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A review is given of nucleation and growth models as applied to the earliest stages of thin film
growth. Rate equations (RE), kinetic Monte Carlo (KMC) and level set (LS) simulations are de-
scribed in some detail, with discussion of remaining uncertainties, in particular the functional form
of the so-called capture numbers in rate equations. Recent examples are given of sub-monolayer
nucleation at surface defects, attachment-limited capture, and Ostwald ripening. The experimental
literature is cited, and experiment-theory comparisons are made where possible. Emphasis is given
to fast computational models that can span a large range of length and time scales, which might be
further developed in the direction of on-line process control.

I. INTRODUCTION

Nucleation and growth of thin films include processes
on time and length scales that span many orders of mag-
nitude. Atomic motion occurs on length scales of the or-
der of Ångstroms, and time scales that reflect the typical
atomic vibration frequencies (i.e. 10−13 s). On the other
hand, a typical opto-electronic device might be up to
several microns in size, and its growth can take minutes
or even hours. Thus, modeling nucleation and growth
of thin films presents a substantial challenge to theoret-
ical physicists and material scientists. Moreover, some
of the phenomena that occur are inherently stochastic
in nature, and an ideal model would seamlessly combine
the different time and length scales, but include only the
necessary fluctuations.
The models typically used in nucleation theory are ei-

ther completely stochastic or completely deterministic.
Mean field rate equations (RE’s) are a set of coupled
ordinary differential equations (ODE’s), that were devel-
oped for this problem1,2 more than 30 years ago. They
are easy to formulate and relatively easy to solve. Several
results of nucleation theory have been successful in elu-
cidating basic aspects of epitaxial growth. In particular,
scaling results derived from RE nucleation models have,
under the appropriate circumstances, been used to de-
duce microscopic parameters such as diffusion constants,
adsorption and binding energies from comparison with
experimental measurements. However, these equations
contain no explicit spatial information, and thus do not
readily yield information on surface morphology. One of
the challenges is to include the spatial information prop-
erly into a model that is mean-field by construction; re-
cent progress in this area and limitations are discussed
in detail in this article.
Continuum models based on partial differential equa-

tions (PDE’s) are appropriate mainly at large time and
length scales.3,4 By construction, features on the atomic
scale are neglected, so they are poorly suited to de-
scribe growth on this scale, and we do not discuss con-
tinuum models in this article. However, we note that
since continuum models, as well as rate equations, are

based on differential equations, they are amenable to an-
alytic treatments that can elucidate, e.g., asymptotic or
stability properties.

An alternative to completely analytic approaches are
atomistic models that explicitly take into account the
stochastic nature of each microscopic process that may
occur during nucleation and growth of thin films. They
are typically implemented in the form of molecular dy-
namics (MD)5 or kinetic Monte Carlo (KMC)6 simula-
tions. MD simulations are very useful for identifying rel-
evant microscopic processes, such as the detailed steps
during nucleation. But time and size limitations make
them unfeasible for studying growth on technologically
relevant time and length scales. KMC simulations, on
the other hand, have been used successfully to study
qualitative, and in limited cases, quantitative, behavior
of growth. They allow for easy implementation of a large
number of microscopic processes, whose rates are ideally
obtained from first principles calculations.7–9. However,
the occurrence of very fast rates (which is particularly
relevant at higher temperatures) ultimately limits the ap-
plicability of these methods to larger systems.

Recent work has attempted to develop new models that
are hybrid models between continuum, PDE-based meth-
ods, and atomistic, stochastic methods. One approach,
termed configurational continuum, which appears to be
very promising, has been developed by Kandel and co-
workers; we refer to Ref. 10 for further details. Another
approach that has been developed by one of us (CR) in
the past few years is an island dynamics model, based on
the level-set method. This approach will be discussed in
more detail in Sec. IID. This model allows us to describe
thin film growth as continuous in the plane of the sur-
face, yet each atomic layer is discretely resolved. More-
over, different sources of fluctuations can be isolated and
studied individually.

One generally distinguishes between growth on singu-
lar (nominally flat) surfaces, and vicinal, or stepped sur-
faces. A vicinal surface can be considered as a number of
flat terraces that are separated by steps of atomic height.
Growth on these surfaces proceeds either via step-flow,
where atoms diffuse toward a step before meeting an-
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other atom, or via nucleation and growth, where islands
nucleate and grow on the terrace. Growth on vicinal sur-
faces was first discussed in a seminal paper by Burton,
Cabrera, and Frank (BCF)11.
In this article we focus on modeling of growth on

singular surfaces, where one distinguishes the following
three growth modes: Frank-van-der-Merwe (FM) (layer-
by-layer) growth, Volmer Weber (VW), and Stranski-
Krastanov (SK) growth12–14 . During VW growth 3D is-
lands form on the surface. The competition between FM
and VW growth can easily be understood based on en-
ergetic arguments as a competition between surface and
interface energies. The case of SK growth is more compli-
cated, and is intimately connected to (elastic) strain en-
ergy, which arises in most heteroepitaxial systems. Dur-
ing SK growth, one or more layers form initially (the
so-called wetting layer), followed by the formation of 3D
islands. Understanding the transition between growth
modes is of great interest. The focus of this article is
on submonolayer growth and will not address these is-
sues, but the methods described are also applicable to
multilayer growth.
The remainder of this article is organized as follows:

In section II B we discuss mean-field rate equations. In
particular, we focus on scaling laws, and how these equa-
tions can properly describe mean-field quantities. In sec-
tion IIC we describe the kinetic Monte-Carlo method,
and discuss some of its applications. The level-set
method is described in section IID. It is well known that
rate equations do not properly predict the entire island
size distribution, for the reason that rate equations do
not contain any explicit spatial information. Recent at-
tempts and progress in including this spatial information
implicitly through particular forms of capture numbers is
discussed in section IIIA. Recent models of nucleation at
defect sites are described in section III B. In section III C,
we address the problem of attachment-limited, and time-
dependent capture numbers. Section IIID highlights is-
sues related to coarsening and Ostwald ripening, and an-
nealing in general. Finally, in section IV we give an as-
sessment of the relation of all the theoretical methods
introduced, and a personal impression of future direc-
tions.

II. MATHEMATICAL AND COMPUTATIONAL
METHODS

A. General Considerations

Typical processes that may occur during epitaxial
growth are illustrated schematically in Fig. 1. Atoms are
deposited onto a perfect substrate surface with a deposi-
tion flux F (a); in the older literature, this same quantity
has been termed the deposition rate R, both measured
typically in monolayers (ML) per second. Once atoms are
on the surface as adatoms, they can diffuse with a diffu-
sion constant D (b). Adatoms can meet other adatoms
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FIG. 1: Typical atomistic processes during epitaxial growth:
see text for discussion.

to form a dimer (c), or attach to existing islands (d).
Once adatoms are attached to an island, they can detach
from the island edge (e) or diffuse along the island edge
(f). Deposition of adatoms on top of islands and the cor-
responding processes have to be considered as well (g,h);
at high temperatures some adatoms can re-evaporate (i).
In this section we describe different methods that model
these processes at different levels of detail.

