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Island-dynamics model for mound formation: Effect of a step-edge barrier
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We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set
technique to include the effect of an additional energy barrier for the attachment and detachment of atoms
at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed
atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium
adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical
scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results
demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the
step-edge barrier increases.
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I. INTRODUCTION

Epitaxial growth is of fundamental technological impor-
tance, as many modern optoelectronic devices are fabricated
by this process. The various stages of epitaxial growth form
a classic problem in multiscale modeling. On the one hand,
the crystal surface morphology that develops is ultimately
determined by the mobilities and corresponding kinetic rates
of individual atoms. By definition, this consideration sets a
relevant microscopic length scale of a few angstroms, and a
typical time scale, as determined by surface diffusion in terms
of a hop from one crystal lattice site to a neighboring one,
of the order of 10−6 s. On the other hand, morphological
features of surfaces and devices span length scales of the order
of hundreds of nanometers and larger, and they are grown
in the laboratory within time intervals of seconds to hours.
Hence, the description of epitaxial growth usually gives rise to
a hierarchy of models, ranging from atomistic theories such as
kinetic Monte Carlo methods, which in principle can account
for every possible microscopic process, to continuum models,
which may emerge from the coarse graining of individual
atoms or atomic layers or atomic defects.

A significant mass transport process on crystal surfaces is
the diffusion of adsorbed atoms (adatoms). If there are no
surface defects, basic processes during epitaxy are the nucle-
ation, growth, and coalescence of two-dimensional islands.
Thus, close to equilibrium, homoepitaxial growth proceeds
layer by layer. However, growth is far from equilibrium for
many homoepitaxial systems, and, in fact, growth can become
unstable and result in the formation of mounds. This kind of
instability has been observed experimentally in many systems,
such as Cu [1,2], Fe [3], Ag [4], and Pt [5].

In this paper, we formulate and numerically implement
a generalized model for the dynamics of islands on crystal
surfaces. The model is enriched with a condition at the
island boundary that accounts for a kinetic asymmetry in
the attachment and detachment of atoms at step edges

(surface line defects) relative to the diffusion of adatoms on
nanoscale terraces. We also express analytically an element of
the prescribed boundary condition, namely, the equilibrium
concentration of adatoms at the step edge. The numerical
simulations that we carry out within this approach clearly
demonstrate how mounds form and steepen.

The key ingredient of our generalized model is the step-edge
[Ehrlich-Schwoebel (ES)] energy barrier [6,7], which is known
to be the main microscopic process underlying the formation
of mounds. This effect is illustrated schematically in Fig. 1.
By the ES barrier, an atom located next to the step edge is
more likely to diffuse to the adjacent site on the same terrace,
with diffusion rate D, than diffuse downward to the lower
terrace, with diffusion rate D′; thus, D′ < D. Similarly, an
additional barrier may exist on the lower terrace, with diffusion
rate D′′. The additional step-edge barrier corresponding to
D′ causes an uphill current and the formation of mounds,
as has been shown by continuum models [8,9] and atomistic
kinetic Monte Carlo (KMC) simulations [10–14]. Since this
phenomenon is purely kinetic, it is often stated that mound
formation is a far-from-equilibrium phenomenon. One of our
goals here is to capture this out-of-equilibrium effect within
the island-dynamics model.

Our present work forms a nontrivial extension of a previous
island-dynamics model for epitaxial growth. In particular, over
the last 15 years, we have developed an approach that employs
the level-set technique in order to capture the kinetic processes
governing island dynamics [15–21]. The model has a two-scale
character, as it retains atomistic details in the growth direction
(and, thus, resolves each atomic layer), but it is continuous in
the lateral directions (see Sec. II). The parameters of this model
are determined by microscopic kinetic rates. In principle,
kinetic processes such as surface diffusion, edge diffusion,
and detachment from step edges can be included in the model.

Because of the above features, the island-dynamics model
offers certain advantages over continuum approaches, e.g.,
[8], which cannot have atomic resolution, as well as atomistic
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FIG. 1. Schematic representation of the step-edge barrier in the
case with isotropic diffusion (when diffusion rates are scalars). The
top panel shows the potential energy surface, and the bottom panel
illustrates the corresponding diffusion rates near the step edge (side
view).

KMC simulations, which are limited in their capability to
describe the macroscopic behavior of surface structures.
Hence, the present approach is deemed suitable for capturing
nanoscale features of the surface morphological evolution.

