

(b) Γ: {(∀v1 ¬P 1v1 → p0), (¬∀v2 P 1v2 → ¬p0)}; A: (∀v2P
1v2 ∨

∃v1 P 1v1):

Exercise 3.6. Let Γ∗ be a set of sentences having properties (2) and (3)
described in the statement of Lemma 3.7. Show that Γ∗ is Henkin if and
only if, for each formula A and each variable x, if (iii) below holds, then (iv)
also holds.

(iii) ∃xA ∈ Γ∗.

(iv) A(x; c) ∈ Γ∗ for some c ∈ C∗.

Exercise 3.7. Let C = {0,1,2, . . .}, where, e.g., 7 is the numeral “7.” Let
M = (D, v, χ), where:

D = {0, 1, 2, . . .}
v-truth set = {(P 2,m, n) | m ≥ n} ∪ {(P 3

0 ,m, n, p) | m + n = p}
∪ {(P 3

1 ,m, n, p) | m · n = p}
χ(n) = n

Let Σ be the set of all sentences true in M. Prove that there is a model
M′ = (D′, v′, χ′) such that:

(a) Σ is true in M′;

(b) there is a d ∈ D′ such that, for every natural number n, (P 2, d, χ′(n))
belongs to the v′-truth set.

Hint. Let C∗ = C∪{c}. Describe the set Π of sentences involving c that
need to be true in M′ if χ′(c) is to be a d witnessing that (b) holds. Next
show that Σ ∪Π is finitely satisfiable. To do this, assume that ∆ is a finite
subset of Π. Show that M can be made into a model M̄ = (D, v, χ̄) of Σ∪∆
by an appropriate choice of χ̄(c). Apply the Compactness Theorem to get
a model M∗ of Σ ∪Π. Finally let M′ be the reduct of M∗ to L∗

C.

36

4 The semantics of full first-order logic

In this section we make two additions to the languages L∗
C of §3. The first is

the addition of a symbol for identity. The second is the addition of symbols
that are used to denote functions.

The languages L∗
=,C of predicate logic with identity.

For each set C of constant symbols, we have a language L∗
=,C.

Symbols of L∗
=,C: All symbols of L∗

C plus the symbol =.

Formulas of L∗
=,C: Modify the definition, given on page 24, of formulas of

L∗
C by renumbering clause (6) as clause (7) and adding the following clause.

(6) If t1 and t2 are variables or constants, then t1 = t2 is a formula.

Remark. Unique readability holds for L∗
=,C by a proof very similar to

the proof that it holds for L∗
C.

Models for L∗
=,C: Models for L∗

=,C are the same as models for L∗
C.

Satisfaction and truth for L∗
=,C:

The notions of a variable assignment and of dens
M are the same as for

L∗
C. The definition of vs

M is the same as that for L∗
=,C, except that there is

an extra subclause of the atomic clause (i):

(c) vs
M(t1 = t2) =

{
T if dens

M(t1) = dens
M(t2);

F if dens
M(t1) 6= dens

M(t2).

Satisfaction and truth are defined as for L∗
C.

Logical implication for L∗
=,C: Logical implication, validity, and satisfiability

are defined as for L∗
C.

Example. The following formulas are valid.

(a) v1 = v1 (d) v1 = v2 → (P 1v1 ↔ P 1v2)
(b) ∀v1 v1 = v1 (e) ∀v1∀v2(v1 = v2 → (P 1v1 ↔ P 1v2))
(c) ∃v1 v1 = v1 (f) v1 = c → (c = v2 → v1 = v2)

The proof of the Compactness Theorem for L∗
=,C is similar to that for

L∗
C, but there is one important difference, as we shall see.

37

Lemma 4.1. Let Γ be a finitely satisfiable set of sentences of L∗
=,C and let A

be a sentence of L∗
=,C. Then either Γ∪{A} is finitely satisfiable or Γ∪{¬A}

is finitely satisfiable.

Proof. The proof is exactly like that of Lemma 3.6. �

Lemma 4.2. Let Γ be a finitely satisfiable set of sentences of L∗
=,C. Let C∗

be a set gotten from C by adding infinitely many new constants. There is a
set Γ∗ of sentences of L∗

=,C∗ such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is finitely satifiable ;

(3) for every sentence A of L∗
=,C∗, either A belongs to Γ∗ or ¬A belongs

to Γ∗;

(4) Γ∗ is Henkin.

Proof. The only change we have to make in the proof of Lemma 3.7 is that
we must specify an alphabetical order for the symbols of L∗

=,C∗ . Let us do
this by letting the new symbol = come immediately after ∀. �

Lemma 4.3. Let Γ∗ be a set of sentences of a language L∗
=,C∗ having prop-

erties (2), (3), and (4) described in the statement of Lemma 4.2. Then Γ∗

is satisfiable.

Proof. We wish to begin, as we did in the proof of Lemma 3.8, by using
Γ∗ to define a model for L∗

=,C∗ . But we must not define the model as we did
before (on page 34). To see this, assume that we did use the old definition.
Let c1 and c2 be two distinct members of C∗ and suppose that the sentence
c1 = c2 belongs to Γ∗, as is possible. Since χ(c1) = c1, χ(c2) = c2, and c1 and
c2 are distinct objects, the new clause (i)(c) in the definition of vs

M implies
that vM(c1 = c2) = F. Thus it is not the case that, for all formulas A,
vM(A) = T if and only if A ∈ Γ∗. But for the proof of Lemma 3.8 it was
critical that this was the case. If we are to define a model for which it is the
case, then we must make sure that

if c1 = c2 ∈ Γ∗, then χ(c1) = χ(c2).

A 2-place relation R on a set X is an equivalence relation on X if and
only if all three of the following conditions are satisfied.

(a) R is reflexive: Rxx holds for all x ∈ X.

38

(b) R is symmetric: if x ∈ X and y ∈ X and Rxy holds, then Ryx holds.

(c) R is transitive: if x ∈ X, y ∈ X, z ∈ X, and both Rxy and Ryz hold,
then Rxz holds.

If R is an equivalence relation on X, then R divides X up into equivalence
classes. For x ∈ X, let [x]R, the equivalence class of x with respect to R, be
defined by

[x]R = {y ∈ X | Rxy holds}.

Let R be the relation on C∗ defined by

Rc1c2 holds iff c1 = c2 ∈ Γ∗.