The most detailed description is a molecular dynam-
ics (MD)5 simulation. In an MD simulation one calcu-
lates the forces on all atoms, and then moves the atoms
according to the equations of motion. The most cru-
cial aspect of an MD simulation is the knowledge of the
correct potentials. The timestep is required to be small
enough to resolve the vibrational frequency of the atoms,
so that there is a natural limit on the time that can be
simulated. Moreover, even with simple pairwise poten-
tials the evaluation of forces is rather time-consuming, so
that simulations of realistic system sizes on realistic time
scales to describe nucleation and growth is currently not
possible with MD simulations. This is still true, despite
some impressive recent advances in speeding up MD sim-
ulations15. However, these simulations are very useful to
identify some of the relevant microscopic pathways dur-
ing nucleation and thin film growth.

One can make significant progress by using transition
state theory (TST)16,17. In TST rates are associated
with microscopic events such as adatom diffusion, and
all the irrelevant atomic vibrations are neglected. This
way, the simulation timestep and thus the computational
efficiency is increased by 5-10 orders of magnitude for
realistic growth conditions. One can usually express the
rates in the form ν = ν0exp(−∆E/kT ), where ∆E is
an activation energy barrier, k is the Boltzman constant,
and T is the temperature. The prefactor ν0 is typically
of the order of the atomic vibration frequency, and is
set to 1012 - 1013 s−1 in many simulations. TST is the
basis of rate equation (RE), kinetic Monte Carlo (KMC),
and many other approaches, which are the subject of the
remainder of this section.
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B. Mean-Field Rate Equations

1. Basic Concepts

The time evolution of mean-field quantities, such as
the density of adatoms n1 and of islands of size s, ns,
can be described by a set of coupled ordinary differen-
tial equations (ODE’s) known as rate equations (RE’s).
Adatoms can either meet another adatom with a capture
efficiency σ1 to form a dimer, an island of size 2, or get
captured by islands of size s with a capture efficiency σs.
At high substrate temperature, these adatoms can re-

evaporate. For example, evaporation is clearly required
to establish equilibrium with the (3D) vapor phase, and
many models have been developed for the low super-
saturation regime, following the pioneering work more
than half a century ago by Burton, Cabrera and Frank,
known as BCF11, much of which is now in the textbook
and monograph literature 18,19. If the adsorption energy
Ea is low, then the evaporation time τa is short, and
this evaporative quasi-equilibrium is quickly established
at low adatom density, with n1 = Fτa. RE models for
nucleation and growth in this situation were established
in the 1960’s1, and exact solutions for the capture effi-
ciency, the so-called capture numbers, were obtained in
this case2.
This high temperature problem is soluble in closed

form, because the islands that form are isolated from
each other, due to the short BCF diffusion length, xs =
(Dτa)

1/2, the mean adatom surface diffusion distance be-
fore evaporation. The approach becomes more complex
if there are several competing processes at work. For this
more general case, it has been argued20,21 that one can
develop the idea of competitive capture, in which char-
acteristic times for different processes add inversely, and
the shortest time dominates. In this formulation, the RE
for n1 at low coverage is essentially

dn1/dt = F − n1/τ, with

τ−1 = τ−1
a + τ−1

n + τ−1
c + ..., (1)

which has a steady state solution n1 = Fτ . The compos-
ite term n1/τ represents all the loss terms, adsorption
(τa), nucleation (τn), capture by stable clusters (τc) and
maybe other processes (... in Eq. 1), all of which add like
resistances in parallel. One clearly may envisage many
other processes that might take place on, or close to, the
substrate surface. However, as in any other modeling sit-
uation, completeness is bought at the price of loss of sim-
plicity and clarity; thus one only adds new terms when
compelled to do so by the (experimental) evidence. Some
of these situations are developed in section III. In addi-
tion to Eq. 1 for the single adatoms, we need a complete
set of RE’s for the larger clusters, size s ≥ 2. Assuming
initially that we are concerned only with single adatom
processes, these can most conveniently be written as

dns/dt = Us−1 − Us, (2)

where Us is the net rate of conversion of clusters of size s
into size (s+1). As in Eq. 1, one can add other processes,
most naturally coalescence between islands, Uc, which
will reduce the island density at small sizes and increase
the density at large sizes. This topic has been extensively
considered, both in the early literature2,22,23 and more
recently24,25. Some comments are made below.
The above discussion implies that the models devel-

oped for the different growth modes are going to be dif-
ferent in detail. However, all RE models have certain
features in common, and we discuss these features here.
First, we need expressions for the net rate, Us−1 and Us,
in the set of equations 2. Each of these is the difference
between two terms, a capture and a decay term, such
that when these terms are equal, we have local equilib-
rium. Ignoring direct impingement for the moment, the
capture term is given by σ1Dn

2
1 for forming a dimer, or is

σsDn1ns for forming an (s+1)-cluster from an s-cluster,
where the capture numbers σs remain to be determined.
The decay terms can be written in the form nsΓs, where
Γs is the decay rate of s-clusters forming (s−1)-clusters.
Details of the decay rate expressions are given in Ap-
pendix A.
There are two main types of RE models in the litera-

ture. The first emphasizes the role of the critical nucleus
of size i. The second approach does not include a criti-
cal island size explicitly. Rather, attachment and detach-
ment rates for islands of all sizes are in principle included.
Those two approaches are described in the following two
sub-sections.

2. Rate Equations With Explicit Critical Island Size

The idea of a critical nucleus has been explored in
many papers in the literature, and has several related
consequences. The main ideas are illustrated in Fig. 2.
The left-hand side of this diagram indicates that, because
of equal forward and back reaction rates (full lines), small
clusters may be in local equilibrium with the instanta-
neous adatom density n1. Using the detailed balance
arguments set out in Appendix A, we are able to write
that, for sub-critical clusters j ≤ i the corresponding net
rates Uj are zero, and the Walton relation

26 (Eq. A1)
can be used to express the density of critical nuclei ni,
in terms of the adatom density n1 and the energy of the
critical nucleus Ei. The right-hand side indicates that
‘stable’ clusters eventually grow, and the back reaction
rate becomes less important (dashed line). These stable
clusters, size s > i, grow by diffusive capture and, maybe
at a later stage, by direct impingement.
As developed by one of us (JV) and others, this ap-

proach can be combined with compacting the RE’s for
all cluster sizes s > i into one RE for the stable cluster
density nx, such that

dnx/dt =
∑

s>i

dns/dt = Ui − Uc, (3)
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FIG. 2: The critical size in nucleation and growth models: see
text for discussion.

where, from Eqs. 2, all the other Us cancel out in pairs,
and we have included the coalescence term Uc, which may
limit nx at higher coverage. Thus in this treatment we
have reduced an infinite set of RE’s to just two, one for
n1 (essentially Eq. 1) and one for nx (Eq. 3). We have
abandoned any serious attempt to calculate the island
size distribution ns(s), and we need to assume specific
island shapes to make further progress. But we can also
calculate other mean-field quantities, e.g. mean island
size (wx), substrate coverage (Z), differential or inte-
grated condensation coefficients (α or β) with this ap-
proach, using an auxiliary growth rate equation2,14,20,21.
This equation for the number of atoms in stable clusters,
nxwx, has the form

d(nxwx)/dt = n1(τ
−1
n + τ−1

c ) + F
∑

s>i

κsnsas, (4)

where all relevant growth processes (i.e. not including
τ−1
a in Eq. 1) are included in the first term. The second
term, included at this stage for illustration, corresponds
to direct impingement onto all s-clusters of area as, and
κs ≥ 1 is a geometrical correction factor, which may be
needed to account for impingement immediately next to
a cluster25. Without this factor, the sum