In this paper, we aim to describe how the effect of the
ES barrier can be incorporated into the island-dynamics
model via a Robin-type boundary condition for the adatom
diffusion equation on each terrace, and we study some of
the consequences. Our numerics show that this additional
barrier indeed leads to mound formation within the island-
dynamics model. For a complete treatment, we also provide a
rigorous derivation of an analytic formula for the equilibrium
adatom concentration near the step edge in the presence of a
microscopic step-edge barrier. In this formula, all parameters
are expressed in terms of atomistic kinetic rates.

The remainder of the paper is organized as follows. In
Sec. II, we describe the basic ingredients of our model
and a corresponding numerical scheme that incorporates the
Robin-type boundary condition for the adatom flux. Section III
presents an analytic formula for the equilibrium adatom
concentration, ρeq, at the island boundary. In Sec. IV, we
discuss our numerical results with a focus on the prediction of
mound formation. Finally, Sec. V summarizes our approach
and outlines some open questions. The Appendix provides the
(somewhat technical) derivation of ρeq on the basis of a kinetic
model coupling step flow with kinks and adatoms.

II. ISLAND-DYNAMICS MODEL

This section is divided into three parts. In the first part
(Sec. II A), we outline the key ingredients of the island-
dynamics model, particularly the Robin-type boundary con-
dition with a step-edge barrier. In the second part (Sec. II B),
we describe a numerical scheme that incorporates the above
boundary condition into the level-set framework. In the third
part (Sec. II C), we provide a few details on the implementation
of the numerical scheme.

A. Formulation: Equations of motion

The core of our approach is an island-dynamics model
together with a level-set method for its simulation [15–19].

Individual adatoms are not resolved explicitly within this
model. Coarse-graining is invoked in the lateral directions, but
atomistic detail is retained in the growth direction. Thus, the
model is ideally suited to describe the evolution of nanoscale
structures. The starting point is the main idea of the level-set
method: For islands of height �, their boundaries are described
by �� = {x : φ(x) = �}, where φ is the level-set function which
evolves according to

∂φ

∂t
+ vn|∇φ| = 0. (1)

All physical information for the island dynamics is captured by
the velocity, vn, normal to the island boundary. This variable
is given by

vn = (D∇ρ− − D∇ρ+) · n, (2)

where ρ(x,t) is the adatom concentration on the terrace, D is
the diffusion tensor (a 2×2 matrix), −D∇ρ± is the vector-
valued adatom flux restricted to the island boundary in the
upper (+) or lower (−) terrace, and n is the outward unit
normal to the boundary. Thus, Eq. (2) is a mass conservation
statement. The step height, a, an atomistic length, has been set
equal to unity (a = 1).

Within a mean-field approach, the adatom concentration,
ρ(x,t), is obtained by solving on each terrace the diffusion
equation

∂ρ

∂t
= F + ∇ · (D∇ρ) − 2

dN

dt
+ ∇ ·

(
ρ

kBT
D∇Ead

)
, (3)

where F is the external deposition flux and the last term is
the thermodynamic drift (kBT is the Boltzmann energy). For
simplicity, a cubic lattice with x- and y-directed diffusion is
assumed, such that the diagonal entries of D are D(x)(x) and
D(y)(x). Note, however, that a different surface geometry or
diagonal diffusion can be included in the model. The term
dN/dt = σ1〈{[D(x)(x) + D(y)(x)]/2}ρ2(x)〉 is the nucleation
rate, where σ1 is a capture number [22,23] and 〈·〉 denotes
the average taken over all lattice sites. Stochastic elements for
island nucleation [16] and the thermal dissociation of small
islands [18] have been included and validated by comparison
to KMC simulations [16,18].

A few remarks on the thermodynamic drift of Eq. (3) are in
order. A spatially varying, anisotropic potential energy surface
is allowed, i.e., there are (i) a spatially varying adsorption
energy, Ead(x), and (ii) an anisotropic spatially varying
transition energy, Etrans(x). The differences Etrans(x) − Ead(x)
define energy barriers for the diffusivities D(x)(x) and D(y)(x)
(which signify surface kinetics; cf. Fig. 1). The spatial variation
of Ead(x) leads to a thermodynamic drift since adatoms prefer
sites of lower Ead. Thus, kinetic and thermodynamic effects
are properly accounted for by the model.

