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a b s t r a c t

We present a novel and efficient method for solving the Poisson equation, the heat equa-
tion, and Stefan-type problems with Robin boundary conditions over potentially moving,
arbitrarily-shaped domains. The method utilizes a level set framework, thus it has all of
the benefits of a sharp, implicitly-represented interface such as the ease of handling com-
plex topological changes. This method is straightforward to implement and leads to a lin-
ear system that is symmetric and positive definite, which can be inverted efficiently with
standard iterative methods. This approach is second-order accurate for both the Poisson
and heat equations, and first-order accurate for the Stefan problem. We demonstrate the
accuracy in the L1 and L1 norms.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The Poisson and heat equations on irregular domains and their extension to moving boundary, or Stefan problems, are
central to countless applications in science and engineering. Examples include the design of solidification methodologies
for advanced materials in the aerospace and semiconductor industries, combustion, bio-nanotechnology, tissue engineering,
bacteria colonies (which can be used in the development of drugs) and many others. Several schemes have been proposed to
numerically compute solutions to these equations. Finite element methods [24,30] have achieved very good results, however
in the case of moving boundaries, the need for remeshing makes the method computationally expensive, especially in three
spatial dimensions. Boundary integral methods [2] have also been successful and probably the most efficient for 2D diffusion
dominated problems. In fact, the earliest level set approach for solidification problems [33] used a boundary integral ap-
proach. A difficulty with this approach is that it is complex to implement in three spatial dimensions. Chen et al. [5] proposed
a simple level set method in an Eulerian coordinate system for solving Stefan problems with Dirichlet boundary conditions
applied at the boundary of the moving front. In this formulation, the entire solution process is based on a fixed Cartesian grid.
Similar work can also be found in [35]. This type of discretization when applied to a time-implicit method leads to a non-
symmetric linear system. Improvements were made to this method including a second-order accurate approach with a sym-
metric linear system [11], and later a fourth-order accurate approach [12]. All of these schemes have considered Dirichlet
boundary conditions only.
. All rights reserved.
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However, there exist applications and corresponding models for which the inherent physics require a more general Robin
boundary condition on a possibly moving, irregular domain. For example, an application that has received considerable
interest is the modeling of thin film growth by molecular beam epitaxy (MBE), one of the main processes used in the semi-
conductor industry. In the case of MBE, the diffusion of adatoms on the substrate, their nucleations and the subsequent
growth of islands can be modeled by an Island Dynamics approach (a Stefan-type problem) based on the level set method,
as first proposed by Caflisch et al. [3]. A distinguishing feature of this model is that it employs coarse-graining in the lateral
directions while retaining atomistic discreteness in the growth direction, so that it is capable of describing large nanoscale
surface structures. So far, such models have only considered equilibrium adatom densities at the islands’ boundaries, i.e.
Dirichlet boundary conditions. The physical assumption behind this boundary condition is the absence of current of adatoms
between different growth layers. However, it is well known that for most systems there is an energy barrier for atoms to
diffuse between different layers, the so-called Ehrlich–Schwoebel barrier [6,31]. This additional barrier effectively leads to
an uphill current and promotes the roughening of the surface and the formation of mounds [36]. In a microscopic picture,
such a barrier and its strain-induced spatial variations are the driving force for the formation of quantum dots, three-dimen-
sional structures well known for their important opto-electronic properties. The modeling of the barrier for adatoms to dif-
fuse between different layers has been proposed several decades ago in [36] and appears as a Robin boundary condition for
continuum-based models.