We shall prove that R is an equivalence relation on C∗.
For reflexivity, we must show that c = c belongs to Γ∗ for all members

c of C∗. Assume that c = c /∈ Γ∗. By property (3) of Γ∗, c 6= c ∈ Γ∗, where
we use t 6= t′ as an abbreviation for ¬ t = t′. But then {c 6= c} is a finite
subset of Γ∗ that is not satisfiable, contradicting (2).

For symmetry, we must show that, for all members c1 and c2 of Γ∗, if
c1 = c2 ∈ Γ∗, then c2 = c1 ∈ Γ∗. Assume that c1 = c2 ∈ Γ∗ but c2 = c1 /∈ Γ∗.
Using (3), we get that {c1 = c2, c2 6= c1} is a finite subset of Γ∗. Once again,
we contradict (2).

For transitivity, we must show that, for all members c1, c2, and c3 of Γ∗, if
c1 = c2 ∈ Γ∗ and c2 = c3 ∈ Γ∗, then c1 = c3 ∈ Γ∗. Assume that c1 = c2 ∈ Γ∗

and c2 = c3 ∈ Γ∗ but c1 = c3 /∈ Γ∗. By (3), {c1 = c2, c2 = c3, c1 6= c3} is a
finite subset of Γ∗, contradicting (2).

Define a model M = (D, v, χ) for L∗
=,C∗ as follows.

(i) D = {[c]R | c ∈ C∗}.
(ii) (a) v(pi) = T if and only if pi ∈ Γ∗.

(b) v((Pn
i , [c1]R, . . . , [cn]R)) = T if and only if Pn

i c1 . . . cn ∈ Γ∗.

(iii) χ(c) = [c]R for each c ∈ C∗.

To see that (ii)(b) is a genuine definition, we need to show that the truth-
value it assigns does not depend on the choice of representatives cj of the
equivalence classes. To show this, assume that [cj]R = [c′j]R for 1 ≤ j ≤ n.
By the definition of the equivalence classes, we have that Rcjc

′
j holds for

1 ≤ j ≤ n. By the definition of R, we get that the sentence cj = c′j belongs
to Γ∗ for 1 ≤ j ≤ n. We must show that Pn

i c1 . . . cn ∈ Γ∗ if and only if

39

Pn
i c′1 . . . c′n ∈ Γ∗. For the “only if” direction, assume that Pn

i c1 . . . cn ∈ Γ∗

and that Pn
i c′1 . . . c′n /∈ Γ∗. By (3), ¬Pn

i c′1 . . . c′n ∈ Γ∗. Thus

{Pn
i c1 . . . cn, Pn

i c′1 . . . c′n, c1 = c′1, . . . , cn = c′n}

is a finite subset of Γ∗. By (2) it is satisfiable. This is a contradiction. The
“if” direction is similar.

Let P be the property of being a sentence A such that

vM(A) = T if and only if A ∈ Γ∗ .

We prove, by the same variant of formula induction as we used in the proof
of Lemma 3.8, that every sentence of L∗

=,C∗ has property P .
There are only two cases that are significantly different from the corre-

sponding cases in the proof of Lemma 3.8, so we omit the other cases.
(i)(c) Atomic sentences c1 = c2 have P because

vM(c1 = c2) = T iff χ(c1) = χ(c2) iff [c1]R = [c2]R iff c1 = c2 ∈ Γ∗.

(iv) Let A be a formula with no free occurrences of variables other than
the variable x. Assume that, for every c ∈ C∗, A(x; c) has P . We prove that
∀xA has P .

vM(∀xA) = T iff for all s, vs
M(A) = T

iff for all c ∈ C∗, for all s with s(x) = [c]R, vs
M(A) = T

iff for all c ∈ C∗, vM(A(x; c)) = T

iff for all c ∈ C∗, A(x; c) ∈ Γ∗

iff ∀xA ∈ Γ∗

The first “iff” is by the definition of vM and the fact that no variable
besides x occurs free in A. The second “iff” is by the fact that no variable
besides x occurs free in A and the fact that D = {[c]R | c ∈ C∗}. The third
“iff” is by the fact that χ(c) = [c]R for each c ∈ C∗. The fourth “iff” is
by the fact that the sentences A(x; c) have property P . The proof that the
fifth “iff” holds is exactly the same as the corresponding step in the proof
of Lemma 3.8.

Since, in particular, vM(A) = T for every member of A of Γ∗, we have
shown that Γ∗ is satisfiable. �

The proof of the two Compactness Theorems that follow are just like the
proofs Theorem 3.9 and Theorem 3.10.

40

Theorem 4.4 (Compactness). Let Γ be a finitely satisfiable set of sen-
tences of L∗

=,C. Then Γ is satisfiable, i.e., true in a model for L∗
=,C.

Corollary 4.5 (Compactness, Second Form). Let Γ be a set of sen-
tences of L∗

=,C and let A be a sentence such that Γ |= A. Then there is
a finite subset ∆ of Γ such that ∆ |= A.

Exercise 4.1. Exhibit a sentence of L∗
=,∅ that is true in every model with

exactly three elements and is false in all other models.

Exercise 4.2. Tell which of the following sentences of L∗
=,{c} are valid. If a

sentence is valid, explain briefly why. If it is invalid, give a model in which
it is false.

(a) ∀v1 c = c (c) ∀v1(P 1v1 → ∃v2(v1 = v2 ∧ P 1v2))
(b) ∀v1∀v2P

2v1v2 → ∀v1∀v2 v1 = v2 (d) ∀v1(P 1v1 → ∀v2(P 1v2 → v1 = v2))

The languages L#
C of full first-order logic.

For each set C of constant symbols, we have a language L#
C .

Symbols of L#
C : All symbols of all symbols of L∗

=,C plus n-place function
letters

Fn
0 , Fn

1 , Fn
2 , . . . ,

for each n ≥ 1.

Terms of L#
C :

(1) Each variable or constant is a term.

(2) For each n and i, if t1, . . . , tn are terms, then Fn
i t1 . . . tn is a term.

(3) Nothing is a term unless its being one follows from (1)–(2).

Example of a term:
F 3

1 F 2
2 cF 1

0 v4v6F
1
0 c.

Remarks:
(a) As we shall see, terms are expressions that, in a model and under

a variable assignment, denote a member of the domain of the model. The
terms of L∗

C and L∗
=,C are—let us retroactively specify—the variables and

constants. Variables and constants are the atomic terms of a language. The
new ingredients of L#

C are the complex terms given by clause (2) above.