∑

s>i nsas is
just equal to Z, the coverage of the substrate by stable
and critical islands. Thus the expression F (1 − Z) has
been used to correct Eq. 1 for n1, for the effects of finite
coverage20,21. The coalescence rate Uc at low coverage is
simply proportional to 2nxdZ/dt

2,23; high Z changes to
this formula are given more recently25.
The above scheme is relatively simple, and using it we

can make scaling predictions for all the mean field quan-
tities, notably the densities n1 and nx, as a function of
the various material parameters and the critical nucleus
size i. In the version that the second author has de-
veloped, this involves scaling with the adsorption energy
Ea (which governs τa), Ed (which governs the diffusion
coefficient D), and the binding energy Ei of the critical
cluster. The scaling relations in the complete condensa-
tion, initially incomplete, and extreme incomplete con-

densation regimes have been documented in tables for
both 2D and 3D island shapes14,21, and some of these
regimes, notably complete condensation, have been thor-
oughly tested, both by simulation and by experiment.
These relationships, originally conceived to be useful for
hetero-epitaxy, have been revisited on occasion, and the
2D extreme incomplete condensation case has been mod-
ified27 to make contact with the classic BCF case of ho-
moepitaxy at large coverage.
When lateral bonds are suitably strong, at low tem-

peratures, we have i = 1, so that adatom pairs (dimers)
are already stable nuclei, and Ei, or E2 in this special
case, is thereby also not relevant until higher temper-
atures. This simplest type of equation focuses on the
formation of pairs and their subsequent growth as stable
nuclei, a case that has been termed irreversible nucle-
ation by the first author28 and many others. In the com-
plete condensation regime, with the only energy Ed left
in the problem, in the form of the diffusion coefficient
D = (νd/4)exp(−Ed/kT ), it has become customary to
emphasize the scaling of nx with the lumped parameter
(D/F )−χ, with χ = 1/3. This scaling is the same as in
the i = 1 case for 2D islands, as discussed and tabulated
previously, where the general form follows the power law
with exponent χ = i/(i+2). For 3D islands, this is mod-
ified slightly to χ = i/(i + 2.5)20,21 under steady state
conditions. These expressions are valid when the island
shape is compact; small corrections are needed for fractal
islands.
Further progress cannot be made without specific as-

sumptions about bonding, and in particular about how
the energy Ei can be expressed in terms of lateral ‘bonds’
of strength Eb within the critical cluster. With this as-
sumption, one can compute both the densities and de-
duce the critical size i as an output of the calculation;
this size is the size that (self-consistently) gives the low-
est nucleation rate and density, for all possible sizes j
considered20. With the adoption of the Einstein model
of lattice vibrations, contact was also made with the equi-
librium vapor pressure at low supersaturation (high tem-
perature), and so this model spans the complete range
of behavior from low to high supersaturation, using just
the three energy parameters, Ea, Ed and Eb. This is the
simplest 3-parameter model to achieve this result, and
as such it is valuable as a base for further exploration of
more complex models, as described here in section III.

3. Rate Equations Without Explicit Critical Island Size

The second type of RE model takes a somewhat differ-
ent approach. At high supersaturation, re-evaporation is
negligible, so Ea is irrelevant; this is the complete con-
densation regime. Within this regime, at higher tem-
peratures, with weak lateral bonds, atoms can leave the
clusters by detachment and subsequent diffusion. In this
case, nucleation has been termed reversible, and we need
a suitable formulation to describe the rate of such de-
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tachment processes. As an example, the first author28

has used the set of equations, ignoring direct impinge-
ment and coalescence, as

dn1

dt
= F − 2Dσ1n

2
1 −Dn1

∑

s>1

σsns

+2Ddetγ2n2 +Ddet

∑

s>2

γsns (5)

dns
dt

= Dn1(σs−1ns−1 − σsns)

+Ddet(γs+1ns+1 − γsns) for all s > 1. (6)

Here, the σs are the capture numbers as before, and the
terms that involve Ddetγs describe the rate of detach-
ment of an atom from an island of size s. Note that these
equations as written here are valid only in the submono-
layer growth regime, but coverage effects, coalescence of
islands or desorption of adatoms can also be included.
The second and third terms in Eq. 5 are explicit forms

of Eq. 1, such that

τ−1
n + τ−1

c = 2Dσ1n1 +D
∑

s>1

σsns (7)

while the brackets in Eq. 6 emphasize the possibility of
steady-state rather than local equilibrium, which was
highlighted in the discussion following Eq. 2. In both
Eqs. 5 and 6 the terms involving Ddetγs involve detach-
ment from s-clusters, as discussed in more detail in Ap-
pendix A.
The capture of adatoms by other adatoms and islands

occurs with an efficiency that is given by the capture
numbers σs. If chosen properly these σs do encode spatial
information. Many recent studies have the goal of finding
a form for the σs that properly accounts for the spatial
correlations between adatoms and islands. Some recent
progress will be discussed below in Section IIIA. There
has been less focus on the detachment rates γs. One rea-
son is that at low temperatures detachment is negligible,
and often one assumes that γs = 0 for all s. This is
of course the regime that is termed irreversible aggrega-
tion. At higher temperatures, the detachment should be
related to the number of (attached) edge atoms, and sim-
ple expressions for this have been derived analytically29.
But we would like to point out that the real situation
might be more complicated. For example, the product
Ddetγs might reflect the fact that detachment can be
strain dependent, and thus this term also has some spa-
tial dependence.

C. Atomistic Kinetic Monte Carlo Simulations

An alternative to completely analytic approaches are
atomistic models that explicitly take into account the
spatial information and stochastic nature of thin film
growth. One way to implement such models is in the
form of kinetic Monte Carlo (KMC) simulations6,30,31.

The main difficulty and challenge in a KMC simulation
is to identify which, and how many, microscopic processes
need to be included. Different philosophies exist to ad-
dress the latter question. One philosophy is that such
KMC models will never include all the microscopic de-
tails, and that one should keep the model as simple as
possible. This approach has been used to a large extent
in the past 20 years, and has helped to study and under-
stand many general trends during growth. In this section
we will refer to such models as generic growth models.
On the other end of the spectrum one might want to
include all the relevant microscopic processes, with the
goal of making detailed predictions for a specific material
system. We will refer to such models as high resolution
growth models.

In a typical KMC simulation, one first specifies the
processes that are included, and associates each process
with a rate. At every timestep one identifies all the sites
where any of the processes might occur. One of these
events is then executed with a probability that corre-
sponds to the rates. In practice, this is implemented in
a way that one always executes an event (so there are
no rejected moves), and after every event the simulation
clock is updated appropriately.

A model that has been used with considerable success
to study general trends is a simple cubic, solid-on-solid
(SOS) model with nearest neighbor interactions. The
processes that are allowed are (random) adatom depo-
sition, and hops to a nearest neighbor site, where the
rate for a hop is given by ν = ν0exp(−(Ed + nEn)/kT ).
Ed is the energy barrier for surface diffusion, and in fact
for n = 0 it is ν = 4D; in the KMC literature Ed is
often referred to as the surface bond energy. En is a
nearest neighbor bond energy, ν0 is the relevant prefac-
tor (typically 10−12 - 10−13 s−1), and n = 0, 1, 2, 3, 4 is
the number of in-plane nearest neighbors. Additional mi-
croscopic parameters such as enhanced diffusion along a
step edge or reduced (or enhanced) diffusion over a step
edge (the so-called Ehrlich-Schwoebel barrier) can easily
be added. Generic KMC models have been used suc-
cessfully to study qualitative trends during growth, such
as scaling laws. In limited cases they have also been suc-
cessful for quantitative predictions such as the occurrence
and decay of the RHEED signal. Note that the rates for
all possible events at every site only depend on the lo-
cal environment; a dependence of the rates on more long
range interactions is possible, but at a significant addi-
tional computational cost.