Equation (3) needs to be supplemented with boundary
conditions at the islands’ boundaries. In the absence of a
step-edge barrier, the boundary condition is of the Dirichlet
type, viz. [24],

ρ± = ρeq, (4)

at the island boundary, where ρeq is an equilibrium adatom
density at the step edge. In contrast, in the presence of a

022404-2



ISLAND-DYNAMICS MODEL FOR MOUND FORMATION: . . . PHYSICAL REVIEW E 90, 022404 (2014)

step-edge barrier, a more general boundary condition is
needed. We follow the derivation of Pimpinelli and Villain
[25], and we impose the Robin-type boundary condition

(D − D′)n · ∇ρ+ + n · D′n (ρ+ − ρeq) = 0, (5)

which must replace Eq. (4) on the upper terrace (+). The basic
idea of the derivation in [25] is to balance macroscopic and
microscopic expressions for the flux toward the step edge. In
Eq. (5), D′ is the diffusion tensor for diffusion across the step
edge, (D − D′)n denotes the vector that is the projection of
tensor D − D′ on n, and n · D′n denotes the diagonal entry
of D′ for the outward direction normal to the boundary. We
henceforth assume isotropic diffusion everywhere and thus set
D = D I and D′ = D′ I, where I is the unit tensor (unit matrix).
Then, boundary condition (5) simplifies to [25]

n · ∇ρ+ + D′

D − D′ (ρ
+ − ρeq) = 0, (6)

where D′ < D. We note in passing that as D′ approaches D,
condition (6) reduces to ρ+ = ρeq, as it should [24]. A similar
boundary condition applies to the lower terrace (−) relative to
the step edge, where D′ is replaced by D′′:

n · ∇ρ− − D′′

D − D′′ (ρ
− − ρeq) = 0. (7)

It is worth stressing that the quantity ρeq entering Eqs. (6)
and (7) is not known a priori but can be determined from
atomistic processes in the presence of a step-edge barrier. In
our approach, this ρeq is derived from a kinetic model (see
Sec. III and Appendix).

B. Numerical scheme

The difficulty in solving diffusion equation (3) with
boundary condition (6) and its counterpart at the lower terrace
comes from the fact that points of the boundary typically do
not coincide with numerical grid points, and that standard nu-
merical approaches such as the ghost-fluid approach [26–28]
cannot be used when a differential relation (and not just a
value or a jump for the solution) is specified at the boundary.
We have recently overcome this difficulty and have developed
a finite-volume approach [29] to solve diffusion equation (3)
with a boundary condition of the form (6). In the following,
we describe the basic idea of this approach.

Consider a cut cell Ci,j , as depicted in Fig. 2. First, we write
Eq. (3) in integral form in the upper terrace:

∫
Ci,j ∩ �+

[
∂ρ

∂t
− ∇ · (D∇ρ)

]
d� =

∫
Ci,j ∩�+

Gd�, (8)

where Ci,j ∩ �+ is the intersection of Ci,j with the upper
terrace, �+, and

G = F − 2
dN

dt
+ ∇ ·

(
ρ

kBT
D(∇Ead)

)
.

Γ
Li,j+1/2

Li+1/2,j

Li−1/2,j

Li,j−1/2

Ci,j

Ω−

Ω+

FIG. 2. (Color online) Schematic of a grid including a computa-
tional cell, Ci,j , cut by an interface curve, �. �± denotes the region
of the upper (+) or lower (−) terrace, and � is the island boundary.

We then apply an implicit scheme in time, expressing Eq. (8)
as ∫

Ci,j ∩�+
L̃−ρn+1d� =

∫
Ci,j ∩ �+

(L̃+ρn − 	tG̃n) d�, (9)

where G̃ is an approximation of G, L̃ is a second-order central-
difference approximation of the linear operator

L± =
(

I ± 	t

2
∇ · (D∇)

)
,

and ρn denotes the value of the solution ρ at time t = tn.
Equation (9) is a discretized-in-time version of Eq. (8).

The main difficulty in approximating Eq. (9) is the
evaluation of the term∫

Ci,j ∩ �+

[
I − 	t

2
∇ · (D∇)

]
ρn+1d�,

in such a way as to impose Robin-type boundary condition (6).
Referring to Fig. 2, which depicts the general case of a cell
Ci,j cut by the interface �, the term

∫
Ci,j ∩ �+ ρn+1d� can be

approximated as∫
Ci,j ∩ �+

ρn+1 d� = ρn+1
i,j [Area of (Ci,j ∩ �+)].