41

(b) Just as we can do proof by formula induction and definition by recur-
sion on formulas, so we can do term induction and definition by recursion
on terms. In proving by term induction that all terms have a property P ,
we must (1) show that all variables and constants have P and (2) show that
whenever t1, . . . , tn are terms that have P then Fn

i t1 . . . tn has P .

Formulas of L#
C : Replace clauses (2) and (6) in the definition of formulas of

L∗
=,C by the following clauses.

(2) For each n and i, if t1, . . . , tn are terms, then Pn
i t1 . . . tn is a formula.

(6) If t1 and t2 are terms, then t1 = t2 is a formula.

Note that, with our retroactive definition of term for L∗
C and L∗

=,C, the
new clauses (2) and (6) have the same meaning as the old (2) and (6).

Remark. The proof of unique readability for formulas of L#
C has a pre-

liminary step. One first needs to prove Unique Readability for Terms. This
states that every term is either a variable or constant or else is Fn

i t1 . . . tn
for unique n, i, and t1, . . . , tn. The rest of the proof of unique readability
for formulas is similar to the proof for the other languages.

Models for L#
C :

A model for L#
C is a triple M = (D, v, χ) satisfying conditions (i) and (ii)

in the definition of a model for L∗
=,C and satisfying the following condition:

(iii) χ is a function that assigns

(a) a member of D to each constant;
(b) a member of D to each (n + 1)-tuple of the form (Fn

i , d1, . . . , dn)
for d1, . . . , dn members of D.

Satisfaction, truth, and logical implication for L#
C :

The notion of a variable assignment is the same as for L∗
C and L∗

=,C.
The definition of dens

M for the other languages has to be extended so
that dens

M(t) is defined for all terms t. The definition is by recursion on
terms.

(1) dens
M(t) = s(t) if t is a variable, and dens

M(t) = χ(t) if t is a constant.

42

(2) dens
M(Fn

i t1 . . . tn) = χ((Fn
i ,dens

M(t1), . . . ,dens
M(tn))).

The definitions of satisfaction, truth, logical implication, validity, and
satisfiability are word for word the same as for L∗

=,C.

The proof of the Compactness Theorem for L#
C is very much like that for

L∗
=,C. We list the lemmas and indicate the ways the proofs of the analogous

earlier lemmas are to be modified.

Lemma 4.6. Let Γ be a finitely satisfiable set of sentences of L#
C and let A

be a sentence of L#
C . Then either Γ∪ {A} is finitely satisfiable or Γ∪ {¬A}

is finitely satisfiable.

Lemma 4.7. Let Γ be a finitely satisfiable set of sentences of L#
C . Let C∗

be a set gotten from C by adding infinitely many new constants. There is a
set Γ∗ of sentences of L#

C∗ such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is finitely satifiable ;

(3) for every sentence A of L#
C∗, either A belongs to Γ∗ or ¬A belongs

to Γ∗;

(4) Γ∗ is Henkin.

Proof. The only change we have to make in the proof of Lemma 4.2 is that
we must specify an alphabetical order for the symbols of L#

C∗ . Let us do this
by letting the new symbols Fn

i come after the symbols of L∗
=,C∗ , ordered

first by superscript and then by subscript. �

Lemma 4.8. Let Γ∗ be a set of sentences of a language L#
C∗ having proper-

ties (2), (3), and (4) described in the statement of Lemma 4.7. Then Γ∗ is
satisfiable.

Proof. We need to make two additions to the proof of Lemma 4.3.
First we let

χ((Fn
i , [c1]R, . . . , [cn]R)) = [c]R iff Fn

i c1 . . . cn = c ∈ Γ∗.

It fairly easy to see that the definition does not depend on the choice of
elements of equivalence classes. It is also easy to show—and we need to do
so—that for all c1, . . . , cn, there is a c such that Fn

i c1 . . . cn = c ∈ Γ∗.

43

We also need to change clause (ii)(b) to make it analogous to the clause
above.

The other change we have to make is in the atomic cases (i)(b) and (i)(c)
of the proof that all formulas have property P .

Before considering the proofs of these facts, we first prove another fact
that we will need in these proofs.

Say that a term t containing no variables has property Q if and only if,
for every c ∈ C∗,

if denM(t) = [c]R then t = c ∈ Γ∗,

where denM(t) is the common value of the dens
M(t). We prove by a variant

of term induction that all terms without variables have Q.
(1) If t is a constant, then denM(t) = [t]R. By definition of [c]R, t = c

belongs to Γ∗ if and only if [t]R = [c]R. Thus t has Q.
(2) Assume that t1, . . . , tn have Q and let t be Fn

i t1 . . . tn. Let denM(ti) =
[ci]R for 1 ≤ i ≤ n. Since the ti have Q, the sentence ti = ci belongs to Γ∗

for each i. Let denM(t) = [c]R. By the definition of denM, it follows that

denM(Fn
i c1 . . . cn) = χ((Fn

i , [c1]R, . . . , [cn]R))
= denM(Fn

i t1 . . . tn)
= denM(t)
= [c]R.

By the definition of v((Fn
i , [c1]R, . . . , [cn]R)), we have that Fn

i c1 . . . cn = c
belongs to Γ∗. Assume that Fn

i t1 . . . tn = c does not belong to Γ∗. By
property (3) of Γ∗, Fn

i t1 . . . tn 6= c belongs to Γ∗. Since ti = ci ∈ Γ∗ for
every i, the set

{t1 = c1, . . . , tn = cn, Fn
i c1 . . . cn = c, Fn

i t1 . . . tn 6= c}

is a finite subset of Γ∗. This set is not satisfiable, and so we have contradicted
property (2) of Γ∗. In doing so, we have shown that t has Q.

Now we are ready for cases (i)(b) and (i)(c) of the property P proof. Let
denM(ti) = [ci]R for 1 ≤ i ≤ n. Since the ti have Q, ti = ci ∈ Γ∗ for each i.

vM(Pn
i t1 . . . tn) = T iff v((Pn

i ,denM(t1),denM(tn))) = T

iff v((Pn
i , [c1]R, . . . , [cn]R)) = T

iff Pn
i c1 . . . cn ∈ Γ∗

iff Pn
i t1 . . . tn ∈ Γ∗,

where the last iff is by properties (2) and (3) of Γ∗.
The proof for case (i)(c) is similar, and we omit it. �

44

Theorem 4.9 (Compactness). Let Γ be a finitely satisfiable set of sen-
tences of L#

C . Then Γ is satisfiable, i.e., true in a model for L#
C .

