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We present alevel setbased numerical algorithm for simulating a model of epitaxial
growth. The island dynamics modelis a continuum model for the growth of thin films.
In this paper, we emphasize the details of the numerical method used to simulate the
island dynamics model. 2001 Academic Press

1. INTRODUCTION

Modeling epitaxial growth presents an enormous challenge to theoretical physicists
materials scientists. The range of length and time scales represented by problems of pra
interest (e.g., the growth of device layers) spans many orders of magnitude (e.g., see ar
inthe collection [13]). Atomistic processes can significantly affect quantities, such as surf
morphology at the largest length and time scales [3]. A model for epitaxial growth wi
great potential for use in engineering applications would describe lateral scales of sev
microns or more, be appropriate for a variety of homoepitaxial and heteroepitaxial syste
and be capable of describing different growth techniques.

Continuum equations of motion that take the form of partial differential equations [4
for the surface height profile do yield information on morphology at large length scals
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As they are typically formulated [41, 42], however, continuum equations are appropri
only in a regime where the surface is already assumed to be macroscopically rough. Tl
continuum methods are therefore unsuitable for describing atomic scale roughness, w
is a concern in many device applications. Kinetic Monte Carlo (KMC) simulations [9, 1
23, 44] offer an alternative to continuum equations. They allow easy implementation ©
wide range of atomistic kinetic processes, which can, in principle, be identified and th
rates determined from first principles calculations [32]. However, simulations are usue
based on the length and the time scales of single atoms and adatom hopping rate
modeling systems of practical interest is not always feasible.

Despite the practical limitations of the methods described above, they have been
with great effect to provide a comprehensive conceptual and computational framework
describing homoepitaxial growth [39], especially by molecular-beam epitaxy. More fu
damental problems arise, however, when attempts are made to extend these techniqt
heteroepitaxial systems, where the effects of lattice mismatch must be incorporated,
other growth methods, such as vapor-phase epitaxy (VPE), which requires coupling
atomistic kinetics on the substrate to the hydrodynamic delivery of new material. Some
pects of these issues have been addressed for particular systems, but no general methoc
has emerged to provide a unifying framework in the spirit of the work described above.

Inthis paper, a new model and a closely related numerical technique are presented the
dress these issues. In this model, growth is described by the creation and subsequent ir
ofisland boundaries; hence, this modelis referred to as “island dynamics” [4, 12]. The mo
is discrete in the growth direction, but continuous in the lateral directions and therefc
in principle, can describe growth on arbitrarily large lateral length scales. Moreover, sir
the lateral directions are treated continuously, continuum equations representing any
variable can be coupled to the growth by solving the appropriate boundary value prob!
for the field and using local values of this field to determine the local velocity of the islat
boundaries. For example, the strain fields that occur in the presence of lattice mismatc
the hydrodynamic fields in a VPE reactor can be readily accommodated by this metho

Although island dynamics is a hatural way of describing many aspects of epitaxial grow
its implementation requires tracking a large number of individual interfaces that coalesct
are created by nucleation. The development of the level set method for simulating the mo
of free boundaries [7, 25] now makes numerical implementation of such a model practi
The island dynamics model and some preliminary results from it have been introduce
previouswork [4, 12, 21, 31]; the emphasis in this work is on the numerical issues associ
with using the level set method in the context of a model for irreversible growth.

This paper proposes a hew numerical technique leading to an improved treatment of
internalp = 0 boundary condition over the smeared out delta function method proposec
[21], which uses a “slushy” interface formulation that does not achieve the) internal
boundary condition unless the penalty tdfnis infinite which is, of course, not numerically
possible. This “slushy” interface formulation was proposed (in [21]) as an alternative
the higher order accurate method in [7], since the method in [7] is much too slow (nume
cally) for the types of problems considered in this paper (and e.g., in [4, 12, 21, 31]). C
new numerical technique gives an accurate representation of £h@ internal boundary
condition (unlike [21]). Furthermore, when this technique is implemented in conjunctic
with implicit time stepping, one obtains a symmetric matrix which is faster to invert the
the nonsymmetric matrix produced in [7], making this new technique fast enough for t
problems considered herein. We remark that our new formulation has been implemente
previous work; see e.g., [22].
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2. ISLAND DYNAMICS AND THE LEVEL SET FORMALISM

In this section, a brief introduction to the level set method is given, followed by a d
scription of the island dynamics model for irreversible growth. In the island dynami
methodology, the physics is almost entirely contained in the specification of the norr
velocity of island boundaries. The evolution of the boundaries can, in principle, be done
any numerical method. In practice, however, the level set method is the preferred appre
since this method handles topological changes such as mergers in a completely natural
Because simulating epitaxial growth in the so-called layer-by-layer growth regime m
require handling the nucleation and subsequent merger of hundreds or even thousan
islands, this advantage has considerable practical significance.

Since the level set method was first introduced by Osher and Sethian [25], level
algorithms have been successfully applied to a wide variety of problems [6, 7, 10, 14,
38, 45]. One can find an extensive review of level set terminology and accomplishment
[21]. In brief, the basis behind the level set method is that any given curve or int&tface
in R", bounding an open regiaf, can be represented as the zero level set of a functic

o(x, ), i.e.,
I ={x:¢(x,t) =0} Q)
Given a velocity fieldv, one can analyze the motion of the cuiveby relating it to the

motion of the zero level set @f. The partial differential equation that will move the level
sets ofp by v is

d
9% L v.ove=o )
at
The normal vecton can be written in terms af asn = %, and sinces = v, N, Eq. (2)
is equivalent to
d¢
E+Un|v¢|=O, (3)

which can be referred to as the level set equation.