The respective approximation of the term
∫
Ci,j ∩ �+ ∇ ·

(D∇)ρn+1 d� is achieved by first applying the divergence
theorem and thus rewriting the requisite surface integral in an
equivalent form involving two line integrals:∫

∂(Ci,j ∩ �+)
D∇ρn+1 · n dl

=
∫

∂Ci,j ∩ �+
D∇ρn+1 · n dl +

∫
Ci,j ∩ �

D(∇ρn+1)+ · n dl,

(10)

where the symbol ∂R denotes the boundary of region R
(R = Ci,j ∩ �+ or Ci,j ). The first term on the right-hand side
of Eq. (10) is approximated by a standard finite-difference
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scheme:∫
∂Ci,j ∩ �+

∇ρn+1 · n dl

= ρn+1
i+1,j − ρn+1

i,j

	x
Li+ 1

2 ,j − ρn+1
i,j − ρn+1

i−1,j

	x
Li− 1

2 ,j

+ ρn+1
i,j+1 − ρn+1

i,j

	y
Li,j+ 1

2
− ρn+1

i,j − ρn+1
i,j−1

	y
Li,j− 1

2
, (11)

where ρn+1
i,j here is the value of the solution ρ at some point

in Ci,j in the upper terrace at time tn+1, and Li±1/2 (Lj±1/2)
denotes the length of the face in �+ between i and i ± 1 (j and
j ± 1), as depicted in Fig. 2 (right part of the cell). On the other
hand, the second term on the right-hand side of Eq. (10), which
amounts to the flux normal to the boundary � in the upper
terrace, explicitly invokes the Robin-type boundary condition
(6):

∫
Ci,j ∩ �

(∇ρn+1)+ · n dl

=
∫
Ci,j ∩�

− D′

D − D′
[(

ρn+1
i,j

)+ − ρeq
]
dl.

Corresponding formulas can be derived for the lower terrace
(�−) in the cut cell with use of condition (7) with replacement
of D′ by D′′.

The requisite integrals are approximated by the methods
of Min and Gibou [30,31]. In [29], it was rigorously shown
that the solution is accurate to second order in the mesh size
and leads to a symmetric linear system that can be efficiently
inverted with a preconditioned conjugate gradient method [32].

C. Some implementation details

In addition to the ES barrier, a few physical corrections
were implemented in our code to account for very thin regions
in which there may be only one or two grid points per layer in
each direction. This scenario is not a problem in the absence
of a step-edge barrier (when we have a Dirichlet boundary
condition for ρ), because we prescribe the adatom density at
the step edge to be equal to the equilibrium adatom density,
ρeq. In this case, even with just a single grid point on a narrow
terrace, we can still calculate the gradients of ρ because ρeq is
prescribed. In contrast, with a step-edge barrier, when Robin-
type conditions (6) and (7) are imposed, we do not have an
explicit value of ρ prescribed at the boundary. Then, we need
at least three grid nodes per terrace in each direction in order
to calculate the gradients of ρ, which determine the normal
velocity of the step-edge according to Eq. (2).

In typical simulations with a large step-edge barrier, i.e.,
when D′ � D in the upper terrace, very thin terraces are
often visible and multiple layers are often developed between
two neighboring grid nodes. To capture the correct physical
behavior, we apply the following approximation: When we
have fewer than three grid nodes on a narrow terrace, we
assume that all flux deposited onto that small area will be added
to the boundary, instead of calculating the flux into the
boundary from gradients of ρ [cf. Eq. (2)]. More precisely,

we assume that half of the mass is added to the lower terrace,
and the other half to the upper terrace.

The second physical approximation that we utilize is
concerned with areas in which a jump of multiple terrace levels
occurs within two neighboring grid nodes. When we have this
situation, we divide the calculated velocity contribution by
the difference in height between grid nodes. Essentially, we
are enforcing conservation of mass by assuming that equal
amounts of flux are deposited onto each layer.

Finally, we note that in our present numerical simulations,
we use ∇Ead = 0 (no thermodynamic drift) in the presence of
isotropic diffusion. The results are discussed in Sec. IV.

III. EQUILIBRIUM ADATOM DENSITY, ρeq

In this section, we provide a formula for the ρeq of Eqs. (6)
and (7) in the presence of a step-edge barrier. This formula
stems from a terrace-step-kink (TSK) model, which couples
step flow with the motion of kinks and adatoms along step
edges and retains atomistic information in the requisite kinetic
rates [33]. Our detailed, somewhat general, calculation of ρeq

can be found in Appendix. Here, we simplify the derived
expression for ρeq by restricting attention to parameters used
in the simulations that will be presented in this paper.

First, we briefly describe the setting of the TSK model [33].
The geometry consists of a periodic sequence of steps with
atomic height a (a = 1) separated by distance L as they move
along a fundamental crystallographic axis. Atoms hop on each
terrace and attach/detach to/from step edges. Atomistic kinetic
rates are invoked to describe the related transitions. Here, we
use the notation introduced in [33]. In particular, DT = D is the
terrace (T) adatom diffusion coefficient, D+

TE = D′ amounts to
transitions from the upper (+) terrace to the step edge (E), and
D−

TE = D′′ refers to transitions from the lower (−) terrace to
the edge; D−

ET = D is the rate for the transition from the step
edge to the lower terrace, and D+

ET is the transition rate from
the edge to the upper terrace and by detailed balance D+

ET =
DD′/D′′; DEK = DE corresponds to hopping from the step
edge (E) to kinks (K); D+

TK = D′ refers to transitions from
the upper terrace (T) to kinks (K), and D−

TK = D′′ describes
transitions from the lower terrace to kinks; and DEB = DE,
D+

TB = D′, and D−
TB = D′′ correspond to transitions from the

step edge (E) or terrace (T) to the bulk (B) of atoms. The
constant DE is the step-edge diffusion coefficient. Note that
D+

ETD−
TE = D+

TED−
ET, as dictated by detailed balance [33].