In the literature one often finds a distinction between
models for irreversible and reversible aggregation. The
model just described is a reversible model, as it al-
lows for atoms with lateral nearest neighbors to move.
The rate for an atom with one nearest neighbor n = 1
to move (and detach form an island boundary) then is
Ddet = ν0exp(−(Ed + En)/kT ). In the limit that En is
large, and/or T is small, this model then effectively be-
comes an irreversible growth model. Thus, a continuous
change of the parameter En induces a continuous change
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FIG. 3: The island size distribution, as given by KMC
(squares) and LS (circles) methods, in comparison with STM
experiments (triangles) on Fe/Fe(001)33. The reversibility in-
creases from top to bottom. See text for discussion.

from irreversible to reversible growth. It has been demon-
strate by one of us (CR) that the scaled island size distri-
brution (ISD) changes its shape continuously as a func-
tion of the reversibility28,32. This is illustrated in Fig. 3,
where the scaled ISD as obtained from a KMC simula-
tion32 is shown in comparison with the ISD as obtained
from experiment33 and also from the level-set method
(discussion below). It is evident that the ISD sharpens
as the reversibility increases (which is realized in the sim-
ulation by decreasing En), in excellent agreement with
the experimental ISD that sharpens as the growth tem-
perature increases. We stress that no value for a critical
island size has to be specified. Rather, the interplay be-
tween attachment and detachment kinetics describes the
degree of reversibility, which one might associate with
a (non-integer) effective critical island size32. We note
that a similar sharpening of the ISD has been obtained

by Amar and Family34 in a KMC model where islands
larger than the critical size (that has to be specified in
advance) are assumed to be stable against break-up.
We conclude this section with some remarks about de-

tailed high resolution KMC models. The work of Mad-
hukar and co-workers31 spearheaded the development of
growth models for III/V compound semiconductor sys-
tems. However, the large number of microscopic param-
eters were difficult to obtain, since for example not even
the exact surface reconstructions were known 15 years
ago. But the situation has changed in the last few years
with the advances in density functional theory (DFT) cal-
culations, together with the more readily available com-
parison to detailed experimental data, in particular STM
images. We are aware of several detailed high resolution
KMC models that have been published in the past few
years35–37.
However, one problem with such high resolution

growth models is that the range of magnitudes of all
the different processes is rather large. Since the simu-
lation timestep has to be defined by the fastest process,
these models are often very slow. Thus, it has to be the
goal to develop growth models that allow us to describe
the fast processes in some averaged, mean-field approach.
For example, repeated detachment and subsequent re-
attachment of atoms from and to island edges can be de-
scribed by the overall net attachment (or detachment).
One way to realize this is described in a model that has
been developed over the past few years, as described in
the next section.

D. Level Set (Island Dynamics) Model

In the past few years, the island dynamics model,
and a corresponding level set method for its numeri-
cal simulation have been developed38,39. This model is
essentially continuum in the x-y-plane, but it resolves
individual atomic layers. Within the model, the is-
land boundaries for islands of height k are described as
Γk = {x : φ(x) = k} in which φ is the level set function
that evolves according to

∂φ

∂t
+ v|∇φ| = 0 . (8)

All the physical information is in the normal component v
of the velocity function. Islands grow because atoms dif-
fuse toward and attach to island boundaries, and shrink
because they can detach from an island boundary. Thus,
the velocity can be written as

v = vatt − vshrink = D[n · ∇ρ]−Ddetpescλ . (9)

In this equation, the first term on the right represents
attachment of adatoms to the step from the upper and
the lower terrace40, in which [ ] denotes the jump across
the interface. The second term represents detachment of
adatoms from island boundaries41, in which Ddet is the
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microscopic detachment rate, pesc is the probability for
an atom to escape from the capture zone of the island it
just detached from, and λ is the density of edge atoms
that can detach. The adatom density ρ(x, t) solves the
diffusion equation

∂n1

∂t
−D∇2n1 = F − 2σ1D〈n

2
1〉 (10)

with the boundary condition ρ = 0 for irreversible aggre-
gation. The last term in Eq. (10) is the rate of nucleation
of new islands, where 〈 〉 denotes the spatial average42,43.

The model as described so far is almost completely
deterministic. However, it was found that certain fluc-
tuations are required to complete the model. The last
term in Eq. 10 prescribes when a new island is to be nu-
cleated. But the location of a new island has to be chosen
with a probability weighted by the local value of n2

1 as
obtained from the solution of the diffusion equation44.
Moreover, it was also found that randomness is essential
in the thermal dissociation of small islands41. The idea
of the level set method is illustrated in Fig. 4, where a
snapshot of a typical level set simulation is shown. The
stochastic prescriptions described above have been care-
fully validated by direct comparison with an atomistic
KMC model. This is also illustrated in Fig. 3. Again, we
see that the ISD becomes narrower and sharper as the
detachment rate increases.

Significantly, and in contrast to atomistic simulation
methods, the inclusion of fast microscopic processes
comes at essentially no additional computational cost
within this method. The reason for this is the following.
In a typical atomistic simulation (where every event is
resolved), the computational time increases dramatically
when events with largely different rates are allowed. For
example, frequent atomic detachment and re-attachment
at island boundaries is computationally expensive, even
though the morphology might not change. In the level set
approach, such fast events are accounted for in a quasi
mean-field approach, without being explicitly resolved.
This leaves the numerical time-step unchanged, resulting
in essentially no increase in overall computational time.

This new method seems well-suited to model problems
in epitaxial growth that may be difficult to describe with
other methods. One current example is the inclusion of
strain: the long range nature of the elastic field presents a
challenge to include strain realistically in a KMC model
(where the rates are typically determined by the local
environment). However, recent progress in this area is
intriguing and may present a way forward, as discussed
in III C and IIID. Moreover, solving the elastic equations
is computationally very expensive, so that a method that
allows for a large timestep is essential. As mentioned
above, the level set method is also able to describe prob-
lems where the important events have vastly different
rates. Work in both these areas is currently in progress.
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FIG. 4: Typical level set simulation. Shown is a snapshot
of the level set function (a), and the corresponding adatom
concentration (b). The island boundaries corresponding to
this level set function are shown in (c).

III. RECENT PROGRESS: EXPERIMENTAL
AND COMPUTATIONAL EXAMPLES

A. Capture Numbers

The rate equations as formulated in Sec. II B are equa-
tions for mean field densities, and thus by construction
do not include any explicit spatial information. Spatial
information can however be included implicitly: consider
the RE’s in the form of equations 5 and 6. As mentioned
already above, capture of adatoms by other adatoms and
islands occurs with an efficiency that is given by the cap-
ture numbers σs. If chosen properly these σs do encode
spatial information. For the purpose of the discussion
in this section, we assume that there is no detachment
from islands (i.e., γs = 0). Many recent studies have the
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goal of finding a form for the σs that properly account
for the spatial correlations between adatoms and islands.
It has become customary to focus on the scaled island
size distribution (ISD) to judge the validity of a certain
choice for the capture numbers. In particular, simple
RE approaches lead to a singularity of the ISD in the
asymptotic scaling (large D/F) regime, and one test of
any approximation of the σs is whether or not it leads to
scaling of the ISD.