The Island Dynamics model is based on the level-set formulation [27,32,25]. Two of the main advantages of the level set
formulation is the fact that (1) it is a sharp interface model, thus it can be used to precisely locate the interface in order to
apply discretizations that depend on the exact interface location, as is the case in typical Stefan-type problem; (2) only the
standard time step restrictions for stability and consistency are required, making the method more efficient than other im-
plicit methods such as the phase-field approach [18,16,17,21,30,15]. Level set methods have been extremely successful on
uniform Cartesian grids in the study of physical problems such as compressible flows, incompressible flows, multiphase
flows (see e.g. [25,32] and the references therein), epitaxial growth (see e.g. [3,13,14,28] and the references therein) and
in image processing (see e.g. [26] and the references therein). However, level set methods have limitations of their own:
boundary conditions are not straightforward to impose, unlike in phase-field methods for example. Progress has been made
in the level set community with the advent of the ghost-fluid method [7,11,12,22,4,8]. However, solving a diffusion-type
problem on moving irregular domains with a Robin boundary condition has so far resisted every attempt in the level set
community.

In this paper, we present an efficient Eulerian numerical method to solve the Stefan problem with Robin boundary con-
ditions imposed on a possibly moving, irregular domain. In particular, this method is implicit in time to avoid the stringent
time step restriction associated with explicit schemes and leads to symmetric positive definite linear systems that can be
inverted efficiently with iterative methods such as the preconditioned conjugate gradient method [29]. We use a dimen-
sion-by-dimension approach on a fixed Cartesian grid, making the extension of the method to three spatial dimensions
straightforward. This approach achieves second-order accurate solutions to the Poisson and heat equations, and first-order
accurate solutions to the Stefan problem.

We describe the main components of the level set method in Section 2. We then present the algorithm to impose Robin
boundary conditions for the Poisson and heat equations in Section 3 and for the Stefan problem in Section 4. Section 5 pre-
sents numerical results for the Poisson, heat and Stefan problems. We conclude in Section 6.
2. Interface tracking – the level set method

In this paper, we use the level set method [27] to implicitly represent the moving boundary. Consider a domain
X ¼ X� [Xþ with boundary @X, separated by a lower dimensional interface C. We describe X� by the set of points, x, such
that /ðxÞ < 0. Likewise, we describe Xþ by the set of points such that /ðxÞ > 0. The interface C is implicitly defined by
/ðxÞ ¼ 0. The evolution of the interface is then given by the evolution of /, and obeys:
/t þ V � r/ ¼ 0; ð1Þ
where V is an externally generated velocity field.
The normal to the interface and the interface mean curvature are defined by
n ¼ r/
jr/j ; j ¼ r � n; ð2Þ
respectively and are numerically approximated by central differencing. In order to keep the level set function close to a
signed distance function, we use the reinitialization scheme of Sussman et al. [34]:
/s þ Signð/0Þðjr/j � 1Þ ¼ 0; ð3Þ
for a few iterations in fictitious time, s. Here /0 is a level set function that is not necessarily a signed distance function but
describes the same contour as that of /. The interested reader is referred to [25,32] for general details of the level set method.
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3. Numerical approach

3.1. Numerical approach for the Poisson and heat equations

Our approach utilizes a uniform cell-based discretization of the domain with the discrete values located at the cell cen-
ters, as shown in Fig. 1. We first consider the heat equation, noting that the case of the Poisson equation is a trivial subset.
Consider the heat equation applied to the interior region X�,
qt � kDq ¼ g; ð4Þ
with a Robin boundary condition on C,
rq � nþ aq ¼ f : ð5Þ
We will express the heat equation in integral form,
Z
X�

qt dA�
Z

X�
kDqdA ¼

Z
X�

g dA; ð6Þ
and apply the Crank–Nicolson finite difference scheme to (6) over each grid cell, Ci;j,
Z
Ci;j\X�

qnþ1
i;j � qn

i;j �
kDt

2
eDqnþ1 � kDt

2
eDqn � Dt

2
gnþ1

i;j �
Dt
2

gn
i;j

� �
dA ¼ 0; ð7Þ
where eD represents a discretization for the Laplacian.
For the evaluation of the terms in (7), consider the general case of a cell in which the interface C passes through, as seen in

Fig. 1. The first and second terms in (7) are straightforward to evaluate if we make the reasonable approximation that q is
spatially constant within each grid cell, i.e.,
Z