From the TSK model, it can generally be shown that
(see Appendix)

ρeq ≈ C
[
FL

2

1

cw1DEK + C(cw2D
+
TK + cw3D

−
TK)

]2/3

×
[

ch1DEB + C(ch2D
+
TB + ch3D

−
TB)

cg1DEK + C(cg2D
+
TK + cg3D

−
TK)

]1/3

, (12)

where

C =
1
L

(
cf +

D+
ET

DT
+ cf −

D−
ET

DT

) + cf +cf − 


D2
T

1
L

(
cf +

D+
TE

DT
+ cf −

D−
TE

DT

) + cf +cf −
D+

TE
DT

D−
TE

DT

, (13)

and 
 = D−
TED+

ET = D+
TED−

ET. The constants cf ±, cwj , cgj ,
and chj (j = 1, 2, 3) are coordination numbers for related
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transition paths within a mean-field description (see Ap-
pendix), with values cf + = cf − = 1, cw1 = cw2 = 2, cw3 = 1,
cg1 = cg3 = 2, cg2 = 4, ch1 = 2, ch2 = 3, and ch3 = 1 [33].

The use of the above numerical values and the parameters
D, DE, D′, D′′, and D in Eqs. (12) and (13) yields C = D/D′′,
and

ρeq ≈ 2−2/3P 2/3
e

D

D′′

[
DE

2DE + (2D′/D′′ + 1)D

]2/3

×
[

2DE + (3D′/D′′ + 1)D

2DE + (4D′/D′′ + 2)D

]1/3

, (14)

where Pe = FL/DE is the edge Péclet number. Equation (14)
can be further simplified by elimination of the step-edge barrier
in the lower terrace, setting D′′ ≈ D.

IV. NUMERICAL RESULTS AND DISCUSSION

The main results of our model are shown in Fig. 3. These
are snapshots of typical island dynamics simulations after
the deposition of approximately 32 ML for different values
of the step-edge barrier, i.e., different values of D′/D. We
assume that there is no step-edge barrier for atoms that attach to
the step edge from the lower terrace, and thus we set D′′ = D.
Furthermore, we assume that Ead is a constant everywhere
(thus ∇Ead = 0). All simulations were carried out with a set
of typical growth parameters, and we chose a deposition rate
F = 1.0 ML s−1, a diffusion rate D = 106 s−1, an adatom
detachment rate D = 10 s−1, a lattice size of 132 lattice sites,
and a numerical resolution of 192 grid points in each spatial

14
18
22
26
30
34
38

D’/D=0.95 

D’/D=0.1 D’/D=0.01 

D’/D=0.3 (b) (a) 

(c) (d) 

FIG. 3. (Color online) Island morphology after the deposition of
32 atomic layers for different values of D′/D. (a) D′/D = 0.95
(almost no step-edge barrier); (b) D′/D = 0.3; (c) D′/D = 0.1;
and (d) D′/D = 0.01 (large step-edge barrier). The steepening of
mounds for decreasing values of D′/D (increasing step-edge barrier)
is evident.

direction. We obtained qualitatively similar results for different
growth parameters.

When there is no step-edge barrier (or a small step-edge
barrier), growth proceeds essentially layer by layer, and there
are only a few exposed layers present [cf. Fig. 3(a)]. As the
step-edge barrier increases [D′/D = 0.3 and 0.1, in Figs. 3(b)
and 3(c), respectively], growth starts becoming unstable, and
more and more layers are exposed. In Fig. 3(d), we have a
substantial step-edge barrier (D′/D = 0.01), and we observe
steep mounds with over 20 exposed layers in our simulations.