In this section we discuss the different choices that
have been introduced for σs, and summarize some re-
cent progress in understanding the form of the capture
numbers. The simplest choice is σs = 1 (i.e. a simple
constant) for all s. This choice is often referred to as
the point-island approximation. The only justification
for this choice is that the equations are easier to analyze,
and that certain analytic results can be easily obtained.
Another simple choice is an s-dependence σs = sp. In 2D,
p = 0.5 reflects the idea that capture is proportional to
the perimeter of the island. Similarly, one can argue for
the choice p = 1/3 for 3D islands; both of these choices
were assumed in the initial work on rate equations1, and
have been made on occasion since then. However, it is
well established that none of these choices for σs gives
the correct scaling of the ISD; in particular, the scaled
ISD becomes singular in the scaling limit.

There were several early attempts to account for the
local environment of an island; this work was summarized
and extended in Ref. 2. The uniform depletion approxi-
mation developed in that work is based on the mean-field
assumption that at every point outside of an island the
densities of islands of size s takes on an average value
ns(t). This approach then gives an analytic formula for
the σs in terms of modified Bessel functions. Bales and
Chrzan42 showed, for the irreversible nucleation (i = 1)
case, that the mean-field adatom and island densities n1

and N =
∑

s≥2 ns obtained from integrating the RE’s
with these self-consistent capture numbers are in excel-
lent agreement with the ones obtained from KMC simu-
lations, for a wide range of D/F values. However, their
approximation fails to reproduce properly the scaled ISD,
which is a more stringent test for the spatial information
in the σs.

A completely different approach was taken by Bartelt
and Evans in Ref. 45. In this paper, the authors per-
formed extensive KMC simulation of a point island model
tomeasure numerically the capture numbers as a function
of the island size. They suggest that σs depends linearly
on s for s > sav, where sav is the average island size, and
is essentially a constant for s < sav. In a later paper

46

they relaxed the point-island constraint and instead con-
sidered spatially extended islands, and obtained similar
results (even though the plateau is less pronounced in
this case). The data is also in agreement with capture
numbers that have been measured very carefully in an ex-
periment where first Co islands are formed on Ru(001),
and additional Cu is deposited subsequently. Because of
the differences of Cu and Co in the STM, the additional
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FIG. 5: Capture numbers in the aggregation phase as deter-
mined with the levelset approach (upper panel). Shown in
the lower panel is the scaled ISD obtained from the time de-
pendent (measured) σs, in comparison with the original LS
data50. The solid line in the lower panel is an analytic pre-
diction from Ref. 45.

(Cu) mass of each island can then be measured in a care-
ful STM experiment. Similar data was obtained in a later
experiment for Ag islands on Ag(001)47.

Bartelt and Evans also established45 that capture ef-
ficiency of islands, as described by the capture numbers
σs, is intimately connected to the so-called capture ar-
eas As. The capture area of an island can be defined as
the area surrounding an island, with the property that
an adatom within a capture area, or zone, will on aver-
age diffuse toward the corresponding island (and will be
captured by it). Geometrically, these capture areas As
can be approximated by performing a Voronoi tessella-
tion. In the complete condensation regime, the shape of
the scaled capture area distribution As is similar to the
shape of the scaled capture number distribution σs, a fact
which has been known experimentally for a long time48.
But in either case, capture numbers are only measured
for one particular coverage, and these capture numbers
are never used to integrate the RE’s. From more recent
work44,49 it is clear that these capture numbers can not
produce the correct form of the ISD in the scaling limit.

Gibou et al.49,50 determined capture numbers from
simulations using the level set method. In contrast to
the KMC approach, the dependence of the σs on s could
be obtained at different times. The reason is that, due to
the mean field treatment of the adatom density, a mean-
ingful value for σs can be measured at any time, and
growth of the islands does not have to be artificially sup-
pressed. It was found that the functional form of the σs
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changes as a function of time. There is essentially no
s-dependence in the nucleation phase, and an (almost50)
linear dependence in the aggregation phase (cf. Fig. 5,
upper panel). The rate equations can be integrated with
these (time dependent) capture numbers, and the shape
of the scaled ISD in fact does agree with the one obtained
from LS or KMC simulations, and in particular does not
display a singularity. This is shown in Fig. 5.

But there is no analytic form for σs that allows an
integration of the RE’s from t = 0, to get the proper ISD.
The reason is that there is substantial cross-correlation
between the capture numbers and related capture areas,
which leads to significant numerical noise in the results in
Refs. 49,50. It is not clear at the moment whether better
simulation data will solve this problem, or whether there
is a fundamental limitation within this approach.

The ultimate reasons why it has not been possible to
date to find a functional form for all the σs(t) are the
following: Different islands of a particular size s have dif-
ferent capture areas. This is so because of spatial fluctu-
ation during the nucleation of islands. As a result, these
different islands of size s grow differently, which is hard
to incorporate into a single σs. Moreover, the correlation
between capture efficiency and the spatial distribution of
islands is complicated due to nucleation. More precisely,
the capture area (and thus the capture number) of a par-
ticular island may change (dramatically) if a new island
is nucleated nearby.

From the foregoing it is clear that any successful ana-
lytic treatment of the problem needs to consider the cap-
ture numbers σs as well as the capture areas As. There
has been some progress in the past few years, but we
believe that the problem has not yet been solved, and
remains an area of active current research. Evans and
Bartelt51 developed a formalism where rate equations for
the island densities ns were complemented by rate equa-
tions for the average capture areas As. In a different ap-
proach it was suggested by Mulheran and Robbie52 that
the problem might be solved by considering a joint prob-
ability distribution (JPD) for islands and capture areas.
Equations were introduced to describe the time evolution
of the island density as a function of the island size s,
and the size of capture areas, A. One complication that
arises is: ’How are the capture areas treated in the case
of a new nucleation event?’ In Ref. 52 the evolution of
the capture zones is modelled as a fragmentation process
when new islands are nucleated. The JPD then obtained
agrees with the one obtained from a KMC simulation.

Amar, Popescu and Family53,54 also utilized the idea
of the JPD. They made some significant simplifications
about the effect of nucleation on the capture areas. In
essence they assumed that the capture area of the nth

island is simply proportional to the average capture area
at the time. For intermediate values of D/F their ana-
lytic model does indeed give better scaling of the scaled
ISD. However, as mentioned in Ref. 55, and as is also
evident from the simulation data presented by Popescu
et al.54, the scaled ISD still exhibits singular behavior for

larger values of D/F . It was pointed out by Evans and
Bartelt56 that the reason for this might be an unphysical
delta function scaling form for the JPD, which results
from the fact that capture areas are not properly divided
upon nucleation of new islands.
A recent, and perhaps more realistic treatment of the

impact of nucleation on capture areas is given in Ref.
56. In this paper, Evans and Bartelt study the JPD with
a point island KMC simulation. Scaling of the JPD of
the type F (s/sav, A/Aav) is established. But whether
or not this latest approach yields capture numbers that
give proper scaling of the ISD in the asymptotic limit, as
(D/F) tends to infinity, is currently still an open question
that needs to be answered.