Corollary 4.10 (Compactness, Second Form). Let Γ be a set of sen-
tences of L#

C and let A be a sentence such that Γ |= A. Then there is a finite
subset ∆ of Γ such that ∆ |= A.

Exercise 4.3. Which of the following sentences are valid? For each one,
explain or give (the relevant part of) a counter-model.

(a) ∃v1F
3v2cv3 = v1

(b) ∀v1∀v2(v1 6= v2 → F 1v1 6= F 1v2) → ∀v1∃v2F
1v2 = v1

Exercise 4.4. Give the omitted case (i)(c) in the proof of Lemma 4.8.

45

5 Deduction in First-Order Logic

The system FOLC.

Let C be a set of constant symbols. FOLC is a system of deduction for
the language L#

C .

Axioms: The following are axioms of FOLC.

(1) All tautologies.

(2) Identity Axioms:

(a) t = t
for all terms t;

(b) t1 = t2 → (A(x; t1) → (A(x; t2))
for all terms t1 and t2, all variables x, and all formulas A such that
there is no variable y occurring in t1 or t2 with a free occurrence
of x in A in a subformula of A of the form ∀yB.

(3) Quantifier Axioms:
∀xA → A(x; t)

for all formulas A, variables x, and terms t such that there is no
variable y occurring in t with a free occurrence of x in A in a subformula
of A of the form ∀yB.

Rules of Inference:

Modus Ponens (MP)
A , (A → B)

B

Quantifier Rule (QR)
(A → B)

(A → ∀xB)

provided the variable x does not occur free in A.

Discussion of the axioms and rules.

(1) We would have gotten an equivalent system of deduction if instead of
taking all tautologies as axioms we had taken as axioms all instances (in L#

C)
of the five schemas on page 13. All instances of these schemas are tautologies,
so the change would have not have increased what we could deduce. In the

46

other direction, we can apply the proof of the Completeness Theorem for
SL by thinking of all sententially atomic formulas as sentence letters. The
proof so construed shows that every tautology in L#

C is deducible using MP
and schemas (1)–(5). Thus the change would not have decreased what we
could deduce.

(2) Identity Axiom Schema (a) is self-explanatory. Schema (b) is a formal
version of the Indiscernibility of Identicals, also called Leibniz’s Law.

(3) The Quantifer Axiom Schema is often called the schema of Universal
Instantiation. Its idea is that whatever is true of a all objects in the domain
is true of whatever object t might denote. The reason for the odd-looking
restriction is that instances where the restriction fails do not conform to the
idea. Here is an example. Let A be ∃v2 v1 6= v2, let x be v1 and let t be v2.
The instance of the schema would be

∀v1∃v2 v1 6= v2 → ∃v2 v2 6= v2.

The antecedent is true in all models whose domains have more than one
element, but the consequent is not satisfiable.

(MP) Modus ponens is the rule we are familiar with from the system SL.

(QR) As we shall explain later, the Quantifier Rule is not a valid rule.
The reason it will be legitimate for us to use it as a rule is that we shall
allow only sentences as premises of our deductions. How this works will be
explained in the proof of the Soundness Theorem.

Deductions: A deduction in FOLC from a set Γ of sentences is a finite se-
quence D of formulas such that whenever a formula A occurs in the sequence
D then at least one of the following holds.

(1) A ∈ Γ.

(2) A is an axiom.

(3) A follows by modus ponens from two formulas occurring earlier in the
sequence D or follows by the Quantifier Rule from a formula occurring
earlier in D.

A deduction in FOLC of a formula A from a set Γ of sentences is a
deduction D in FOLC from Γ with A on the last line of D. We write
Γ `FOLC

A and say A is deducible in FOLC from Γ to mean that there is a
deduction in FOLC of A from Γ. We write `FOLC

A for ∅ `FOLC
A.

47

Announement. For the rest of this section, we shall omit subscripts
“FOLC.” and phrases “in FOLC” except in contexts where we are consid-
ering more than one set C.

In order to avoid dealing directly with long formulas and long deductions,
it will be useful to begin by justifying some derived rules.

Lemma 5.1. Assume that Γ ` Ai for 1 ≤ i ≤ n and {A1, . . . , An} |=sl B.
Then Γ ` B. (See page 30 for the definition of |=sl.)

Proof. If we string together deductions witnessing that Γ ` Ai for each i,
then we get a deduction from Γ in which each Ai is a line. The fact that
{A1, . . . , An} |=sl B gives us that the formula

(A1 → A2 → · · ·An → B)

is a tautology. Appending this formula to our deduction and applying MP
n times, we get B. �

Lemma 5.1 justifies a derived rule, which we call SL. A formula B follows
from formulas A1, . . . , An by SL iff

{A1, . . . , An} |=sl B.

Lemma 5.2. If Γ ` A then Γ ` ∀xA.

Proof. Assume that Γ ` A. Begin with a deduction from Γ with last
line A. Use SL to get the line (p0 ∨ ¬po) → A. Now apply QR to get
(p0 ∨ ¬po) → ∀xA. Finally use SL to get ∀xA. �

Lemma 5.2 justifies a derived rule, which we call Gen:

Gen
A

∀xA

Lemma 5.3. For all formulas A and B,

` ∀x(A → B) → (∀xA → ∀xB).

Proof. Here is an abbreviated deduction.

1. ∀x(A → B) → (A → B) QAx
2. ∀xA → A QAx
3. (∀x(A → B) ∧ ∀xA) → B 1,2; SL
4. (∀x(A → B) ∧ ∀xA) → ∀xB 3;QR
5. ∀x(A → B) → (∀xA → ∀xB) 4; SL

�

48

Lemma 5.4. For all formulas A,

` ∃x∀yA → ∀y∃xA.

Proof. Here is an abbreviated deduction.

