Solutions to Exercises 5.1 and 5.2

Exercise 5.1. Since the axioms of Q are true in \mathfrak{N} ,

 $\mathbf{Q} \models \sigma \Rightarrow \sigma$ is true in \mathfrak{N} ,

for every sentence of \mathcal{L}^A . Thus in both this exercise and Exercise 5.2 we only have to prove the \Leftarrow part of the biconditionals.

Every atomic sentence is, for some variable-free terms t_1 and t_2 , either $t_1 = t_2$ or $t_1 < t_2$. For such terms, let $j_1 = (t_1)_{\mathfrak{N}}$ and $j_2 = (t_2)_{\mathfrak{N}}$. By Lemma 5.3,

$$\mathbf{Q} \models t_1 = \mathbf{S}^{j_1} \mathbf{0} \text{ and } \mathbf{Q} \models t_2 = \mathbf{S}^{j_2} \mathbf{0}.$$

Thus

$$\mathbf{Q} \models (t_1 = t_2 \leftrightarrow \mathbf{S}^{j_1} \mathbf{0} = \mathbf{S}^{j_2} \mathbf{0}) \text{ and } \mathbf{Q} \models (t_1 < t_2 \leftrightarrow \mathbf{S}^{j_1} \mathbf{0} < \mathbf{S}^{j_2} \mathbf{0}).$$

If $t_1 = t_2$ is true in \mathfrak{N} , then $\models \mathbf{S}^{j_1}\mathbf{0} = \mathbf{S}^{j_2}\mathbf{0}$. If $t_1 < t_2$ is true in \mathfrak{N} , then Lemma 5.2 implies that $\mathbf{Q} \models \mathbf{S}^{j_1}\mathbf{0} < \mathbf{S}^{j_2}\mathbf{0}$. Thus we get that if σ is an atomic sentence true in \mathfrak{N} then $\mathbf{Q} \models \sigma$.

To prove that this as also true of negations of atomic sentences, we have to prove

- (a) If $j_1 \neq j_2$ then $\mathbf{Q} \models \mathbf{S}^{j_1} \mathbf{0} \neq \mathbf{S}^{j_2} \mathbf{0}$;
- (b) If $j_1 \not< j_2$ then $\mathbf{Q} \models \mathbf{S}^{j_1} \mathbf{0} \not< \mathbf{S}^{j_2} \mathbf{0}$.

We first prove (a). Assume $j_1 \neq j_2$. Either $j_1 < j_2$ or $j_2 < j_1$. We'll assume $j_1 < j_2$. The other case is similar. By j_1 applications of Axiom (2), we get that

$$\mathbf{Q} \models (\mathbf{S}^{j_1}\mathbf{0} = \mathbf{S}^{j_2}\mathbf{0} \to \mathbf{0} = \mathbf{S}^{j_2-j_1}\mathbf{0}).$$

But Axiom (1) implies that $\mathbf{Q} \models \mathbf{0} \neq \mathbf{S}^{j_2 - j_1} \mathbf{0}$.

To prove (b), assume that $j_1 \not< j_2$. By (a),

 $\mathbf{Q} \models \mathbf{S}^{j_1} \mathbf{0} \neq \mathbf{S}^k \mathbf{0}$

for every $k < j_2$. By Axiom (3) and Lemma 5.2, $\mathbf{Q} \models \mathbf{S}^{j_1} \mathbf{0} \not\leq \mathbf{S}^{j_2} \mathbf{0}$.

Exercise 5.2. The $length^*$ of a formula is like the length of a formula except that the length of atomic formulas is counted as 1 (as if atomic formulas were just single symbols). The *complexity* of a formula is defined as follows. The

complexity of an atomic formula is 0. The complexities of $\neg \varphi$ and $\forall x \varphi$ are one more than the complexity of φ . The complexity of $(\varphi \rightarrow \psi)$ is one more than the maximum of the complexity of φ and the complexity of ψ .

(a) Let P be the property of being a Δ_0 sentence σ such that

 $\begin{aligned} \sigma \text{ is true in } \mathfrak{N} \Rightarrow \mathbf{Q} \models \sigma; \\ \sigma \text{ is false in } \mathfrak{N} \Rightarrow \mathbf{Q} \models \neg \sigma. \end{aligned}$

We show by induction on complexity [induction on length^{*}] that all Δ_0 sentences have property P.

Let σ be a Δ_0 sentence, and assume that all Δ_0 sentences of smaller complexity [smaller length^{*}] have property P.

The case that σ is an atomic sentence is Exercise 5.1. The cases that σ is $\neg \tau$ and that σ is $(\rho \rightarrow \tau)$ are easy. Assume that σ is

$$\forall x (x < t \to \psi).$$

(The other bounded quantification case is similar.) Let $k = t_{\mathfrak{N}}$.

Assume first that σ is true in \mathfrak{N} . For each j < k, $\psi(x; \mathbf{S}^{j}\mathbf{0})$ is true in \mathfrak{N} . These sentences have smaller complexity [smaller length^{*}] than σ , and so $\mathbf{Q} \models$ each of them. By Lemma 5.2, $\mathbf{Q} \models \sigma$.

Now assume that σ is false in \mathfrak{N} . For some j < k, $\psi(x; \mathbf{S}^j \mathbf{0})$ is false in \mathfrak{N} , and so $\mathbf{Q} \models \neg \psi(x; \mathbf{S}^j \mathbf{0})$. By Lemma 5.2, $\mathbf{Q} \models \neg \sigma$.

(b) Let σ be $\exists x_1 \cdots \exists x_n \psi$, with $\psi \Delta_0$. Assume that σ is true in \mathfrak{N} . For some numbers k_1, \ldots, k_n , the Δ_0 sentence

$$\psi(x_1; \mathbf{S}^{k_1} \mathbf{0}) \cdots (x_n; \mathbf{S}^{k_n} \mathbf{0})$$

is true in \mathfrak{N} . By part (a) of this exercise,

$$\mathbf{Q} \models \psi(x_1; \mathbf{S}^{k_1} \mathbf{0}) \cdots (x_n; \mathbf{S}^{k_n} \mathbf{0}).$$