One of the many advantages of using a level set approach is that the resulting nume
schemeis Eulerian;i.e., only afixed number of gridpoints are needed. In contrast, when u
afront-tracking method [16], one has to account for a potentially large number of gridpoir
depending upon the number of islands. Such methods are computationally expensive
topological changes such as merging may be difficult to handle. Phase field method:
17, 18, 43] are currently popular in modeling solidification problems because boundal
are not explicitly tracked. However, phase field methods depend upon a small param
for interface thickness. Without proper numerical resolution of this parameter, there is
guarantee that the computational results from phase field methods will be accurate or
converged. A further discussion of this is contained in [20].

The earliest level set approach for solidification type problems coupled level set idea
boundary integral methods [33]. Later, the boundary integral dependencies were remo
producing a simpler algorithm [7]. For the island dynamics model, the level set methoc
the best approach because in part of its flexibility and relatively low computational cc
In addition to being able to resolve sharp interfaces (island boundaries in this case),
level set method can handle such topological changes as mergers and breakups, as a
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mentioned above. When there are several monolayers, the level set function is usefu
determining which monolayer a given gridpoint is on. A more detailed discussion aphow
is used to compute such statistics as the number of islands, island sizes, and island boul
lengths is included in Section 3.7. These statistics are important when comparing the is
dynamics model to KMC methods and to experimental data. Good agreement with th
statistics provides significant validation of the island dynamics model and the level set ba
numerical algorithm.

For a continuous adatom densjiyx, y, t), the diffusion equation is
g—f =V.(DVp) + F —2Do1p?, (4)
where D stands for the diffusion coefficient arfe for the flux of atoms to the surface.
Realistic parameter values fér are of the orde(10°)—0(10°), andF is O(1), making
D/F O(10°)-O(1(®). Note that the flusF can be spatially varying but is usually constant
on the spatial scale under consideration here. The length scale is of the order of the la
spacing, and the time scale is of the order of coverage of the substrate. The last teri
(4), —2 Do p?, accounts for the loss of adatoms as a result of nucleation. The factol
comes from the assumption that an island of size 2 is stable; i.e., the critical island siz
1. The numerical boundary condition fpron a square grid is periodic. For each of the
islands, the choice of boundary condition fowill depend upon the physics of the model.
Irreversible aggregation or growth is a term for the process wherein any adatom hitting
island boundary will attach irreversibly to that island. The results presented in Section 4
based upon an irreversible aggregation model, so the corresponding choice for the boun
condition imposed on the island boundaries is

The term—2 Doyp? in (4) is an approximation to the loss of adatoms resulting fron
nucleation, in that it spreads the loss over the surface. S\titeis the total number of
islands nucleated up to a tinghis term comes from the assumption that nucleation occul
at a continuous rate given by

4t = Doule?), (6)

where(-) denotes the spatial integral. The coefficienis the so-called capture number [2]
for nucleation. Note that the spatially varyipgtermin (4) is the same term that is integrated
in (6).

Island boundaries move with a normal velocity. This velocity is determined by
the physics of adatoms attaching to the island boundaries and is proportional to the
particle flux to the boundary. In the case of irreversible aggregation, this flux is simply t
surface diffusive flux of adatoms, given byD Vp. Leta denote the lattice constant, and
a the area per atom. The outward normal velocity is given by

vn = a’[-DVp -n] = —a’D {8_,0]’ 7
an
where [] denotes the jump across island boundaries in the normal direction iles [
f, — f_in which the subscripts- denote the two sides of the interface with the normal
pointing from “~" to “ +” and with “—" denoting the lower terrace), and it is assumed tha
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[D] = 0. Thisis avalid assumption since the interface is not a phase boundary, only a ter
boundary, and energetically the different heights are the same. In other cases, there r
be a change iD, e.g., if the boundary was a phase transition in the reconstruction. Nc
that the method in [7] (upon which this work is based), allows for jumps in the diffusic
coefficient for Stefan-type problems.

3. NUMERICAL METHOD

Inthis work, the model equations (4), (5), and (7) are similar to the model equations for
Stefan problem. In [7], a level set method was presented for solving the Stefan problem
for simulating dendritic solidification. The numerical algorithm presented here is based uj
the work done in [7]; however, there are important differences between the two proble
These differences have necessitated the development of a numerical method that is fle
and fast enough to be of practical interest. In the following subsections, the numerical a
rithm is first outlined. Details are then presented of how this algorithm has been impro
and modified (over the method in [7]) in order to solve the island dynamics problem.

3.1. Outline of the Method

After initialization of p, ¢, and N, the general outline of the numerical method is as
follows:

1. Compute an approximation to the normal velocity field.

2. Updatep by solving Eq. (3).

3. Solve the diffusion equation far, with the internal boundary condition pfequal to
a constant (e.g., 0) incorporated into the numerical scheme.

4. UpdateN(t) from Eq. (6). IfN(t) has increased to the next integer value, then a ne
island is seeded. This event is reflected by the appropriate modificatipatogridpoints
near the nucleation site. Return to step 1.

3.2. Normal Velocity

The first step of the numerical algorithm is to compute an approximation to the veloc
field v,. Equation (7) is valid only at the island boundaries, but numerically, it is best
extendv, off the interface to every gridpoint in order to obtain a smooth velocity field. Thi
minimizes the development of kinks ¢n

Atthe start of the velocity computation, a first-order approximatian, a6 computed only
at gridpoints bordering or on the fronts that represent the island boundaries on each I
This approximation is obtained by first computing approximation%tand g—’; at every
gridpoint(x;, y;). The first-order scheme used is either backward or forward differencin
Special care is taken so th% andg—’y’ are not differenced across island boundaries.

In addition tog—ﬁ andg—’;, it is also necessary to compute values of the outward norm
vectorn at every gridpoint. The formulas for this are

3 ¢
v 9X°* 9y
n:——(ﬁ, or (Ng, Ny) = — G )

IV 092 | 992

X ay

In the formulas above, the expressi<ij§sand g—"y’ are computed by first-order approxima-
tions, that are either forward or backward differences in space. The choice of which form
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FIG. 1. Merger between two islands.

to use depends upon the interface. The formula that involves nodes that are closest t
interface is the one that is chosen.