1. ∀yA → A QAx
2. ¬A → ¬∀yA 1; SL
3. ∀x(¬A → ¬∀yA) 2; Gen
4. ∀x(¬A → ¬∀yA) → (∀x¬A → ∀x¬∀yA) Lemma 5.3
5. ∀x¬A → ∀x¬∀yA 3,4;MP
6. ¬∀x¬∀yA → ¬∀x¬A 5; SL

[∃x∀yA → ∃xA]
7. ∃x∀yA → ∀y∃xA 6;QR

�

Exercise 5.1. Show that ` (∃v1 P 1v1 → ∃v2 P 1v2).

Exercise 5.2. Show that {∀v1 P 1v1} ` ∃v1 P 1v1.

Lemma 5.5. If Γ ` (A → B) then Γ ` (∀xA → ∀xB).

Proof. Start with a deduction from Γ with last line (A → B). Use Gen to
get the line ∀x(A → B). Then apply Lemma 5.3 and MP. �

Theorem 5.6 (Deduction Theorem). Let Γ be a set of sentences, let A
be a sentence, and let B be a formula. If Γ ∪ {A} ` B then Γ ` (A → B).

Proof. The proof is similar to the proof of the Deduction Theorem for SL.
Assume that Γ ∪ {A} ` B. Let D be a deduction of B from Γ ∪ {A}. We
prove that

Γ ` (A → C)

for every line C of D. Assume that this is false. Consider the first line C
of D such that Γ 6` (A → C).

Assume that C either belongs to Γ or is an axiom. Then Γ ` C and
(A → C) follows from C by SL. Hence Γ ` (A → C).

Assume next that C is A. Since A → A is a tautology, Γ ` (A → A).
Assume next that C follows from formulas E and (E → C) by MP. These

formulas are on earlier lines of D than C. Since C is the first “bad” line of
D, Γ ` A → E and Γ ` A → (E → C). Since

{(A → E), (A → (E → C))} |=sl (A → C),

49

Γ ` (A → C).
Finally assume that C is (E → ∀xF) and that C follows by QR from an

earlier line (E → F) of D. Since C is the first “bad” line of D, Γ ` A →
(E → F). Starting with a deduction from Γ of A → (E → F), we can get a
deduction from Γ of A → (E → ∀xF) as follows.

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
n A → (E → F) · · ·
n + 1. (A ∧ E) → F n; SL
n + 2. (A ∧ E) → ∀xF n + 1;QR
n + 3. A → (E → ∀xF) n + 2; SL

Note that the variable x has no free occurrences in A because A is a sentence,
and we know that it has no free occurrences in E because we know that QR
was used in D to get E → ∀xF from E → F .

This contradiction completes the proof that the “bad” line C cannot
exist. Applying this fact to the last line of D, we get that Γ ` (A → B). �

A set Γ of sentences of L#
C is inconsistent in FOLC if there is a formula

B such that Γ `FOLC
B and Γ `FOLC

¬B. Otherwise Γ is consistent.

Theorem 5.7. Let Γ and ∆ be sets of sentences, let A and A1, . . . , An be
sentences, and let B be a formula.

(1) Γ ∪ {A} ` B if and only if Γ ` (A → B).

(2) Γ ∪ {A1, . . . , An} ` B if and only if Γ ` (A1 → . . . → An → B).

(3) Γ is consistent if and only if there is some formula C such that
Γ 6` C.

(4) If Γ ` C for all C ∈ ∆ and if ∆ ` B, then Γ ` B.

Proof. The proof is like the proof of Theorem 2.2, except that we may now
use the derived rule SL instead of the particular axioms and rules of the
system SL. �

A system S of deduction for L#
C is sound if, for all sets Γ of sentences

and all formulas A, if Γ `S A then Γ |= A. A system S of deduction for L#
C

is complete if, for all sets Γ of sentences and all formulas A, if Γ |= A then
Γ `S A.

50

Remark. These definitions are like the definitions of soundness and com-
pleteness of systems for L, except that the new definitions require Γ to
consist of sentences, not just formulas. We hereby make the analoguous
definitions for our other languages.

Theorem 5.8 (Soundness). The systems FOLC are sound.

Proof. The proof is similar to the proof of soundness for SL (Theorem 2.4).
Let D be a deduction in FOLC of a formula A from a set Γ of sentences.
We shall show that, for every line C of D, Γ |= C. Applying this to the last
line of D, this will give us that Γ |= A.

Assume that what we wish to show is false. Let C be the first line of D
such that Γ 6|= C.

The cases that C ∈ Γ, that C is an axiom, and that C follows by MP
from earlier lines of D, are just like the corresponding cases in the proof of
Theorem 2.4.

The only remaining case is that C is B → ∀xE and C follows by QR
from an earlier line B → E of D. Since C is the first “bad” line of D,
Γ |= B → E. Let M = (D, v, χ) be any model and let s be any variable
assignment. We assume that vs

M(Γ) = T (i.e., that vs
M(H) = T for each

H ∈ Γ), and we show that vs
M(B → ∀xE) = T. For this, we assume that

vs
M(B) = T and we show that vs

M(∀xE) = T. Let d be any element of
D and let s′ be any variable assignment that agrees with s except that
s′(x) = d. We must show that vs′

M(E) = T. Since Γ is a set of sentences,
vs′
M(Γ) = T. Since the variable x does not occur free in B, vs′

M(B) = T.
Since Γ |= B → E, it follows that vs′

M(E) = T �

Lemma 5.9. Let Γ be a set of sentences of L#
C consistent in FOLC and

let A be a sentence of L#
C . Then either Γ ∪ {A} is consistent in FOLC or

Γ ∪ {¬A} is consistent in FOLC.

Proof. The proof is like that of Lemma 2.5. �

Lemma 5.10. Let Γ be set of sentences of L#
C consistent in FOLC. Let C∗

be a set gotten from C by adding infinitely many new constants. There is a
set Γ∗ of sentences of L#

C∗ such that

(1) Γ ⊆ Γ∗ ;

(2) Γ∗ is consistent in FOLC∗ ;

(3) for every sentence A of L#
C∗, either A belongs to Γ∗ or ¬A belongs

to Γ∗;

51

(4) Γ∗ is Henkin.

Proof. Let c0, c1, c2, . . . be all the constants of L#
C∗ . Let

A0, A1, A2, A3, . . .

be the list (defined in the proof of Lemma 4.7) of all the sentences of L#
C∗ .

As in that proof we define, by recursion on natural numbers, a function that
associates with each natural number n a set Γn of formulas.