Ci;j\X�
qdA ¼ qi;j � AreaCi;j\X� :
Similarly, the last two terms in (7) are straightforward to evaluate if we approximate g as constant within the grid cell,
Z
Ci;j\X�

g dA ¼ gi;j � AreaCi;j\X� :
Now consider the third and fourth terms in (7). We will apply the divergence theorem to each of these terms in order to
evaluate the flux through the boundaries of our region of interest,
Z

Ci;j\X�
r � rqdA ¼

Z
@ðCi;j\X�Þ

rq � ndl:
We can split this integral into two parts: one part contains the grid cell boundary (@Ci;j \X�, shown as the bold solid
segments in Fig. 1) the second part contains the interface boundary ðCi;j \ C, shown as the bold dashed segment in
Fig. 1)
Z

@ðCi;j\X�Þ
rq � ndl ¼

Z
@Ci;j\X�

rq � ndlþ
Z
Ci;j\C
rq � ndl: ð8Þ
Fig. 1. Cell-based discretization of the domain (left), and cell cut by the interface (right).
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On the first term of the right hand side of (8), we can apply a standard finite difference approximation of the gradient
since the normals are precisely aligned with the cartesian grid. The integration along the cell boundary can be performed
piecewise, therefore, the general case is given by,
Z

@Ci;j\X�
rq � ndl ¼

qiþ1;j � qi;j

Dx
Liþ1

2;j
�

qi;j � qi�1;j

Dx
Li�1

2;j
þ

qi;jþ1 � qi;j

Dy
Li;jþ1

2
�

qi;j � qi;j�1

Dy
Li;j�1

2
; ð9Þ
where Li�1=2 (resp. Lj�1=2) refers to the length of the face in X� between i and i� 1 (resp. j and j� 1) as depicted in Fig. 1
(right).

We then apply the Robin boundary condition (5) to each cell that contains a portion of C by substituting the value of
rq � n from the boundary condition into the second term of the right hand side of (8),
Z

Ci;j\C
rq � ndl ¼

Z
Ci;j\C
ðf � aqÞdl: ð10Þ
Here, we also use the approximation of constant q within the cell, but we must evaluate the integral containing f carefully
since this term is only valid on C, not throughout the entire cell,
Z

Ci;j\C
ðf � aqÞdl ¼ �aqi;jLCi;j\C þ

Z
Ci;j\C

f dl: ð11Þ
In this work, we leverage the recent work of Min and Gibou [19,20] in the discretization of the Dirac delta functions. A hall-
mark of this approach is that it is robust to perturbations of the interface on the grid. We next discuss the procedure we use
for calculating line and area integrals in Section 3.2. We note that this approach is a generalization of solving the Poisson
equation with homogeneous Neumann boundary condition that one encounters in typical projection methods for fluid flows
[23].

3.2. Calculating line and area integrals

For the sake of clarity, we will briefly describe the geometric approach of [19,20] for calculating line and surface integrals
over an irregular domain, X�. This approach utilizes an implicit function to represent the irregular domain and produces sec-
ond-order accurate results which are independent of the interface location on the grid.

The general procedure is to decompose grid cells into a union of triangles and approximate S \ C (Fig. 2) and S \X�

(Fig. 3), with a linear interpolation of /, stored at the vertices of each triangle. With this approach, the line and area integrals
can be calculated as the sum of the integrals over each simplex, S,
Z

C
f dC ¼

X
C:grid cell

Z
C\C

f dC ¼
X

C:grid cell

X
S2TðCÞ

Z
S\C

f dC;Z
X�

f dX ¼
X

C:grid cell

Z
C\X�

f dX ¼
X

C:grid cell

X
S2TðCÞ

Z
S\X�

f dX;
where TðCÞ is the triangulation of a cell C, i.e., C ¼
S

S2TðCÞS and where the second-order midpoint method is used to calculate
the integrals. We refer the interested reader to [19] for more details of the integration procedure.