Onceg—ﬁ, j—f, ny, andny have been computed at all gridpointg,can be approximated.
At every gridpoint,(xi, y;j), a check is done of its eight neighbors to determine whethe
an interface is separating them. If there is at least one neighboring gridpointxé,g:),
that is separated frorfx;, y;) by an island boundary, them is computed from the jump
condition given in Eq. (7). In other words,

ap ap (Xi,Yj)
y] (8)

2
vy = xa°D [5nx + 8_yn (X*’Y*).
The sign value above is adjusted to the appropriate value, depending on wixetlyer is
within or outside an island.

Right before islands have merged, their boundaries are close, but not connected to
another. The velocity computation is robust enough to handle the case of gridpoints 1
are caught in between these islands. This is illustrated in Fig. 1, where three gridpoints
B, C) are separated by two island boundaries. At gridpoints A angﬁs computed by
backward and forward difference schemes, respectively. é@ B set to O, since there are
no other neighboring points on its same level. Singes computed from jumps i|§§, the
value ofv, at B will be computed either as a jump between A and B or a jump betwee
B and C. Either wayy, at B will be nonzero. Furthermore, humerical computations hav
shown that, behaves in a relatively smooth manner as islands merge.

Grid bias effects may occur since the jump condition in (8) is computed using the fi
gridpoint found,(x*, y*), that is not on the same monolayer(&s y;). To uniformize the
values ofv, in the normal direction, the initial approximationigis refined by solving the
equation

% +sgn@)(n- Vug) =0 9)
for a few iterations in a fictitious time, again only at gridpoints bordering the front. When
computingVuy, the spatial differences are computed using only valueg tifat have been
previously defined (i.e., adjacent to the interface). In the case where the spatial deriva
depends on a grid node whargis not defined, the derivative is set identically to 0.
Oncev, has been defined adjacent to the interface, those values must be extende
a narrow band (of about five gridcells) in order to update Eq. (3). One could use (9)
extendv, off the interface to all the gridpoints, as was first suggested in [45] and careful
implemented in [28]. This extension process can be computationally expensive, so ins
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a simple extension routine faf, is applied. First, all gridpoints are categorized as bein
either marked (close to or on the interface) or unmarked (away from the interface). At ev
marked node, a search is done of its neighbors for unmarked nodes. When an unme
node is found, the value af, at this gridpoint is set equal to an averagepfalues from

its marked neighbors, and this unmarked node is changed to a marked node. This prc
continues until all the nodes have been marked. There are better methods than desc
above but that they do not change the results here. See also [1] for a related fast methc
extending quantities off an interface that depends more directly on the characteristic na
of Eq. (9) than the method described above.

In Section 4.1, it is shown that for the case of irreversible aggregation, the problen
unstable. Under grid refinement, this physical instability can be seen numerically throug
fingering effect on the boundary. Since practical interest lies in simulating the growth &
development of many islands, the effect of this instability is minimal; for the coarser g
sizes used in our numerical experiments, islands tend to merge (coalesce) before any
of fingering takes place. However, when the number of islands is restricted, this effect
be seen as shown in Fig. 2a. One way of preventing dendritic growth from occurring is

"3

FIG. 2. Effect of velocity on instability: (ay, from Eq. 7; (b)v, from Eq. 10.
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compute an average normal velocity for each island, using the formula

_ $rwnds
Un—w, |—1,...N, (10)

wherel'; denotes the island boundaries. The original expressian farfEq. (7) corresponds
physically to the case of diffusion limited aggregation, whereas Eq. (10) does not. By us
(10), islands are forced to grow isotropically before merging. This is comparable to (I
not the same as) adding edge diffusion in KMC methods; both approaches have the e
of producing compact island shapes. The main benefit of usjng that unstable growth
modes are damped out and the fingering effect seen in Fig. 2a vanishes, as seen in Fi
The expressiom, is computed fromv, by solving (10) beforey, has been extended. For
each island, an approximation to the line integrabgfis computed and divided by the
island boundary length. A discussion of how island boundary lengths are computed follc
in Section 3.7. Aftew,, is computed at gridpoints on or near the interface, it is extended
a manner similar toy,.

Another feature that is sometimes desirable is to restrict the shape of the islands be
merger to the same anisotropic shape, e.g., squares. This can be done by making the ve
dependent upon the angle made between theaxis and the normal vectar For example,
square-shaped islands can be obtained using the velgaifiyén by

Un = vn(Jcosv)| + [sin(v)]).

The idea of using the velocity to obtain kinetic crystal shapes is discussed in more de
in [29] and is based on a result obtained in [24] and [36]. Results using ejthey, or v,

are shown in Fig. 3. In Fig. 3a, the island shapes correspond to the case of diffusion lim
aggregation. Though the equations for this case are weakly ill-posed, there is no notice
dendritic fingering in Fig. 3a, due to numerical dissipation on the coarse grid. Figure
is generated using,; here the growth can be described as isotropic with noncurvatu
dependent incorporation of adatoms. In the last panel, Fig. 3c, ugjtgeisland shapes
are anisotropic and the absorption of adatoms is dependentrupdmte that Egs. (3) and
(9) are formulated using the expressign If, however, a decision is made to use eithgr ~
or v, then (3) and (9) are solved with replaced by eithew, or vy.