B. Nucleation on Surface Defects

All the above discussion has been concerned with nu-
cleation and growth on a perfect substrate. But it is
well known that many substrates are far from perfect,
and indeed may contain impurities, surface point defects
and/or steps, all of which may promote nucleation. Early
examples, especially in island growth systems, which are
particularly sensitive to such effects, are given in several
reviews13,14,57. More recently, attention has turned to
nucleation of small particles of Ag, Pd and Pt on oxides
such as MgO(001) and Al2O3(0001), which are of inter-
est as model catalysts. There are now several reviews of
these systems that can be consulted for background infor-
mation and detailed behavior58–61. There is an extensive
theoretical literature, based on cluster chemical62, ionic
pair potentials63,64, or density functional65 calculations.
For the most part, these calculations are not yet at the
stage where definitive reviews can be given, largely be-
cause of their extreme sensitivity to charge imbalance at
the oxide surface, and at surface defects, which may also
be charged.

n
1

n
1t

n
xt

n - n - n
t 1t xt

FIG. 6: Model for nucleation at attractive random point de-
fects (density nt), which can be occupied by adatoms (density
n1t), clusters (density nxt) or can be empty 19,67: see text for
discussion.
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Here we discuss how defects have been incorporated
into the framework of RE, KMC and LS models. In
all of these models, the introduction of defect traps re-
quires that we specify their density, nt, and the energy
Et with which diffusing adatoms are trapped. Within RE
models, we can consider either irreversible trapping, such
that adatoms cannot leave the traps (so that Et is irrel-
evant), or reversible trapping as illustrated in figure 6,
where we can qualitatively identify three regimes. This
three-regime behavior has been reproduced in a steady
state rate equation model developed by the second au-
thor64,66,67, which focuses on the rate equation for the
trapped adatoms, density n1t, and considers nucleation
on both trap and normal sites.
The rate equation for n1t is approximately

dn1t/dt = σ1tDn1nte−n1tνd exp(−(Et+Ed)/kT ), (11)

where nte = nt−n1t−nxt is the number of empty traps.
For simplicity we have assumed that the capture numbers
for empty and filled traps are the same. In steady state,
this equation is zero, and inserting the usual form for
D ∼ νd exp(−Ed/kT ), we deduce

n1t/(nt − nxt) = A/(1 +A) (12)

with A = n1Ct exp(Et/kT ),

where Ct is an entropic constant, which has been put
equal to 1 in the illustrative calculations performed to
date. Eq. 12 shows that the traps are full (n1t = nt −
nxt) in the strong trapping limit, whereas they depend
exponentially on Et/kT in the weak-trapping limit, as
expected. This equation is a Langmuir-type isotherm for
the occupation of traps; the trapping time constant (τt,
in analogy to Eq. 1) to reach this steady state is very
short, unless Et is very large; but if Et is large, then all
the traps are full anyway.
The total nucleation rate is the sum of the nucleation

rate on the terraces and at the defects. The nucleation
rate equation without coalescence, analogous to Eq. 2, is

dnx/dt = σiDn1ni + σitDn1nit, (13)

where the second term is the nucleation rate on defects,
and nit is the density of critical clusters attached to de-
fects, σit being the corresponding capture number. In
the simplest case where the traps only act on the first
atom which joins them, and entropic effects are ignored,
we have

At = n1t/n1 = (nt − nxt)A/[n1(1 +A)]. (14)

Typically, there are three regions: a high-temperature
region where adatoms visit the traps but can become de-
tached from them; a low-temperature region where the
traps are full, but the nucleation density is largely un-
affected, since nx > nt. In between, there is a plateau
region where nx = nt; this plateau is longer if Et is higher

FIG. 7: Algebraic solution to rate equations for trapping en-
ergy Et = 0.5, Ea = 1.16, Eb = 1.04, and a range of Ed values
between 0.1 and 0.6 eV. Recalculated67, after original model
for Fe/CaF2(111)

66: see text for discussion.

and Ed lower. The first requirement is obvious, and the
latter is required so that adatoms reach the traps before
finding each other. This steady state model calculation,
originally intended for Fe/CaF2

66,67, is shown for partic-
ular energy parameters in figure 7.

This defect nucleation model contains several sub-
cases, depending on values of the parameters. An in-
teresting example is Pd/MgO(001), studied with atomic
force microscopy (AFM)64,68, where a single set of ex-
periments has been analyzed to put bounds on four en-
ergies; these data require a high trapping energy Et and
a low value of Ed, while also being sensitive to Eb and
Ea. In this case, the high temperature portion of the
data corresponds to the transition to i = 3, so that
individual adatoms remain attached to traps, but sub-
sequent adatoms can become detached. These features
are in semi-quantitative agreement with calculations62,64

for trapping of Pd in oxygen ion vacancies. The role of
surface charges in stabilizing both surface vacancies on
insulator surfaces, and small clusters attached to such
point defects, is very marked. Currently, different calcu-
lations agree that such effects are strong, but disagree on
their exact magnitude62,64,65; more comparative work is
needed in this area.

The RE model described above predicts the number
densities of islands, but (by construction) does not yield
any spatial information, as for example the shape of the
ISD. For this purpose, nucleation on defects has also been
investigated using KMC and LS simulations. An exam-
ple is the work of Lee and Barabási69, who showed in a
KMC simulation that an ordered array of defect trapping
centers can lead to a regular array of islands on the sur-
face. A recent LS simulation70 showed that the scaled
ISD in the case of regularly spaced defect is a very sharp
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function (essentially a δ-function). In the same study it
was shown that in the opposite limit, when the defects
are randomly distributed on the surface, the ISD has the
form of a Γ distribution.
The ISD is controlled by the spatial distribution of

defects when the mean diffusion length is comparable
with or greater than the distance between defect traps.
This corresponds to the upper end of the plateau regime,
shown here in figure 7, where the adatom catchment area
is roughly the same as the regular Voronoi polyhedron
around each defect site. When the diffusion length is
(much) less than the average distance between defects,
both the nucleation density and the ISD converges to
that obtained during nucleation on defect-free terraces.
The narrow ISD suggests that if one can control experi-
mentally the distribution of defect traps on the surface,
one can control the ISD. The goal of a uniform ISD is
clearly desirable for applications; we note that this may
also be aided by stress and diffusion fields; this topic is
also discussed in the next section.

C. Diffusion versus Attachment-Limited Capture

The problem of determining capture numbers, and re-
cent progress, has been described in section IIIA above,
especially for determining size and spatial distributions
in complete condensation. Most of this effort has gone
into finding diffusion solutions for σ1, σi and σx (or σs in
general), especially for the case of irreversible nucleation
(i = 1), which is appropriate for scanning tunneling mi-
croscopy (STM) experiments conducted at low tempera-
tures24,25.
Low temperature deposition, even onto smooth close-

packed metal surfaces, can be conducted in a regime
where there is very little diffusion of adatoms during de-
position. In such a case, essentially all motion occurs
after deposition, and this regime, sometimes denoted by
i = 0, has been observed experimentally for the case of
Cu/Ni(001)71, see also Refs. 24 and 19. This regime
implies no dependence or the nucleation density nx on
the flux F , but nx increases and n1 decreases following
annealing at either higher temperatures and/or longer
times.
Immediately following deposition there are no spatial

correlations between adatoms on the surface, but diffu-
sion during annealing establishes the spatial correlations,
between adatoms and clusters, and between the adatoms
themselves. There is an initial, transient, regime in which
the capture number is time-dependent, before the diffu-
sion solution becomes established. As discussed below,
this transient is longer if there are (repulsive) interactions
between adatoms, leading to attachment-limited behav-
ior.
Two sets of STM experiments have been conducted on

the deposition and annealing of Cu adatoms on Cu(111)
at low temperatures72,73. After deposition and subse-
quent diffusion before observation, the spatial distribu-