3.2.1. Properties of the linear system
The linear system is symmetric and positive definite. Indeed for a cell in X� with neighbors also in X�, the discretization

leads to the usual symmetric discretization of the Crank–Nicholson scheme. For cells cut by the interface this property is
Fig. 2. Triangulation of a cell (left), and the general representations of S \ C (right).
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retained and is illustrated geometrically in Fig. 1 (right). Consider the coefficient of qi�1;j , which comes from the discretiza-
tion in cell Ci;j, and the coefficient of qi;j, which comes from the discretization in cell Ci�1;j. We have:
A
Ci;j

i�1;j ¼
kDt
2Dx

L
Ci;j

i�1
2;j

and A
Ci�1;j
i�1;j ¼

kDt
2Dx

L
Ci�1;j

iþ1
2;j
: ð12Þ
Since L
Ci;j

i�1
2;j
¼ L

Ci�1;j

iþ1
2;j

, the two coefficients are equal, consequently the matrix is symmetric. We note that the terms that arise

from the boundary, C, do not affect the symmetry of the linear system since they appear only in the diagonal coefficient
and in the right hand side.

The discretization results in strictly positive diagonal elements and a diagonally dominant linear system for problems that
are formulated with a positive value of a in the boundary condition (5), therefore, the linear system is positive definite.

In conclusion, the linear system is symmetric and positive definite. Accordingly, fast linear solvers can be used to invert it.
In the example section, we use the conjugate gradient method with an incomplete Cholesky preconditioner.
4. Numerical approach for Stefan-type problems with Robin boundary condition

Here we consider the Stefan problem, where q is determined by the diffusion equation (4) with a Robin boundary con-
dition (5) on the moving interface C. The interface velocity is determined by
V ¼ D rq½ �C; ð13Þ
where D is a velocity coefficient and ½�� denotes a jump in the gradient of q across the interface. The level set function, /,
implicitly defines and captures the evolution of the interface according to the advection equation
/t þ D½rq� � r/ ¼ 0:
4.1. Algorithm

We use the following algorithm to solve the Stefan problem: Given the solution qn at time tn,

1. Extrapolate the initial field, qn, outward from the interface to cover a few grid cells in order to define valid values that will
be used when assembling the right hand side of the linear system at time tnþ1 (see Section 4.1.1).

2. Calculate the velocity field, V, from the gradient of qn.
3. Advect /n to obtain the new boundary location, /nþ1.
4. Assemble the linear system and right hand side on the irregular domain described by /nþ1.
5. Solve the diffusion equation to find the new field, qnþ1.
6. Repeat from Step 1.

We describe each step in what follows:

4.1.1. Extrapolation of q values
In the case of an advancing interface, when assembling the linear system for time tnþ1, the values of q at time tn will be

needed at grid locations which were outside of the interface at tn but are swept by the interface from tn to tnþ1. In order to
define these ghost cell values, we use quadratic extrapolation in the normal direction to the tn interface as described in [1]:

The extrapolation is done in a series of steps. First, the second directional derivative of q in the normal direction is defined
only in the interior region X�,
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qnn ¼ n � r n � rqð Þ: ð14Þ
Next, this scalar function is extrapolated in a constant manner over the interface by solving for a few time steps:
@qnn

@s
þ Hð/nÞn � rqnn ¼ 0; ð15Þ
where Hð/nÞ is the Heaviside function which is used to not disturb the known values of qnn in the region / 6 0. Once the
second directional derivative is defined over a band around the interface, we can solve for the first directional derivative,
qn, by solving the PDE,
@qn

@s
þ Hð/nÞ n � rqn � qnnð Þ ¼ 0; ð16Þ
which defines qn to have a directional derivative equal to qnn. Finally, we solve a similar equation which defines the values of
q to have a directional derivative equal to qn,
@q
@s
þ Hð/nÞ n � rq� qnð Þ ¼ 0: ð17Þ
These PDEs are solved over a fictitious time s, and it is only necessary to iterate a few time steps to obtain extrapolated
values of q in a narrow band around the interface.
4.1.2. Calculating the velocity field
The velocity of the advancing interface is calculated according to Eq. (13). For our simple Stefan problem, we have as-

sumed that q is constant within Xþ, therefore, the velocity is determined solely by the gradient within X�. In the case where
the solution is to be computed on both X� and Xþ, thus the velocity computed by the jump across the interface, the velocity
is computed node-by-node after extrapolating the solution on X� to Xþ and the solution on Xþ to X�. Of course, two copies
of the original solution are stored before taking this step. The interested reader is referred to [10,11] for more details.