3.3. Level Set Computational Issues

The level set equation (3) is solved using a method of lines approach, which employ
third-order Runge—Kutta method along with a third-order Hamilton—Jacobi ENO scher
This approach is fairly standard, and the interested reader is referred to [26, 35] for m
details. There are some unique aspects of this level set approach that are worth discu:
in more detail because they show how useful the level set approach is for problems s
as the island dynamics equations. The issues addressed in this section aréshased
to track islands on different monolayers and the issue of reinitialization. Section 3.5 v
show how nucleation events are represented ugjrasnd Section 3.7 will cover how can
be used to compute various island statistics.

A unique aspect of this numerical method is that only one level set function is neec
to keep track of islands on different layers. By using just one level set function rather tt
one function per layer, the algorithm is kept simple and memory costs are kept down. Fr
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FIG. 4. Two-dimensional profile of phi foy held fixed.

one function, one can determine where the island boundaries are, as well as what laye
island is on. This is a useful feature since there is observable roughening and coarsenir
thin film surfaces in experimental and KMC data.

The manner in whickp is used is in the identification of contour levels= m, m being a
nonnegative integer, with island boundaries on(thet 1)st layer. Thus, at gridpoints near
nucleation sites) must be raised to at least the next highestinteger value in order to prope
represent islands on a new layer. Figure 4 represents a typical profilélastrating how
¢ can be used to represent island growth on three different layers.

In contrast to other level set applications [28, 38]is not reinitialized as a distance
function after Eq. (3) has been solved. The reason for this is that other level set applicati
are only concerned with tie= 0 contour level; hence, constant reinitialization to a distanc
function is desirable in order to obtain a very well-behaved funcfiorlowever, in the
island dynamics model, one has to keep track of many contour levels. Reinitializathon o
to an exact distance function from any one specific contour level could introduce spuri
peaks ing, thereby creating erroneous islands.

Although reinitialization to a distance function is not possible because of nucleatic
there is still a need to check thatstays well-behaved. Nucleation introduces local region
where¢ is nhonsmooth and may cause oscillations. In order to minimize the impact fro
new extrema of formed from nucleation, a search is done for any spurious oscillatior
in ¢. At a nucleation siteg is raised to the next highest integer value plus a constant pe:
height (see Eq. (21)). Since Eq. (3) should not introduce any new extrema, any extrem
¢ should be equal to an integer plus this constant peak height. Thus a criterion is sef
determining whether local extremadnare spurious. First, a search is done for any loca
maximum values ob. If the fractional parts of these values do not fall within a certair
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range of the peak height, these valueg afe considered spurious oscillations and are res
so that their fractional parts are equal to the peak height.

3.4. Computation of the Adatom Density

The diffusion equation fop (4) is solved using a finite difference scheme. In genera
the stability condition for explicit finite difference schemes for parabolic equations lea
to a timestep restriction. In particular, for large values of the diffusion coeffiderihis
timestep restriction is severe and of the form

CAX?

At <
- D

(C =constant

Since realistic values db are of the orde© (10°)-0(10°), this timestep restriction makes
explicit finite difference schemes impractical. In contrast, an implicit finite differenc
scheme is unconditionally stable. By switching to an implicit method, there is the adc
benefit of being able to compute on a much longer timescale than is possible for Kl
methods. (Of course, the fact that this method is stable using relatively large timest
is no guarantee that the results are more accurate than KMC methods, which use s
timesteps.)
The implicit scheme that is applied to (4) assumes that

and that the spatial derivatives pfare approximated using values g, wherek is the
index for time. One may want to use the Strang splitting method because of the nonlir
term p? in the last term of (4). In fact, since the nonlinear ordinary differential equatic
can be solved analytically, the stability concerns introduced by this factor are nonexist
Moreover, the Strang splitting method is not as accurate with large timesteps; i.e., wher
use large timesteps to generate a qualitative solution, the results from Strang splitting
worse than the method we now use. The expressfdn (4) is linearized, so that

(P2~ (0 + 204" = 09
~ 2pkpk+l _ (pZ)k'
Therefore, the implicit scheme produces a time-dependent linear system of the form

Aokt =b, (11)

whereA andb are dependent upon surface morphology (@', which is updated first),
and their structure is determined by the spatial discretizations of the deriv%?ﬁvesd%@
in (4). These discretizations are described in some detail below.

It is sufficient to explain how the spatial derivatives are derived with respect to o
variable, since there are no mixed partial derivative terms in (4). The extension of
following discretization formulas to two dimensions is straightforward and simple. In o
dimension, letthe spatial gridpoints be denotedibgnd leto; ~ p(X;, -) andg; ~ ¢ (X, -).
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The standard central finite difference schemedgr= 227‘2’ (at some fixed time) is

(mi;p‘) - (pi _AQH) _ pi+1— 2pi + pi—1
T(AX + AX) AX2

(pxx)i ~ , (12)

whereAx is the spatial grid spacing.

For gridpoints near the island boundaries, (12) cannot be used because the first deriva
of p are discontinuous across the interface. Furthermore, the internal boundary condi
needs to be incorporated into the finite difference stencil. One way of doing this is to
one-sided subcell discretizations. Suppose the boundary pginfalls in between two
gridpointsx; andx; ;1. Frome, the distances between x; 1 andxs can be estimated by

—(¢i —int(¢))AX

— X ~ =601A 13

Xt =X ($ir1 — 1) 1O (13)

i ~ (¢>i+1(; Irlt(¢>i(;1)))AX oax 1)
I+ - ]

Note that, 6, € [0, 1],6, + 6, = 1,and int¢;) is the integer part af;. To avoid numerical
errors caused by division by 8, or 6, are not used if either is less thax?. If 6; < AX?,
then x; is assumed equal tg. If 6, < Ax?, thenx; is assumed equal t® ;. Either
assumption is effectively a second-order perturbation of the interface location. As will
shown later in the discussion of the Ghost Fluid Method, a second-order perturbation of
interface location will not affect the overall first-order accuracy of the spatial discretizatic

Using the formulas above, one can construct numerical stencits fadhat avoid differ-
encing across the front. By formal truncation analysis, these formulas are only first-or
accurate Q(Ax)) and are given by

(G ) — (=)
2(01AX + AX)
(pi+2fﬂl+1) _ (/0|+1_ﬂf)

?X G2 AX , (16)
3(AX + 6,AX)

(pxx)i ~ (15)

(oxx)i+1 ~

wherep; denotes the value gfatxs and is determined from the boundary condition. Thus
the boundary condition is incorporated into the stencil through the specification i
the case of irreversible aggregatign, = 0.