The transition from layer-by-layer growth to unstable
growth and the formation of mounds can also be viewed in
Fig. 4, where we show a log-log plot of the time evolution
of the surface roughness, w, for the above four different
values of D′/D. The surface roughness is defined by w =√

〈(hi − 〈h〉)2〉, where hi is the height at lattice site i and
the average 〈·〉 is taken over all lattice sites. Evidently, when
D′/D is close to unity [cf. Fig. 4(a)], the roughness oscillates,
which is a typical signature of layer-by-layer growth. As
D′/D decreases, the oscillations of w as a function of
time (or coverage) die out. Indeed, no such oscillations of
w are visible in our simulations for D′/D = 0.1 and 0.01
[cf. Figs. 4(c) and 4(d)]. Notably, as D′/D decreases, the
surface roughness increases substantially. Scaling arguments
suggest that w ∼ �β for large enough �, where � is the
coverage, and β is a scaling exponent. The dashed lines in
Fig. 4 correspond to β, and we measure values for β that are
0.50, 0.69, 0.85, and 0.56, for Figs. 4(a)–4(d), respectively. No
clear trend can be seen. We do not think that there is significant
physical meaning in these values, as some important physics
(such as downward funneling) are missing in our model, and
the slope of the mounds is a result of the numerical resolution.
A systematic study of the growth exponent β will be the subject
of future work.

0.1 1 10 100
0.1

1

10

R
ou

gh
ne

ss

0.1 1 10 100
0.1

1

10

R
ou

gh
ne

ss

R
ou

gh
ne

ss

R
ou

gh
ne

ss

0.1 1 10 100
0.1

1

10

0.1 1 10 100
0.1

1

10

(a) 

(d) 

(b) 

(c) 

Coverage (ML) Coverage (ML)

Coverage (ML) Coverage (ML)

FIG. 4. Time evolution of the surface roughness, w = [〈(hi −
〈h〉)2〉]1/2, for different values of D′/D. (a) D′/D = 0.95 (small step-
edge barrier); (b) D′/D = 0.3; (c) D′/D = 0.1; and (d) D′/D =
0.01 (large step-edge barrier). As the step-edge barrier increases, w

increases considerably and oscillations of w as a function of time
die out. The dashed straight lines are guides to the eye to measure a
possible scaling exponent β.
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Our treatment of island dynamics is amenable to extensions
in order to model mound formation in more realistic settings. In
laboratory experiments, it is often observed that the mounds get
steeper as they form, until they reach a final slope. This slope
selection has been explained via (atomistic) KMC simulations
[11], as well as by continuum step dynamics models [34]
through a mechanism called downward funneling. By this
mechanism, atoms that are deposited close to a step edge are
more likely to be incorporated into the lower terrace: they
are “funneled” toward the lower terrace. As long as the upper
terrace is large, this effect is small. However, as the upper
terrace gets narrower (which happens when the mound gets
steeper), the relative importance of this effect increases, and
eventually this effective downward flux balances the effective
upward flux due to a step-edge barrier.

In our simulations, we have not incorporated downward
funneling, and as a result we do not observe a slope selection.
In fact, the mounds shown in Fig. 3 steepen continuously,
until they reach a slope that is determined by the numerical
resolution of our simulation. In principle, it is possible
to incorporate downward funneling in our approach. This
additional effect is the subject of work in progress. Another
effect missing from our island-dynamics model is that of
elastic step-step interactions. In particular, the inclusion of
step-step interactions in our model and the study of their
influence on slope selection are currently under investigation.

V. SUMMARY AND OUTLOOK

In this paper, we substantially improved and numerically
simulated an island-dynamics model, combined with a level-
set approach, in order to study mound formation and evolution
on crystal surfaces. In particular, we included and implemented
an additional step-edge barrier by applying a general, Robin-
type boundary condition for the adatom flux normal to the
step edge. We also introduced a stable, second-order accurate
numerical scheme that enables us to solve the adatom diffusion
equation with such a boundary condition on a fixed grid with
moving interfaces.

The Robin-type boundary condition of our generalized
model contains the equilibrium adatom density, ρeq, at the step
edge as a key parameter. Here, we presented an analytic for-
mula for ρeq, which we rigorously derived from an atomistic,
kinetic model of epitaxial growth that couples step flow with
the motion of kinks and diffusion of adatoms. This formula
expresses ρeq in terms of atomistic transition rates.

The inclusion of a step-edge barrier in the model leads to the
formation of mounds. Our numerical simulations demonstrate
how mounds form and steepen as a result of the increase of
the step-edge barrier. To obtain the experimentally observed
selection of slopes of the mounds, additional physics needs to
be included in the model. This will be part of our future work.
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APPENDIX: KINETIC DERIVATION OF ρeq

In this appendix, we determine the ρeq entering the Robin
boundary conditions (6) and (7), in the presence of a step-
edge barrier, by starting with the kinetic formulation of [33].
Our derivation forms a nontrivial modification of an earlier
calculation of ρeq where the effects of step-edge barriers are
left out [33].