Once the gradient of q is defined, the velocity field is calculated in two steps. The first step is to calculate the velocity in a
node-by-node basis according to Eq. (13). We then use constant extrapolation in the normal direction first outward from the
interface toward Xþ, and then inward from C toward X� in order to define the velocity field in a band around the interface.
4.1.3. Advancing the interface
We keep track of the interface evolution in time by solving the advection Eq. (1). Here we use a second-order-accurate

Semi-Lagrangian method as described in [37]. This method is implicit and unconditionally stable, so that large time steps
may be used. Semi-Lagrangian methods reconstruct the solution by integrating numerically along characteristic curves start-
ing from any grid point, xi, and tracing back the departure point, xd, in the upwind direction. Interpolating formulas are used
to recover the value of the solution.

More precisely, the solution at a grid point, xi is found by
/nþ1ðxiÞ ¼ /nðxdÞ; ð18Þ
where xd is the corresponding departure point. We use a second order explicit midpoint method to integrate numerically,
x̂ ¼ xnþ1 � Dt
2
� Vnðxnþ1Þ; ð19Þ

xn
d ¼ xnþ1 � Dt � Vnþ1=2ðx̂Þ; ð20Þ

Vnþ1=2 ¼ 3
2

Vn � 1
2

Vn�1: ð21Þ
The values of x̂ and /nðxn
dÞmay not be located on a grid node, therefore, they can be approximated by interpolation schemes

(piecewise bilinear in our case).
5. Examples

5.1. Poisson solution over a circular domain

Consider a solution to the Poisson equation Dq ¼ f over a circular domain. The problem is formulated with a Robin
boundary condition (5) with a ¼ 1. The interior region, X� is described by a circle of radius r ¼ 0:75 centered at the origin
and the computational domain is taken as ½�1;1� � ½�1;1�. The simulation was compared against the exact solution of
q ¼ exy. Fig. 4 depicts the numerical solution. The solution is second-order accurate in the L1 and L1 norms as demonstrated
in Fig. 5.
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5.2. Poisson solution over a flower-shaped domain

Consider a solution to the Poisson equation Dq ¼ f over a flower-shaped domain. The boundary of the five-petal flower is

defined by the zero level set of / ¼ r � 0:5� y5þ5x4y�10x2y3

3r5 . The computational domain is taken as ½�1;1� � ½�1;1�. A Robin
boundary condition (5) with a ¼ 1 is used to formulate the problem. We compare our simulation against the exact solution
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of q ¼ exy. A plot of the numerical solution is displayed in Fig. 6. The accuracy results are presented in Fig. 7. The solution is
approximately second-order accurate in the L1 and L1 norms.

5.3. Heat solution over a circular domain

We present a solution to the heat equation (4) with k ¼ 1 over a circular domain of radius r ¼ p, centered at the origin.
The computational domain is ½�1:5p;1:5p� � ½�1:5p;1:5p�. The Robin boundary condition (5) is formulated with a ¼ 1. We
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compare our numerical solution against the exact solution of q ¼ �e�2t cosðxÞ cosðyÞ. The simulation was run from time t ¼ 0
to t ¼ 0:5 with a time step of dt ¼ dx. The accuracy results of the solution are presented in Fig. 8. As with the Poisson exam-
ples, the solution is second-order accurate in the L1 and L1 norms.

5.4. Heat solution over a flower-shaped domain

Consider a solution to the heat equation (4) with k ¼ 1 over a five-petal flower shape. The problem is formulated with a
Robin boundary condition (5) with a ¼ 1. The boundary of the flower is defined by the zero level set of

/ ¼ r � 0:5� y5þ5x4y�10x2y3

3r5 , and the computational domain is taken as ½�1;1� � ½�1;1�. The exact solution has the form
q ¼ �e�2t cosðxÞ cosðyÞ. A plot of the numerical solution at three time steps is displayed in Fig. 9. The accuracy results are
presented in Fig. 10. The solution is second-order accurate in the L1 and L1 norms.