When Egs. (12), (15), and (16) are generalized to two dimensions and coupled t
standard implicit scheme for (4), they form a nonsymmetric linear system. In [7], a simil
system was solved using the Gauss—Seidel method. The scope of the island dyna
problem is different from the one in [7] in that typical simulations involve much large
system sizes and longer computational times. Also, given that valugsoé much larger
than in [7], the Gauss—Seidel method would be too slow for all practical purposes. In tet
of speed, itis preferable to solve a symmetric linear system because a fast iterative me
such as the preconditioned conjugate gradient (PCG) method can be applied. Consequ
what is needed is a discretization of the spatial derivatives that will lead to a symme
system of equations, yet still include information about the internal boundary condition

In [21], an alternative strategy for discretizing the internal boundary condition was pr
posed. This strategy was based on the delta function formulation of [30] which was aday



A LEVEL SET METHOD FOR EPITAXIAL GROWTH 487

for level set methods by [38] and [6]. The method proposed in [21] used a penalty metl
to keepp near zero in the hope of approximating the= 0 internal boundary condition
in Eqg. (5). This is done with a strong spatial sink term that is added to the right-hand s
of Eq. (4) in the form—Kpd, wheres is a smoothed out delta function that acts in a ban
near the interface, causing the sink term to have an effegt ina finite band of cells.
Usually, this delta function formulation works because the thickness of the band expo
to the delta function shrinks to zero Ax goes to zero, producing a vanishing contribution
to the true physics of the problem. Unfortunately, since Eq. (7) is always discretized us
the gridpoints immediately adjacent to the interface, the contribution of the delta functi
source term is not diminished as< goes to zero. On the contrary, this band of cells wher
the delta function is applied always makes a large contribution to the velocity of the fro
Furthermore, the = 0 boundary condition is only obtained Ksgoes to infinity and p
approaches a finite limit (notablk 0 approaches,). Neither of these conditions can be
obtained numerically, and results using this method were unsatisfactory.

In order to alleviate the difficulties associated with the implementation of the interr
boundary condition in [7] and [21], Egs. (15) and (16) are replaced with the followir
discretizations fopyy at gridpoints near the boundary,

() — (°5)
AX
(pi+2gxpi+l) - (Ping—pr ) . (18)

(oxx)i ~ (17)

(oxx)i+1 ~ Ax
These equations were derived using ideas generated by the Ghost Fluid Method [10].
is, Eq. (17) is derived using linear extrapolationcofrom one side of the interface to the
other, which gives

pe=pf+(1—91><”f9_”i> (19)
1

as a ghost cell value fqo at x; 1. The standard second-order discretizatiorﬁ?ﬁf at x;
usingpg atxjy1is

PG —Pi\ _ (Pi=Pi-1
(Pxx)i %( AX ) ( AX ) (20)

AX
and the substitution of Eq. (19) into Eqg. (20) leads directly to (17). Equation (18) is deriv
similarly. Note that similar ideas were used in [15], but their final matrix was nonsymmetr
making their method more similar to [7] and to related work in [40]. It is interesting to no
that a formula similar to (17) appears in [27] for a different problem in which the formul
was used to alleviate CFL restrictions by assuming that the interface underg@éaan
perturbation in location.

As formulas for the second derivatives, (17) and (18) Hay#) errors. As equations for
the boundary valueg, however, these formulas ha@Ax?) errors. By the maximum
principle for parabolic systems, the resulting consistency error is@&x?) everywhere.
Computational experiments confirm this fact and show that the resulting scheme is sta

Assuming thatVp| # 0 and thatVp is not parallel to the boundary (which is true for
the o+ = 0 problem considered here), a change in boundary value with fixed domain
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equivalent to a change in domain boundary with fixed boundary value. This shows t
an alternative explanation for the boundary condition is that it corresponds@y Ar?)
change in the interface location with no change in the boundary yalu€his change in
the domain also results in @(Ax?) consistency error. An advantage of this formulation
is that it preserves the property that- 0 inside the domain.

While the above argument holds for the one-dimensional case, it is not obvious the
applies or can be extended to multiple spatial dimensions. However, extensive humel
testing of this method was carried out in [8]in one, two, and three spatial dimensions for
Poisson equatioR - (kVp) = f with Dirichlet boundary conditions on irregular domains
considering both spatially varying and spatially constarih [8], the algorithm showed
numerical evidence of second-order accuracy in both_thand L> norms as compared
to exact solutions for a wide variety of problems. Furthermore, Chetray. [8] tested
this method on an implicit time stepping discretization of the heat equatienAp with
Dirichlet boundary conditions on an irregular domain. For the heat equation, similar seco
order accuracy in both the! and L> norms was observed in the numerical calculations
for one-, two-, and three-dimensional numerical examples.