FIG. 8: RE solutions for n1 and nx annealing curves as a
function of (D1t)

0.5, for annealing at 16.5 K with attach-
ment barriers EB = 0, 5 and 10 meV, compared to KMC
simulations. The capture numbers used are based on an in-
terpolation scheme between attachment barrier and diffusion
solutions, showing essential agreement with the KMC simu-
lations. See text for discussion of how these curves apply to
STM experiments on Cu/Cu(111)

.

tion is non-random, with a preferred spacing between
adatoms. This feature has been analyzed quantitatively
to determine the long-range oscillatory interaction be-
tween Cu adatoms as a function of radial separation. In
the second of these experiments, Cu was deposited at
16.5K, to sub-ML doses (∼ 1.4.10−3 ML), followed by
annealing at various temperatures around 20K for times
up to 20 min. At short distances, there is repulsion be-
tween adatoms, and this repulsion forms a barrier to ad-
dimer formation; but once formed, dimers are completely
stable and do not diffuse.
These experiments test capture number models, as a

repulsive barrier of height EB , or a repulsive energy land-
scape of height V0, changes the form of the diffusion field
around adatoms and clusters, and reduces the capture
number markedly if EB/kT or V0/kT > 0.2. As shown
recently74, the full time-dependent form of the capture
numbers is required to obtain agreement between RE so-
lutions and KMC simulations in the earliest stages of
low coverage (sub-ML) annealing. The diffusion solution
is almost sufficient when the barrier is zero, but for fi-
nite barriers the diffusion solution is quite wrong, and
the attachment-limited (barrier) solution, σs = 2π(rs +
1) exp(−EB/kT ) or σs = 2π(rs+1) exp(−V0/kT ) is much
closer.
Surprisingly, this form of σs can be appropriate, even

for barriers smaller than the diffusion energy. Note also
that this capture solution is similar to the form origi-
nally used by Zinsmeister1, but now reduced exponen-
tially by the Boltzmann factor for the barrier. A related
RE-KMC study by Ovesson75 was applied to the depo-
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FIG. 9: RE solutions for annealing curves as a function of
barrier height V0, at temperatures 17K ≤ Ta ≤ 23K. Plotted
is the ratio (n1 + nx) after a 2 minute anneal, divided by
the initial value ntot = (n1 + nx) after deposition. These
curves use the time-dependent capture number expression as
in figure 8. The curves for 19K and 21K are also compared
with the KMC simulations. Additionally a curve for annealing
at 22K for 20 min. is given. See text for discussion of how
these curves apply to STM experiments on Cu/Cu(111)

.

sition of Al/Al(111) as well as Cu/Cu(111). Fichthorn
et al.76 have found similar effects for Ag/Ag(111) and
related systems. As emphasised above, these low tem-
perature, smooth surface systems, correspond to the case
where there are small, close-range, repulsive interactions
prior to attachment, which determine the progress of nu-
cleation. These repulsive interactions may be coupled
with (even smaller) long-range oscillations, thought to
be due to surface state interactions, which determine the
preferred adatom spacings after deposition.

A full solution for annealing, appropriate to
Cu/Cu(111), is shown in figure 8. As a result of hav-
ing the agreement between the KMC and RE solutions,
one can extrapolate with some confidence to other con-
ditions, and compare with the experimental results72,73.
These results showed no dimer formation during 20 min
at ∼ 17K and the completion of dimer formation after
20 min at 22K. As a result, Venables and Brune74 were
able to deduce that the barrier height EB , or alterna-
tively the repulsive energy maximum V0, for Cu/Cu(111),
lies between 10 and 14 meV, as illustrated in figure 9.
This figure is based on an integration of the RE’s for
each V0 value, up to the end of annealing (2 or 20 min)
using the known Ed value, which is (40 ± 1) meV for
Cu/Cu(111)25,74. The comparison with KMC simula-
tions is excellent, but the RE computation is much faster.
This again points to a role for RE solutions to summarize
large amounts of computation done by other methods.

D. Nucleation and Ostwald Ripening

In 1900, Wilhelm Ostwald published a famous paper
on the approach to equilibrium for a solution where a
dense phase and a dilute phase coexist77. When the
dense phase is present in the form of a distribution of
compact clusters with different sizes, he argued that the
Gibbs-Thomson effect78 provides a thermodynamic driv-
ing force for large clusters to grow at the expense of small
clusters. This phenomenon is called ripening or coarsen-
ing. The basic physics is the desire of the system to
minimize the free energy associated with the interfaces
between the two phases. Often ripening is a late-stage
phenomenon, related to degradation of microstructures
over long times, and thereby unrelated to nucleation and
growth at early stages, the topic of this article. However,
there are some cases where coarsening needs to be con-
sidered, and the relationship between nucleation, growth
and ripening is of interest in its own right. Some com-
ments on this topic are given below.
An authoritative review of the subject in the context

of thin film growth is given by Zinke-Allmang et al.79.
In a series of papers, this group has studied island coars-
ening, both due to cluster mobility and to island insta-
bility. The term ripening is generally reserved for the
latter phenomenon; it is usually formulated in terms of
the (adatom) diffusion coefficient and the edge energies
of islands.
In an atomistic context, the rate of Ostwald ripening

for each island depends on the difference between attach-
ment and detachment rates to/from the island. The first
quantity depends on the number of adatoms on the sur-
face and their mobility D, while the latter is related to
the detachment rate Ddet and density of atoms that can
detach. Ostwald ripening can be incorporated into nucle-
ation and growth models in several ways. For rate equa-
tions, there are at least two. In section II B, we have not
relied in Eqs. 5 or 6 on the idea of a critical nucleus size,
and can consider the possibility that all clusters are to
some extent unstable, both during deposition, and par-
ticularly during annealing. Then the difference between
σsDn1 and Ddetγs is the relevant quantity to describe
ripening. Calculations with specific forms of the latter
term are described in Ref. 80.
An essentially equivalent RE approach, used by one

of us (JV), is to modify the capture time (τc) in
Eq. 1, to allow for decay of ‘stable’ clusters. Integra-
tion of rate, or rate-diffusion, equations containing such
terms does allow for competition between nucleation,
growth and ripening during deposition, and also gives
a good overall description of annealing. This method has
been applied to experiments on both Ag/Fe(001)81, and
Ag/Ge(111)and Ag/Si(111)82, and relevant energies have
been extracted. But for the semiconductor systems82

there are details left to sort out, notably those concerned
with small particle mobility and interdiffusion. So far this
rate-diffusion equation approach has only been tested in
1-dimensional geometries.
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One might imagine that KMC simulations would be a
powerful tool to study 2D Ostwald ripening. However, we
are aware of only a single paper devoted to this subject83.
The reason is, for realistic values of the physical param-
eters, island detachment processes are so slow that good
statistics require an inordinate amount of computer time.
Consequently, simulationists tend to focus on coarsening
by island diffusion and coalescence84,85, a scenario that
is known to occur for Ag(100)86. Another approach that
has been used to study Ostwald ripening is based on the
boundary integral method87. This method is extremely
efficient for solving the diffusion equation (and hence is-
land growth velocities) for a surface morphology in the
absence of nucleation and merger.
In recent studies the LS method described in sec-