5.5. Examples for the Stefan problem

5.5.1. 2D Frank sphere solution with Robin boundary condition
The Frank sphere solution [9] that describes the growing solidification of a cylinder in 2D was reformulated with a Robin

boundary condition. We begin with the radial heat equation expressed with a similarity variable, s ¼ rt�
1
2,
10 6
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10 1

Fig. 8.
numeri
@2T
@s2 ¼ �

s
2
þ 1

s

� �
@T
@s
;

where T is the temperature. We can integrate once with a change of variable,
@T
@s
¼ As�1e�

s2
4 :
Integrating, we obtain an expression for T,
T ¼ A
Z s

1
z�1e�

z2
4 dzþ B;
which can also be written using the error function E1,
T ¼ �A
2

E1
s2

4

� �
þ B: ð22Þ
The far-field boundary condition may be applied to Eq. (22) to set the integration constant B ¼ T1. The second integration
constant, A, is found by recognizing that the temperature must remain continuous at the interface. Since T ¼ 0 in the solid
phase (Xþ), then T ¼ 0 on the interface. Furthermore, A is constrained by the initial radius, Ro, and time, to,
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Error analysis in the L1 norm (left) and L1 norm (right) of the heat solution over the circle domain (Example 5.3). The triangle markers are the
cal data. The solid lines are least-squares fits to the data with slopes �1:95 and �1:95. The dashed lines are first and second-order visual guides.
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So ¼ sðRo; toÞ ¼ Rot
�1

2
o ;

A ¼ 2T1

E1
S2

o
4

� � :
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After applying the expressions for both integration constants to Eq. (22), the temperature profile in X� takes the form,
10 6

10 5

10 4

10 3

Fig. 11.
the num
T ¼ T1 1�
E1

s2

4

� �
E1

S2
o

4

� �
0@ 1A: ð23Þ
In the case of a Robin boundary condition (5) and radial symmetry, we have
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The initial front velocity, Vn, is given by:
Vn jCo
¼ � rT � n½ �jCo

¼ � 2T1

E1
S2

o
4

� � t
�1

2
o S�1

o e�
S2
o
4 : ð25Þ
Also, since the interface remains a cylinder as it grows in time, RðtÞ ¼ Sot
1
2,
Vn jC ¼
dR
dt
¼ So

2t
1
2
: ð26Þ
By combining Eqs. (25) and (26), we obtain the relationship between T1 and So,
T1 ¼ �
S2

o

4
E1

S2
o

4

 !
e�

S2
o
4 : ð27Þ
Consider a simulation over the domain ½�3;3� � ½�3;3�. The far-field temperature is chosen to be T1 ¼ �0:25, thus giving
an initial radius of Ro ¼ 0:75. The problem is formulated with a ¼ 1 in the boundary condition (5) and (24). The simulation is
run from time t ¼ 1 to t ¼ 2.

The accuracy of the temperature field and the radius location are presented in Figs. 11 and 12, respectively. A measure-
ment of the radius location is linearly interpolated from every grid interval in which the level set function changes sign. Both
the temperature and the radius are first-order accurate. This is consistent with our expectations of the method since the
solution depends on the gradient of the temperature field.
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Error analysis in the L1 norm (left) and L1 norm (right) of the temperature of the Frank sphere solution (Example 5.5.1). The triangle markers are
erical data. The solid lines are least-squares fits to the data with slopes �1:79 and �1:37. The dashed lines are 1st-order visual guides.
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Fig. 12. Error analysis in the L1 norm (left) and L1 norm (right) of the radius of the Frank sphere solution (Example 5.5.1). The triangle markers are the
numerical data. The solid lines are least-squares fits to the data with slopes �1:13 and �1:17. The dashed lines are 1st-order visual guides.
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5.5.2. 2D frank sphere with Robin boundary condition and discontinuous solution
We present an exact solution to the Stefan problem with a discontinuous solution across the interface. The solution is