The largest advantage of using (17) and (18) is that they lead to a symmetric linear syst
This is best illustrated by considering the local matrix structure corresponding to the t
discretizations opyx. Suppose; falls between gridpointg; andx; 1. Also, assume that
ot = 0 and#; and6, are defined as in formulas (13) and (14). If one uses the standa
discretization (12) fopxyx at gridpointsx;_; andx;,, and formulas (15) and (16) feky at
X; andx;1, then the corresponding local matrix structure for the numerical discretizatic
of pxx would look like

Pi-1
2 =2
1 e Y 0 Oi
2 -2 2 . ’
AX O 0 0—2 m Pi+1

0 1 —2 Pi+2

which is clearly nonsymmetric.
Now if (15) and (16) are replaced by formulas (17) and (18), the analogous local mat
structure is

-2 1 0 0 )

1 i—1

N e R [
AX2 | 0 0 _(1+%) 1 ||l
-2 Pi+2

Thus, (17) and (18) produce the desired symmetric matrix structure. By using these formt
a tradeoff is made in the accuracy of the interface location in order to produce a symme
linear system.

The resulting symmetric matrix system (11) is solved using PCG. Even though PCC
a standard fast iterative solver (see [11] for a survey of iterative solvers), 70—80% of C
time for typical runs is still spent solving the diffusion equation. Presently, the Choles
preconditioner is used at every timestep. This preconditioner performs well in comparis
to other preconditioners (see Fig. 5), but the hope in future work is to improve code sp
by applying different optimal preconditioners at different coverages.
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Comparison of preconditioners
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FIG. 5. Iteration counts for different preconditioners.

3.5. Nucleation

An important feature of this numerical algorithm is the ability to model nucleation even
i.e., the seeding of new islands. The time to nucleate a new island is determiméd)by
whichincreases by the nucleation rate given by Eq. (6). Wheri¢@glincreases to the next
integer value, that signals the time for a nucleation event. Numerically, every nucleat
event will affect values op and¢ near nucleation sites, which are simply gridpoints a
which a new island is centered. These sites are chosen probabilistically, which means
the location of a new island is chosen with a probability that is weighted by the local val
of p2. A justification for this choice is discussed in [31].

New islands are represented on the grid as square-shaped. Their ide&Rateis
predetermined by the number of atoms in a new island (2) and the atomic length
ensure that new islands will not disappear because of inadequate numerical represent
the smallest numerical island size iA¥?, i.e., the area of the square formed by four grid
cells. If Ax < iz then the grid size is fine enough to represent the ideal area for a n
island. On coarser grids\x > %), new island areas are set equal to a valae@larger
than the ideal value, sincgx is the smallest length representable on the grid.

The algorithm for representing a new island is as follows:

1. Choose the nucleation sit&, ;).
2. Setl = lowest integer value- ¢(x;, y;).
3. Reset values at gridpoints nedx;, y;) so that locallyp is pyramid shaped.

In step 3, local values af are reset to new valugg®”. At the nucleation sitéx;, y;), ¢"*"
is a maximum value, based on a predetermined peak height. This peak height is betwe



490 CHEN ET AL.

I + peak height

I Sl 1t S A

FIG. 6. Local profile of¢"®Wfor y held fixed near a nucleation site w = %
and 1 and is typically set to 0.5, so that
"M, yj) =1405. (22)

The area of the base of the pyramid formedd§" is either 22 or 4Ax?, based upon
the grid size. Values ap are reset t@"®" at gridpoints within and neighboring this base
area, centered &k;, y;). These local values are determined such that (21) is satisfied a
9" = | at the base of the pyramid. Within the base area, valug§®¥frange betweeh
andl + 0.5. At neighboring gridpoints outside of the base agé& is extended smoothly
to values below . See Fig. 6 for a profile ap"®¥ near a nucleation site.

Numerically, nucleation causes local valuegpab change. No corresponding changes
are made explicitly ip. Instead, after a nucleation event has taken place, the normal veloc
is computed at all gridpoints. Care is taken so that the velocity is kept equal to 0 at gridpoi
whereg¢ has been reset 9", This is necessary so that new islands will not move yntil
has been updated. Implicitly storedgnthe new island will be “felt” byp once Eq. (4) has
been solved.

3.6. Timestep Restrictions

In essence, three differential equations are solved at each timestep: (3), (4), and
Though the equations are updated by different timestepping schemes, e.g., Runge-}
for (3) and implicit Euler for (4), the actual value At must be the same for all three updates
in order to avoid synchronization errors. Instead of a constant timeAtejs, determined
adaptively by a number of factors. From the flux telfmin Eq. (4), a restriction is placed
on At such that

FAt < 0.01
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This is to guarantee that there is sufficient accuracy in integrating teem, and that there
is no more than 1% coverage per timestep. To ensure the stability of the explicit timestepj
scheme for (3), the required CFL condition is given by

AX

At < —.
max(vn)

Furthermore, since represents a density, it should have nonnegative values at all gridpoir
If, after solving (4) using a timestefit, a negative value gf is detected, the calculation
of the three equations is redone using a reduced timestep (e.g., in our code, Atg'4jse

In addition to the timestep restrictions generated by Eqgs. (3) and (4), another fac
contributing to the adaptive timestep is nucleation. New islands are seeded one at
timestep in order to avoid islands being seeded too closely to one another. Whigiiver
has increased by more than 1 within a single timestepis reduced (once again using
At/4). This has the effect of slowing down the code during stages of heavy nucleati
In terms of speed, nucleation adds a time scale factd® @f?) wherelL? represents the
physical system size. Th®(L?) term is due to the fact that the largkris, the more
nucleation events can occur. Future work will involve the implementation of a multip
seeding algorithm that will reduce ti@(L?) factor in the code scaling.

There are continued reductionsA until either all the timestep restrictions are met or a
minimum value ofAt = 10~ is reached. (So far, we have never hit the minimum in any o
ourlargenumber of computations. Conceivably, this could occur and the code would have
be terminated. In that case, we would need to propose an alternate strategy for cixgsing

3.7. Computation of Island Dynamics Statistics

Lastly, ¢ is used for computing a variety of island statistics. These statistics are use
as a barometer of how well the level set method is working and of how accurate the isl
dynamics model is at describing features of thin film growth. In Section 4, results garne
from these statistics will be presented. How these statistics are obtained using the leve
function is described below.