In the spirit of [33], we focus on the kinetic steady state
of a periodic array of steps with atomic height a separated by
distance L as they move at velocity v along a fundamental
crystallographic (say, x) direction. Suppose that the steps are
descending in the positive x direction and set a = 1. We
consider homogeneous, isotropic terrace diffusion of constant
scalar diffusion coefficient DT, with ∇Ead ≡ 0 in the absence
of nucleation (dN/dt ≡ 0). The diffusion equation for the
adatom density, ρ, on each terrace reads

∂ρ

∂t
= F + DT ∇2ρ. (A1)

In the kinetic steady state, the adatom density is a traveling
wave, ρ = (x − vt), where (ξ ) is smooth. Thus, Eq. (A1)
is solved by (ξ ) = c1e

−vξ/DT − (F/v)ξ + c2, where 0 < ξ <

L, ξ = x − vt , and c1 and c2 are integration constants to be
determined. By periodicity of the step train, the steady-state
adatom densities at each step edge on the upper (+) and lower
(−) terrace are

ρ+ = (L) = c1e
−vL/DT − (F/v)L + c2,

ρ− = (0) = c1 + c2, (A2)

by which we can express c1 and c2 in terms of ρ+ and ρ−, e.g.,
c2 = (1 − e−vL/DT )−1(ρ+ − ρ−e−vL/DT + FL/v).

We need to determine ρ± = ρ±
eq in terms of the requisite

atomistic kinetic rates. For this purpose, we will invoke
the edge-adatom density, φ, and kink density, k, which are
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FIG. 5. Schematic of microscopic processes near a straight step
edge according to the terrace-step-kink model of [33]. The relevant
kinetic transition rates are shown by arrows. �± denotes the upper
(+) or lower (−) terrace.
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constants in the kinetic steady state. The relevant microscopic
processes and transition rates are shown in Fig. 5.

First, we relate ρ± to φ. Denoting f± the mass fluxes toward
the step-edge in the normal direction, we impose the kinetic
relation [33] f− = vρ− + DT(∂ξ)− = vc2 − DTF/v at ξ =
0, where ∂ξ = ∂/∂ξ . By global mass conservation, f+ + f− =
LF . By solving the last two equations for f+ and f− and using
Eq. (A2), we obtain

f− = v(ρ+ − ρ−e−vL/DT ) + FL

1 − e−vL/DT
− DTF

v
, (A3)

with f+ = F l − f− and v = f− + f+ = FL.
To relate ρ± to φ, we now apply the mean-field approxi-

mation [33] f± = cf ±(D±
TEρ± − D±

ETφ), where D±
TE and D±

ET
are diffusion coefficients for the transition of atoms hopping
from the upper (+) or lower (−) terrace (T) to the edge (E) and
vice versa, and cf ± are associated coordination numbers. By
combining the mean-field relation for f± with Eq. (A3) and
f+ = FL − f−, we derive a system of equations for ρ+ and
ρ− (given φ):

v

1 − e−vL/DT
ρ+ −

(
ve−vL/DT

1 − e−vL/DT
+ cf −D−

TE

)
ρ−

= DTF

v
− FL

1 − e−vL/DT
− cf −D−

ETφ, (A4)

(
cf +D+

TE + v

1 − e−vL/DT

)
ρ+ − ve−vL/DT

1 − e−vL/DT
ρ−

= DTF

v
− FL

e−vL/DT

1 − e−vL/DT
+ cf +D+

ETφ. (A5)

The solution of this system yields ρ± in terms of φ. We
simplify the resulting formulas by assuming small convection,
i.e., vL/DT � 1 so that 1 − e−vL/DT ≈ vL/DT, along with

1

L
�

[
1

L

(
cf +
Pe+

+ cf −
Pe−

)
+ D±

TE

DT

cf +cf −
Pe∓

]
φ,

where Pe± = FL/D±
ET is the edge Péclet number with refer-

ence to the upper (+) or lower (−) terrace; in many physical
situations of interest, Pe± � 1. Consequently, Eqs. (A4) and
(A5) give

ρ± ≈ C± φ, (A6)

where

C± =
1
L

(
cf +

D+
ET

DT
+ cf −

D−
ET

DT

) + cf +cf −
D∓

TE
DT

D±
ET

DT

1
L

(
cf +

D+
TE

DT
+ cf −

D−
TE

DT

) + cf +cf −
D+

TE
DT

D−
TE

DT

. (A7)

At this stage, we should point out that Eqs. (A6) and (A7)
can be further simplified. By the principle of detailed balance,
the rates D±

ET and D±
TE satisfy [33]

D+
ETD−

TE = D+
TED−

ET. (A8)

It follows that C+ = C− ≡ C. Thus, we establish that

ρ+ ≈ ρ− ≈ ρeq ≈ C φ, (A9)

where C is given by Eq. (A7) independent of subscript. It
remains to compute φ.