Let Γ0 = Γ.
As in the proofs of Lemmas 3.7, 4.2, and 4.7, we shall make sure that,

for each n, at most two sentences belong to Γn+1 but not to Γn. As in
the earlier proofs, it follows that for each n only finitely many of the new
constants occur in sentences in Γn.

We define Γn+1 from Γn in two steps. For the first step, let

Γ′
n =

{
Γn ∪ {An} if Γn ∪ {An} is consistent in FOLC∗ ;
Γn ∪ {¬An} otherwise.

Let Γn+1 = Γ′
n unless both of the following hold.

(a) ¬An ∈ Γ′
n.

(b) An is ∀xnBn for some variable xn and formula Bn.

Suppose that both (a) and (b) hold. Let in be the least i such that the
constant ci does not occur in any formula belonging to Γ′

n. Such an i must
exist, since only finitely many of the infinitely many new constants occur in
sentences in Γ′

n. Let

Γn+1 = Γ′
n ∪ {¬Bn(xn; cin)}.

Let Γ∗ =
⋃

n Γn.
Because Γ = Γ0 ⊆ Γ∗, Γ∗ has property (1).
We prove by mathematical induction that Γn is consistent for each n.
Γ0 (i.e., Γ) is consistent in FOLC by hypothesis, but we must prove that

it is consistent in FOLC∗ . Observe that any deduction D from Γ in FOLC∗

of a formula of L#
C can be turned into a deduction from Γ in FOLC of the

same formula: just replace the new constants occurring in D by distinct
variables that do not occur in D. It follows easily that Γ is inconsistent in
FOLC if it is inconsistent in FOLC∗ .

Assume that Γn is consistent in FOLC∗ . Lemma 5.9 implies that Γ′
n is

consistent. If Γn+1 = Γ′
n, then Γn+1 is consistent. Assume then that Γn+1 =

52

Γ′
n∪{¬Bn(xn; cin)} and, in order to derive a contradiction, assume that Γn+1

is not consistent. By Theorem 5.7, every formula of L#
C is deducible from

Γn+1 in FOLC∗ . Hence Γn+1 `FOLC∗ (p0 ∧ ¬p0). In other words,

Γ′
n ∪ {¬Bn(xn; cin)} `FOLC∗ (p0 ∧ ¬p0).

By the Deduction Theorem,

Γ′
n `FOLC∗ ¬Bn(xn; cin) → (p0 ∧ ¬p0).

Let D be a deduction from Γ′
n in FOLC∗ with last line ¬Bn(xn; cin) →

(p0 ∧ ¬p0). Let y be a variable not occurring in D. Let D′ come from d
by replacing every occurrence of cin by an occurrence of y. Since cin does
not occur Γ′

n or in ¬Bn, D′ is a deduction from Γ′
n in FOLC∗ with last

line ¬Bn(xn; y) → (p0 ∧ ¬p0). We can turn D′ into a deduction from Γ′
n in

FOLC∗ with last line ¬∀xnBn → (p0 ∧ ¬p0) as follows.

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
n. ¬Bn(xn; y) → (p0 ∧ ¬p0) · · ·
n + 1. ¬(p0 ∧ ¬p0) → Bn(xn; y) n; SL
n + 2. ¬(p0 ∧ ¬p0) → ∀yBn(xn; y) n + 1;QR
n + 3. ∀yBn(xn; y) → Bn QAx
n + 4. ¬(p0 ∧ ¬p0) → Bn n + 2,n + 3; SL
n + 5. ¬(p0 ∧ ¬p0) → ∀xnBn n + 4;QR
n + 6. ¬∀xnBn → (p0 ∧ ¬p0) n + 5; SL

This shows that Γ′
n `FOLC∗ ¬∀xnBn → (p0∧¬p0). But Γ′

n = Γ∪{¬∀xnBn},
so it follows that Γ′

n `FOLC∗ (p0 ∧ ¬p0). By SL, we get the contradiction
that Γ′

n is inconsistent in FOLC∗ .
As in the proof of Lemma 2.6, the consistency of all the Γn implies that

consistency of Γ∗. Hence Γ∗ has property (2).
Because either An or ¬An belongs to Γn+1 for each n and because each

Γn+1 ⊆ Γ∗, Γ∗ has property (3).
If An /∈ Γ∗, then An /∈ Γn+1 and so ¬An ∈ Γn+1. But this implies that

¬Bn(xn; cin) ∈ Γn+1 ⊆ Γ∗ if An = ∀xnBn. Hence Γ∗ has property (4). �

Exercise 5.3. Show that

{∀v1∀v2(P 2v1v2 ∨ P 2v2v1)} ` ∀v1P
2v1v1.

53

Exercise 5.4. Show that

` ∀v1∃v2F
1v1 = v2.

Exercise 5.5. Let c1 and c2 be constants. Show that

{c1 = c2} ` c2 = c1.

Lemma 5.11. Let Γ∗ be a set of sentences of a language L#
C∗ having prop-

erties (2), (3), and (4) described in the statement of Lemma 5.10. Then Γ∗

is satisfiable.

Proof. We first note a useful fact about Γ∗.

(†) For all sentences A of L#
C∗ , if Γ∗ ` A then A ∈ Γ∗.

To see why (†) holds, assume that Γ∗ ` A but A /∈ Γ∗. By (3), ¬A ∈ Γ∗.
Thus Γ∗ ` ¬A, contradicting (2).

Remark. Though we did not state it, the analogue of (†) held for the set
Γ∗ of Lemma 2.7.

As in the proofs of Lemmas 4.3 and 4.8, we shall define a model whose
domain is a set of equivalence classes of constants. As in the proof of
Lemma 4.3, let R be the relation on C∗ defined by

Rc1c2 holds iff c1 = c2 ∈ Γ∗.

We shall prove that R is an equivalence relation on C∗.
For reflexivity, we must show that c = c belongs to Γ∗ for all members c

of C∗. Since c = c is an instance of Identity Axiom Schema (a), ` c = c and
so Γ∗ ` c = c. By (†), c = c ∈ Γ∗.

For symmetry, we must show that, for all members c1 and c2 of Γ∗, if
c1 = c2 ∈ Γ∗, then c2 = c1 ∈ Γ∗. Assume that c1 = c2 ∈ Γ∗. By Exercise 5.5,
Γ∗ ` c2 = c1. By (†), c2 = c1 ∈ Γ∗.