The numerical quantities that are most needed for obtaining quantitative results are
number, areas, and perimeters of islands. As discussed in [21], these statistics can be
puted by treating islands as the connected components of the contour levelsAof
algorithm has been developed for labeling every connected component, hence every is
and for associating every gridpoint as being within or outside an island. In this algorith
nodes are categorized as labeled or unlabeled. From an arbitrary starting node, neighbt
labeled nodes are checked to see if they are unlabeled and if there is no boundary (col
level) separating them from their labeled neighbor. If both criteria are met, unlabeled no
receive the same label as their labeled neighbor. This process continues until either al
nodes or all the islands have been labeled. Afterwards, the number of islands is comp
as the number of labels used.

Itis relatively easy to compute island areas and boundary lengths. The approach used
is to triangulate the grid and ugeto interpolate the places where the interface cuts throug
the triangles. From these interpolated values, one can easily compute subcell areas
perimeters. Thisis illustrated in Fig. 7. Within the triangle formed by the gridpointy; ),
(Xi+1, Yj), and(x;, yj+1), the front intersects at two interpolated poirts = (xa, ya) and
Iz = (Xg, YB). Assuming thatx; 1, y;) is within an island andx;, y;) and(x;, yj+1) are
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)

(x.,y.

x>y) =03,y
FIG. 7. Interpolated values within triangle formed from gridpoints.

outside an island, the contribution to the island boundary length from within the island i

vV (Xa — Xg)2 + (Ya — YB)2,

and the contribution to the island area is approximated by

1
E(YA —YB)(Xi+1 — XB),

using a linear interpolant betweép and | g.

4. COMPUTATIONAL RESULTS

In this section, some of the results obtained from this numerical method are presen
All of these results pertain to the model of irreversible aggregation.

4.1. Step Trains

Growth might occur either by nucleation and growth on a singular, or perfectly fl
surface, or via step-flow on a vicinal, or stepped surface. These steps originate becat
crystal is typically cut at a (small) angle with respect to one of the low-index crystal plane
During step flow, all atoms diffuse toward the next step edge before they meet anot
atom, and nucleate a dimer. Thus, before considering the full island dynamics model v
nucleation, it is instructive to consider the case of step trains in the model of irreversi
aggregation. Although the terms steps and islands both describe features of crystal grc
there are differences between the two. Islands are isolated regions that are one layer h
than their surrounding regions. Steps are boundaries on a surface substrate, along whic
surface changes height by one or more layers. A step train is a series of steps. Itis pos
to obtain theoretical solutions for the island dynamics equations in the special case of -
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trains without nucleation. One can then compare these solutions with computational res
from the level set method.

In the case of a periodic step train, let the step boundary be described by the func
X(y, t). The evolution of the step can be modeled by the island dynamics equations:
(5), and (7). In the absence of nucleation, these equations reduce to

9
ait)zv.(DVp)JrF, X—S<x<X+S (22)
p=0 x=X-SX+8S (23)
9 9
vy = _a20<p S ) (24)
an an
X+S X-S
where
Xt == Una (25)
and
1, —-X
N ( y)

,/1+X§

denotes the normal to the step. The period of the step ir-tfieection is . Note that the
term-|x, s denotes to the limit from right, and the terfy_s denotes to the limit from the
left.

After performing a shiftx = vt + X/, to center the step, the evolution equations becom

9 9
ait):v.(ovp)jLFJrvoan,, X —S<x <X +S (26)
p=0 X=X —-8X+S 27)

9 9
v = —a2D <—p _ ) (28)

an an

X'+S X'—S.

Xt/ = Un — Vp. (29)

By perturbation analysis of Egs. (26)—(29), one can obtain leading order approximation
the analytic solutions of the form

p(X',y, 1) = po(X') + epr (X, y, t) + ...
X'(y. 1) = eXy(y, ) + ...,

wherepg, p1, and X} are of the form

po = bo + bix + bze’“/
pr = ITNG et pe)

X/l — )’ilei ky+wt ,
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in which
vo = 2a’FL
A =2a’DIFL
by = (2a®)~*coth(AL)
by = —(2a%L)!

b, = —(2a%sinh(AL))!
and for the second-order approximation, one will find that in leading order,
® = a*D(py(S) + po(—9)IKI.

Further analysis shows théty(S) + pp(—S)) > 0, and hence > 0. Thus there exists a
class of unstable solutions.

Computational results can be obtained by applying the level set method to the <
train model, with no nucleation. Consider the case of initial sdéps t = 0) = € cogkx)
with initial density p(X, y,t = 0) = po(X) + €p1(X, y,t = 0). These two equations are
compatible fofe small. (If € is too large, then the step velocities derived frdrandp will
not match up and the two solutions will not agree.) In the simple case of a straight step (
wheree = 0), the theoretical solution matches up with the computed solution from the le\
set method. The step travels at the correct velagignd one can measure the error betweer
the analytic and computed solutions. In Table I, the error is recorded for increasingly fir
grid sizes. The corresponding order of accuracy is one, meaning the numerical methc
O(AX).

For ¢ small, a more interesting result occurs when the level set method produces
instability predicted from the theoretical solution. This instability can be seen in the d
velopment of dendrites over time, as shown in Figs. 8 and 9. The solutions obtained u:
the level set method are accurate up to the time at which spurious oscillations occul
Table II, the error is measured between the analytic and computed solutions for the ¢
corresponding to Fig. 8 (top), third curve from the left. Similar to the case fer0, the
measured order of accuracy in Table Il shows that the level set method is first-order accu
for e > 0 up to small times. For later times, the dendritic fingering from level set results (
seen in Figs. 8 and 9) shows the inherent instability of the problem. Oscillations result
from the physically correct unstable growth have the effect of amplifying roundoff and di
cretization errors. These oscillations are quickly magnified, causing a numerical instabi
at later times.