formulated from the above Frank sphere solution. The temperature profile takes the form,
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This solution describes a cylinder growing radially outward. The temperature inside the cylinder is zero and the temperature
profile has a jump at the interface DT ¼ �0:1. The boundary condition is given by (5) with a ¼ 1. The velocity of the moving
boundary is given by
Vn ¼ �Drq � n; ð29Þ
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Error analysis in the L1 norm (left) and L1 norm (right) of the temperature of the discontinuous Frank sphere solution (Example 5.5.1). The triangle
s are the numerical data. The solid lines are least-squares fits to the data with slopes �1:81 and �1:41. The dashed lines are 1st-order visual guides.
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where the velocity coefficient, D, is given by
10 2

10 1

Fig. 14
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o
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 !
; ð30Þ
and constrains the growth of the cylinder such that the radius evolves by R ¼ Sot
1
2.

With a chosen temperature value of T1 ¼ �0:5, the initial sphere radius is R ¼ 1:56. The simulation is computed over the
time t ¼ 1 to t ¼ 2:5. The results are presented in Figs. 13 and 14. The temperature profile and the radius location are first-
order accurate.
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. Error analysis in the L1 norm (left) and L1 norm (right) of the radius of the discontinuous Frank sphere solution (Example 5.5.2). The triangle
s are the numerical data. The solid lines are least-squares fits to the data with slopes �1:05 and �1:07. The dashed lines are 1st-order visual guides.
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Fig. 15. Temperature contour plot after 30 s of cooling for Example 5.5.3.
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Fig. 16. Temperature evolution of Example 5.5.3.
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5.5.3. Heat transfer in a convectively cooled body
We provide an example of a classical heat transfer problem involving conduction within a solid body and convection at

the object’s boundary. In contrast to the previous examples, this problem does not have an analytical solution for compar-
ison. A backward Euler time discretization was used in conjunction with our approach for the Laplacian outlined in Section
3.1.

Consider a two-dimensional solid body, initially at temperature, T ¼ 1300 K and with the initial shape of a f8=2g star
polygon with tip-to-tip length of

ffiffiffi
2
p

. The temperature of the object is found by solving the heat equation,
qCpTt ¼ kDT: ð31Þ
Balancing heat conduction and convection at the interface gives the following Robin boundary condition,
�krT � n ¼ hðT � T1Þ: ð32Þ
In this example we consider the material properties of copper: density, q ¼ 8;954 kg=m3, heat capacity at constant pressure,
Cp ¼ 384 J=kg K, and thermal conduction coefficient, k ¼ 378 W=m K. With a chosen value of the convection coefficient,
h ¼ 3072 W=m2 K, the corresponding Biot number is Bi ¼ 2, therefore, internal conduction and convection are both relevant
to the solution. The ambient temperature is taken as T1 ¼ 300 K. We used a simple model for simulating thermal expansion,
in which the boundary normal velocity is set to a constant value of �0.001.

Fig. 15 is a contour plot of the temperature distribution after a cooling period of 30 s. Fig. 16 shows the temperature evo-
lution of the y ¼ 0 cross-section.
6. Conclusions

We have proposed a straightforward and efficient method for the solution of the Poisson, heat, and Stefan-type problems
with Robin boundary conditions over possibly moving, arbitrarily-shaped domains. Our approach utilizes the level set frame-
work so that complex interface topology is implicitly captured. This is straightforward to implement with a cell-based dis-
cretization of the domain and a geometric based method [19] for calculating the resulting integrals. The approach produces
symmetric and positive definite linear systems so that fast iterative solvers may be used. We have shown this method to be
second-order accurate for the Poisson and heat equations, and first-order accurate for Stefan-type problems. This approach
can be easily adapted to more advanced applications and models where the requisite physics involve Robin boundary
conditions.
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