tion IID has been used to simulate Ostwald ripening88,89.
The LS method allows to simulate nucleation and growth
and subsequent coarsening within one unified approach,
which is in contrast to the boundary integral method,
where only the coarsening of islands can be simulated
efficiently. It was shown in Ref. 88 that the predicted
scaling behavior of the ISD, and the time evolution of
the average island size, can be described very well within
the LS approach.
One additional complication is that, in many systems

of practical interest, we also would like to include the
effects of stress in the islands, which gets larger during
growth until limited by the introduction of misfit dislo-
cations. We are presently quite a way from a fully quan-
titative model that includes all competing effects such as
nucleation, growth (initial and stress-limited), ripening
or coarsening, cluster shape fluctuations and transitions,
stress-influenced interdiffusion, and so on. But many
pieces of the argument are in place. For semiconductor
systems such as Ge/Si(001) the high ad-dimer concentra-
tion and the small dimer-dimer interaction relates to a
high critical nucleus size (small super-saturation) for nu-
cleation and initial growth. The high density of mobile
species makes both Ostwald ripening and cluster shape
fluctuations relatively easy. For further discussions of
this topic, and the role of stress and interdiffusion in the
formation of quantum dots in semiconductor systems, we
refer to recent reviews90–93.

IV. DISCUSSION AND FUTURE PROJECTION

Despite the large amount of work performed over the
last 30 years, even on sub-monolayer growth, there are
many avenues still be to be explored. Some recent
progress has been described in section III. From these
examples, it is clear that each new level of complex-
ity requires new variables and material parameters for
an adequate description of the model. There is a clear
trend towards using at least two of the three mathemat-
ical methods, i.e. RE’s, KMC and LS methods that we
have described in section II, for a comparison with ex-
periment. There is also a clear trend, which we have not

yet emphasized strongly in this article, to combine the
results of these methods, or the parameters needed as
input for such methods, with MD simulations, and with
ab-initio calculations such as DFT or cluster chemistry
computations. But to construct all such models, and do
all of these calculations, even for one system, represents
a large amount of effort, which is typically well beyond
the capacity of one research group. Thus the system has
to be important enough, and the possible results decisive
enough, to warrant the investment, both in money and
time.

Our main argument for investing time and money in
growth modeling is that we need to understand the basic
processes in detail in order to be able to make worthwhile
predictions. But, from an applied or industrial view-
point, the argument in favor of modeling is simply that
the cost of experiment by trial and error is rising even
faster. There are now so many process steps in producing
a device that engineers usually insist that experiments,
even to introduce small changes, are performed under
conditions essentially identical to those used in produc-
tion. In the semiconductor industry, for example, this
means that large wafers, few and infrequent experiments,
and incremental change are the rule; modeling, provided
it is well-grounded enough to extrapolate to new situa-
tions realistically, can be a much less expensive option.
There are several calculations in the recent literature
which have this as an aim, and many process simulators
for which collaborations and web sites are available94.

The challenge for the scientists working on such top-
ics is to know enough about the system to model it with
sufficient confidence. It is well known, for example, that
the widely used Chemical Vapor Deposition (CVD) tech-
nique presents a particular challenge to modeling, since
a whole sequence of processes occur, in the gas phase,
on the surface, and during desorption of the reactants.
By contrast Molecular Beam Epitaxy (MBE), which is
the context for much of the work described here, is much
less used in production, and is only used for the most de-
manding applications. The reason is that it cannot match
CVD for speed of growth and selectivity of reaction, and
because it is more costly to install and maintain. Some-
how, these gaps have to be overcome in the future by
the modeling methods described here, as emphasized in
recent articles95and funding initiatives96.

In this article we have not dealt in detail with coa-
lescence 25 nor with subsequent nucleation and growth
on higher layers, which can in principle be formulated97.
There are also more recent papers on this topic98–100 but
the number of effective parameters becomes rather large,
so that most such work has focused on the submonolayer
regime, as described here. A particular current theoreti-
cal interest focuses on the adatom statistics on the second
and higher layers being different from the first layer, be-
cause of the need to consider adatoms as belonging to
a particular island, so that they cannot in general be
considered to roam all over the substrate. We have not
considered such effects in this article, and refer the reader
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to the above papers for ongoing discussion.
An ultimate goal for workers in this field would be to

have models that are robust enough, and fast enough,
so that production processes could be directly controlled
from the model predictions. As far as we know, no atom-
istic model has actually been developed in this direction,
and implemented to date. Clearly, measurement of sys-
tem parameters, such as gas pressure, flow rate, source
temperatures and time sequences are already used rou-
tinely for real time, in-situ, control of CVD and MBE
growth. Of the three types of model discussed here, only
RE’s are fast enough to accomplish real time prediction,
and it seems worthwhile to consider further development
of such tools in the direction of on-line control.
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APPENDIX A: DECAY AND DEATCHMENT
RATES

This Appendix amplifies the remarks made in subsec-
tion II B on decay and detachment rates in the various
rate equation formulations. For example, we know that
if single adatoms and dimers are in local equilibrium, we
have n2 = C2n

2
1exp(−E2/kT ), a result originally derived

by Walton26, and used in all models that contain the idea
of a critical nucleus size i greater than one. The general
form of the Walton equilibrium relation for size j is, in
ML units

nj = nj1
∑

m

Cj(m)exp(Ej(m)/kT ), (A1)

where we take account of the possibility of different con-
figurations (m) at each size j, each with a statistical

weight Cj(m), which is an equilibrium property. Thus
we can see that for small clusters j ≤ i, if we make the
equilibrium assumption, Uj = 0, and we have

σjDn1nj−1 = njΓj (A2)

Thus the complete expression for Γj must be

Γj = σjD

∑

m−1 Cj−1(m)exp(Ej−1(m)/kT )
∑

m Cj(m)exp(Ej(m)/kT )
(A3)

If we restrict consideration to the configuration that has
the highest binding energy, and drop the configuration
label m, we obtain

Γj = (σjCj−1/Cj)Dexp(−∆Ej/kT ). (A4)

This Eq. A4 has the correct form as discussed above in
the text for the general size s, but also has the correct
pre-exponential (σjCj−1/Cj) appropriate for sub-critical
clusters, each of which has a dominant configuration. As-
suming a single configuration is good for large super-
saturation, but is very questionable at high tempera-
tures, close to full (3D) equilibrium, when many fluc-
tuations can be important. The reason for proceeding
with such assumptions in practice is that, under typical
growth conditions, one or more of the reaction rates are
far from equilibrium, thus rendering the corresponding
decay terms negligible.

The discussion in the text following Eq. 7 can be un-
derstood as follows. By comparing Eq. 6 with Eq. A4, we
see that local equilibrium for small clusters would corre-
spond to

Ddetγs = (σsCs−1/Cs)Dexp(−∆Es/kT ), (A5)

where ∆Es = Es − Es−1 is the same definition as pre-
viously. Thus the two rate equation formulations both
contain decay terms, which describe equivalent physical
phenomena.
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Phys. Rev. Lett. 72, 3194 (1994).

29 R.E. Caflisch, W. E, M.F. Gyure, B. Merriman and C.
Ratsch, Phys. Rev. E 59, 6879 (1999).

30 S. Clarke and D. D. Vvedensky, Phys. Rev. Lett. 58, 2235
(1987).

31 A. Madhukar and S.V. Ghaisas, CRC Crit. Rev. Solid
State Mater. Sci. 14, 1 (1988).
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