Before proving transitivity, we show that

{c1 = c2, c2 = c3} ` c1 = c3

for any constants c1, c2, and c3.

54

1. c1 = c2 Premise
2. c2 = c3 Premise
3. c2 = c1 1; Exercise 5.5
4. c2 = c1 → (c2 = c3 → c1 = c3) IdAx(b)
5. c1 = c3 2,3,4; SL

For transitivity, we must show that, for all members c1, c2, and c3 of
Γ∗, if c1 = c2 ∈ Γ∗ and c2 = c3 ∈ Γ∗, then c1 = c3 ∈ Γ∗. Assume that
c1 = c2 ∈ Γ∗ and c2 = c3 ∈ Γ∗. By what we have just proved, Γ∗ ` c1 = c3.
By (†), c1 = c3 ∈ Γ∗.

We define a model M = (D, v, χ) exactly as in the proof of Lemma 4.8,
that is:

(i) D = {[c]R | c ∈ C∗}.
(ii) (a) v(pi) = T if and only if pi ∈ Γ∗.

(b) v((Pn
i , [c1]R, . . . , [cn]R)) = T if and only if Pn

i c1 . . . cn ∈ Γ∗.

(iii) (a) χ(c) = [c]R for each c ∈ C∗.
(b) χ((Fn

i , [c1]R, . . . , [cn]R)) = [c]R if and only if Fn
i c1 . . . cn = c ∈ Γ∗.

We must show that the definitions given in clauses (ii)(b) and (iii)(b) do
not depend on the choice of elements of equivalence classes. In the case of
clause (iii)(b), we need to show something additional. (See below.)

A special case of the proof that clause (iii)(b) is independent of the
choice of elements of equivalence classes is Exercise 5.6, and the proof for
the general case is merely an elaboration of the proof for the special case.
The case of (ii)(b) is a bit simpler.

The additional fact we to show concerning clause (iii)(b) is that, for all
Fn

i and all c1, . . . cn, that there is a c such that

Fn
i c1 . . . cn = c ∈ Γ∗.

Suppose there is no such c. By property (3) of Γ∗,

Fn
i c1 . . . cn 6= c ∈ Γ∗.

By property (4) of Γ∗,

∀v1F
n
i c1 . . . cn 6= v1 ∈ Γ∗.

Since
∀v1F

n
i c1 . . . cn 6= v1 ∈ Γ∗ → Fn

i c1 . . . cn 6= Fn
i c1 . . . cn

55

is an instance of the Quantifier Axiom Schema,

Γ∗ ` Fn
i c1 . . . cn 6= Fn

i c1 . . . cn.

But Fn
i c1 . . . cn 6= Fn

i c1 . . . cn is an instance of Identity Axiom Schema (a),
and so Γ∗ is inconsistent, contradicting property (2) of Γ∗.

Let P be the property of being a sentence A such that

vM(A) = T if and only if A ∈ Γ∗ .

As in earlier proofs, we use a variant of formula induction to show that every
sentence has property P .

The case of atomic sentences is like that case in the proof of Lemma 4.8,
except for one change. Recall that in proving atomic cases (i)(b) and (i)(c),
we first used a variant of term induction to demonstrate that all terms
without variables have property Q, where t has property Q if and only if,
for every c ∈ C∗,

if denM(t) = [c]R then t = c ∈ Γ∗.

In the course of this demonstration, we got a contradiction from the assump-
tion that ∆ ⊆ Γ∗, where

∆ = {t1 = c1, . . . , tn = cn, Fn
i t1 . . . tn = c, Fn

i c1 . . . cn 6= c}.

This assumption contradicted the hypothesis that Γ∗ was finitely satisfiable.
What we need to show in our new context is that it contradicts the hypoth-
esis that Γ∗ is consistent. Obviously ∆ ` Fn

i c1 . . . cn 6= c. Thus it is enough
to show that ∆ ` Fn

i c1 . . . cn = c.

1. t1 = c1 Premise
.. · · · · · ·
.. · · · · · ·
.. · · · · · ·
n. tn = cn Premise
n + 1. t1 = c1 →

(Fn
i t1t2 . . . tn−1tn = c → Fnc1t2 . . . tn−1tn = c) IdAx(b)

.. · · · · · ·

.. · · · · · ·

.. · · · · · ·
2n. tn = cn →

(Fn
i c1c2 . . . cn−1tn = c → Fnc1c2 . . . cn−1cn = c) IdAx(b)

2n + 1. Fn
i c1 . . . cn = c 1,. . . ,2n; SL

56

Cases cases (ii) and (iii) of the proof that all formulas have property P
are like the corresponding cases in the proof of Lemma 2.7.

Case (iv) is like the corresponding case in the proof of Lemma 4.8, except
for one change. The last step in case (iv) proof was to show that

for all c ∈ C∗, A(x; c) ∈ Γ∗ iff ∀xA ∈ Γ∗.

The “if” part of this “iff” was proved using the fact that Γ∗ was finitely
satisfiable. In the new context, we must prove it using the fact that Γ∗ is
consistent. To do this, assume that ∀xA ∈ Γ∗. Notice that, for each c ∈ C∗,
the sentence

∀xA → A(x; c)

is an instance of the Quantifier Axiom Schema. Thus Γ∗ ` A(x; c). By (†),
A(x; c) ∈ Γ∗.

As in our earlier proofs, we have in particular that vM(A) = T for every
member of A of Γ∗, and this means we have shown that Γ∗ is satisfiable. �

Theorem 5.12. Let Γ be a consistent set of sentences of L#
C . Then Γ is

satisfiable.

Proof. By Lemma 5.10, let Γ∗ have properties (1)–(3) of that lemma. By
Lemma 2.7, Γ∗ is satisfiable. Hence Γ is satisfiable. �

Theorem 5.13 (Completeness). Let Γ be a set of sentences of L#
C and

let A be a formula of L#
C such that Γ |= A. Then Γ `FOLC

A. In other
words, FOLC is complete.

Proof. Since Γ |= A, for every model M and every variable assignment
s, if Γ is true in M, then vs

M(A) = T. Let x1, . . . , xn be all the variables
occurring free in A. Let M be any model in which Γ is true. For every
variable assignment s, vs

M(A) = T. This means that ∀x1 . . .∀xnA is true in
M. Thus

Γ |= ∀x1 . . .∀xnA.