Next, we determine a relation between φ and the kink
density, k. Apply the geometric law [33] FL = v = awk,

where w is the kink mean velocity. This w satisfies the mean-
field equation w = w1 + w2 + w3, where w1 = cw1(DEKφ −
DKE), w2 = cw2(D+

TKρ+ − D+
KT), and w3 = cw3(D−

TKρ− −
D−

KT). In these mean-field laws, DEK, DKE, D±
TK, and D±

KT are
diffusion coefficients for transitions from an edge (E) to a kink
(K) and vice versa, and from the upper or lower terrace (T)
to a kink and vice versa. Furthermore, cwj (j = 1, 2, 3) are
coordination numbers for these transitions. Accordingly, we
find

FL

k
≈ cw1DEKφ + cw2D

+
TKρ+ + cw3D

−
TKρ− (A10)

by neglecting the effects of DKE and D±
KT. Equations (A9) and

(A10) yield a relation between φ and k:

kφ ≈ FL[cw1DEK + C(cw2D
+
TK + cw3D

−
TK)]−1. (A11)

Another relation for φ and k is obtained via the transport
law for kinks [33], ∂tk + ∂s[w(kr − kl)] = 2(g − h), where kr

(kl) is the density of right- (left-) facing kinks, kr = kl = k/2
for straight edges along the x axis, g is the net gain in kink
pairs due to nucleation/breakup, and h is the net loss of kink
pairs (s denotes the edge arc length). For constant k, we must
impose g = h and replace the source terms g and h by known
mean-field expressions [33].

In particular, we write g = g1 + g2 + g3 and h = h1 +
h2 + h3 with the following mean-field laws for gj and hj [33]:
g1 = cg1(DEKφ2 − DKEkrkl), g2 = cg2(D+

TKρ+φ − D+
KTkrkl),

and g3 = cg3(D−
TKρ−φ − D−

KTkrkl); in addition, h1 =
ch1(DEBφkrkl − DBE), h2 = ch2(D+

TBρ+krkl − D+
BT), h3 =

ch3(D−
TBρ−krkl − D−

BT), where DEB, DBE, D±
TB, and D±

BT are
suitable diffusion coefficients for atom transitions from the
edge (E) to the bulk (B) and vice versa, and from the terrace
(T) to the bulk and vice versa. Furthermore, cgj and chj are
associated coordination numbers. Therefore, setting g = h

leads to an algebraic equation for φ, k, and ρ±:

(cg1DEKφ2 + cg2D
+
TKρ+φ + cg3D

−
TKρ−φ)

= (ch1DEBφ + ch2D
+
TBρ+ + ch3D

−
TBρ−)k2. (A12)

In our derivation of the last relation, we neglected terms
proportional to DKE, D±

KT, DBE, and D±
BT. The combination

of Eqs. (A9) and (A12) yields

φ ≈ 1

4

ch1DEB + C(ch2D
+
TB + ch3D

−
TB)

cg1DEK + C(cg2D
+
TK + cg3D

−
TK)

k2. (A13)

The last stage of our calculation involves the solution of the
system of Eqs. (A11) and (A13) for φ and k. Thus, we obtain

φ ≈
[
FL

2

1

cw1DEK + C(cw2D
+
TK + cw3D

−
TK)

]2/3

×
[

ch1DEB + C(ch2D
+
TB + ch3D

−
TB)

cg1DEK + C(cg2D
+
TK + cg3D

−
TK)

]1/3

(A14)

and

k ≈
[

4FL

cw1DEK + C(cw2D
+
TK + cw3D

−
TK)

]1/3

×
[
cg1DEK + C(cg2D

+
TK + cg3D

−
TK)

ch1DEB + C(ch2D
+
TB + ch3D

−
TB)

]1/3

. (A15)
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Equations (A9) and (A14) lead to the desired formula for ρeq,
Eq. (12).

In the special case without a step-edge barrier, we set
D±

TE = D±
TK = D±

TB = DT and D±
ET = DEK = DEB = DE

[33]. Then, we have C = DE/DT, and Eqs. (A9), (A14), and

(A15) give ρeq ≈ (DE/DT)φ, φ = (3/16)1/35−2/3 P
2/3
e ,

and k = (16/15)1/3P
1/3
e , where Pe = FL/DE =

Pe+ = Pe− (edge Péclet number); cf. Eqs. (7.3)–(7.5)
in [33].
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