Since Γ |= ∀x1 . . .∀xnA, Γ∪{¬∀x1 . . .∀xnA} is not satisfiable. By Theo-
rem 5.12, Γ∪{¬∀x1 . . .∀xnA} is inconsistent. Let B be a formula such that
Γ∪ {¬∀x1 . . .∀xnA} ` B and Γ∪ {¬∀x1 . . .∀xnA} ` ¬B. By the Deduction
Theorem, Γ ` (¬∀x1 . . .∀xnA → B) and Γ ` ¬∀x1 . . .∀xnA → ¬B). By SL,
Γ ` ∀x1 . . .∀xnA. Using the Quantifier Axiom Schema and MP n times, we
get that Γ ` A. �

57

Exercise 5.6. In the proof of Lemma 5.11, clause (iii)(b) of the definition
of the model M says that

χ((Fn
i , [c1]R, . . . , [cn]R)) = [c]R iff Fn

i c1 . . . cn = c ∈ Γ∗.

Show, in the special case n = 2 and i = 0, that this definition does not
depend on the choice of elements of equivalence classes. In other words,
assume that

(1) [c1]R = [c′1]R and [c2]R = [c′2]R;

(2) F 2c1c2 = c ∈ Γ∗ and F 2c′1c
′
2 = c′ ∈ Γ∗,

and prove that
[c]R = [c′]R.

58

6 The semantics of second-order logic

The languages L2
C of second order logic.

For each set C of constant symbols, we have a language L2
C.

Symbols of L2
C: All symbols of L#

C plus n-place predicate variables

V n
0 , V n

1 , V n
2 , . . .

for each n ≥ 1. In this section, we shall speak of v0, v1, . . . as individual
variables.

Remark. It is common also to have n-place function variables, but we
omit them in the interest of simplicity.

Terms of L2
C: The definition of terms is the same as that for L#

C .

Formulas of L2
C: Modify the definition of formulas of L#

C by changing
clauses (2) and (5) as follows.

(2) For each n and i, if t1, . . . , tn are terms, then Pn
i t1 . . . tn and V n

i t1 . . . tn
are formulas.

(5) If A is a formula and X is an individual or predicate variable, then
∀XA is a formula.

Models for L2
C: Models for L2

C are the same as models for L#
C .

Truth and logical implication for L2
C:

For each model M = (D, v, χ), a variable assignment is a function s that
assigns an element of D to to each individual variable and an n-place relation
on D to each n-place predicate variable. To the definition of dens

M, we add
the stipulation that dens

M(V n
i) = s(V n

i) for all n and i. The definition of
vs
M is the same as that for L#

C , except for two changes. First, there is an
extra subclause of the atomic clause (i):

(d) vs
M(V n

i t1 . . . tn) = T if and only if dens
M(V n

i)(dens
M(t1), . . . ,dens

M(tn))
holds.

59

Second, clause (iv) needs to be reinterpreted so that the variable x can be
of either kind.

The definition of a free occurrence of a variable is as before, except that
it now applies to both kinds of variables. Satisfaction and truth are defined
as for L#

C , and so are logical implication, validity, and satisfiability .

Consider the following sentence of L2
C.

∃V 2(∀v1∃v2V
2v1v2

∧ ∀v1∀v2(V 2v1v2 → ¬V 2v2v1)
∧ ∀v1∀v2∀v3((V 2v1v2 ∧ V 2v2v3) → V 2v1v3)).

Call this sentence Inf. The solution to Exercise 3.3 shows that Inf can be
true only in a model with an infinite domain. Conversely, Inf is true in
every model with an infinite domain. This is because every infinite set can
be linearly ordered in such a way that there is no greatest element. If the
domain D of M is infinite, then Inf is shown to be true in M by the variable
assignment that assigns such a linear ordering of D to V 2.

Theorem 6.1. Compactness fails for L2
C.

Proof. For n ≥ 2, let Bn be the following sentence of L#
C (and so of L2

C).

∃v1 . . .∃vn(v1 6= v2 ∧ . . . ∧ v1 6= vn ∧ v2 6= v3 ∧ . . . ∧ vn−1 6= vn).

(There is a conjunct vi 6= vj for all i and j such that 1 ≤ i < j ≤ n.) For
each n, Bn is true in all models whose domain has size ≥ n and it is false in
all models whose domain has size < n. Let

Γ = {¬Inf} ∪ {B2, B3, B4, . . .}.

Clearly Γ is not satisfiable. The theorem will be proved if we can show that
Γ is finitely satisfiable. Let ∆ be a finite subset of Γ. Let n be the largest
number such that Bn ∈ ∆. If M is any model whose domain is finite and
has size ≥ n, then, ∆ is true in M. �

Remark. Since compactness holds for L#
C , there can be no sentence like

Inf in L#
C , and so also there is no sentence like ¬Inf in L#

C . Indeed, there is
no set of sentences in L#

C that does what ¬Inf does:

Exercise 6.1. Prove that there is no set Σ of sentence of L#
C such that Σ

is true in every model with a finite domain and false in every model with an
infinite domain.

Hint. Consider the union of Σ and the set of all the Bn.

60

A recursive algorithm is an alogrithm that, except for limitations of
program size and computer memory, could be implemented in a computer
program and carried out by a computer. Call a formal language decidable if
there is a recursive algorithm that, given a formula of the language as input,
will output “yes” if the formula is valid and “no” if the formula is not valid.

The language of sentential logic is decidable. The truth-table alogrithm
is recursive. The language of first-order logic is not decidable (even with
empty C). Since the language of second-order logic contains that of first-
order logic, the language of second-order logic cannot be decidable.

Let us call a formal language semi-decidable if there is a recursive algo-
rithm that, given a formula of the language as input, will output “yes” if
the formula is valid and will not say “yes” (and perhaps will not even halt)
otherwise.

Decidability implies semi-decidability, so the language of sentential logic
is semi-decidable. The language of first-order logic (with, say, only finitely
many constants) is semi-decidable. It is not hard to see that there is a
recursive alogrithm for listing all deductions from the empty set in the sys-
tem FOLC (if C is finite). Given input A, run this listing algorithm and
give output “yes” if a deduction with last line A is listed. The language of
second-order logic is not semi-decidable, even with empty C empty.

Semi-decidable languages are essentially the same as the languages for
which there exist usable sound and complete systems of deduction. Thus
there is no such system of deduction for second-order logic.

61