TABLE |
Step Trains
Grid size Max errof Order
50 x 50 1366x 102
100x 100 6506x 1073 1.070
200x 200 3206x 1073 1.021
400 x 400 1591x 10°3 1.011

@ Error measured between the analytic solution Witk 1
and level set results for the case of a straight stepgi.€.0.



TABLE Il

Step Trains
Grid size Max errof Order
32x 32 1749x 102
64 x 64 1030x 102 0.764
128x 128 4555x 102 1.177
256 x 256 2302x 1073 0.984
512x 512 1166x 1073 0.982

2Error measured between the analytic solution and level set
results for the case corresponding b= 20, F = 1eX, =
—0.01, k=4, 0 =6.8789t =0.025
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FIG.8. Steptrains: analytic (smooth) and computed (dendritic) solutbns.20,F = 1,eX; = —0.01, k =
4, 0 =6.8789t = 0.0,0.0125 0.025,0.05, 0.1, 0.2, 0.4 (bottom). First five curves zoomed in (top).
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FIG.9. Steptrains:analytic (smooth)and computed (dendritic) solutDns.10, F = 1, e X; = —0.02, k =
4, 0 =11946,t = 0.0,0.05,0.1, 0.2.

4.2. I1sland Dynamics Computations

For the full island dynamics model, one of the earliest checks performed was relate
mass conservation. Under a constant flux térnthe coverage on the surface should be
® = Ft,wheret is the computational time. However, itis known that level set methods ha
a (small) mass loss. In Fig. 10, we plot the actual coverage on the surface as a functio
time. The actual coverage is measured by simply adding up the area of all islands on the
face (this neglects the adatoms, but for typical valuds Gf the number of single adatoms
is several orders of magnitude smaller than the number of adatoms that have been ir
porated into the islands). The solid (straight) line represents the ideal case of perfect n
conservation. We see that there is a small mass loss in our method resulting from nume
dissipation, but, in general, mass is conserved very well. In particular, the mass loss ca
controlled under grid refinement, and the order of accuracy for mass conservaiQuxs.

To validate the island dynamics model and its numerical implementation, results h:
been compared to those obtained from KMC simulations. The KMC simulations we
carried out on a square lattice and included a process for fast edge diffusion so that is
shapes are compact. The focus here is on the submonolayer regime for the case of irreve
aggregation, where the nucleation rate is given by Eq. (6).

With the approach discussed here, one can obtain the entire island size distribu
(including spatialinformation). Scaling of the size distribution for different values of the
coverage® andD/F in comparison with the KMC simulations is shown in Fig. 11. The
filled symbolsin Fig. 11 correspond to scaled numbers from the level set method (LS), wi
the open symbols correspond to data obtained from KMC methods. The agreement betv
the two methods is very good for two valueddf F and two values of). Experimental data
are represented on the graph by the large circular symbols. For larger vakyess, pthe
agreement between the experimental and simulated data is also very good. The discrey
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FIG. 10. Conservation of mass under grid refinement.

between the two types of data for smaller valuesaf,, may be due to noise. Since
the correct island size distribution is obtained, this model captures many of the relev
processes in the submonolayer aggregation regime.

The island dynamics model has no inherent limitations that restrict its validity to su
monolayer growth. In fact, one of the advantages of the level set method is that it can desc
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FIG. 11. Comparison of scaled island-size distributions, wheris the number of islands of sizgs,, is the
average island size, artilis the coverage. The experimental data for Fe/Fe(100) come from [37].
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FIG.12. Step-edge density for different valuesdf F obtained with the level-set method. The data represent
the average over five independent realizations, Wwjth = 300 and 400 gridpoints (laterally).

the merger (coalescence) of islands within its framework, without specification of any ex
parameters. For many technological applications, it is of interest whether a thin film gro
in a layer-by-layer fashion, or whether it becomes rough (many layers exposed at the s
time). The type of growth can be observed experimentally through the RHEED (reflect
high energy electron diffraction) signal. During layer-by-layer growth, the RHEED sign.
oscillates with a periodicity that corresponds to the completion time for each layer. Ther:
evidence that the RHEED signal is due to variations in the step edge density [34]: at la
completion, there are very few step (island) edges, while at a partially grown layer, th
are many exposed step (island) edges.

In Fig. 12, results are shown for the step-edge density oscillations for different valt
of D/F. The step-edge density oscillates with an amplitude that is damped. The latte
due to progressive roughening of the surface. For higher valuBg Bf the magnitude is
lower, because there are fewer, bigger islands on the surface. Thus, this model qualitat
reproduces the correct physics in the multilayer regime as well. A more quantitative st
with a comparison to the corresponding KMC data is currently being pursued and will
published elsewhere.

5. CONCLUSIONS

In this article, we have presented further developments and results from a level set b:
method that simulates the island dynamics model for the growth of epitaxial thin films. Ma
parts of this numerical method were originally proposed in [21], although this paper mal
some notable improvements. In particular, a new treatment was proposed for the inte
boundary condition that is much faster than the method in [7] and does not needlessly sr
out the interface as originally proposed in [21]. Results using our numerical formulati
have been previously published in [4, 12]. In this paper, we have focused on explaining
numerical algorithm, as well as the numerical challenges to be overcome to accurately s
and evolve the equations of motion. We have also detailed how the numerical method
used to address some of the unique issues arising from the island dynamics model, su
nucleation and multilayer growth.
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The computational results presented here are from the model of irreversible aggrega
the case of step trains, the level set method is first-order accurate when compared 1

analytic solution. For the full island dynamics model with nucleation, good agreement w
corresponding results obtained from KMC simulations shows that the method is accu
and captures the correct physics. In the future, we plan to extend the model to incorpc
a more general boundary condition, corresponding to reversible aggregation. We also

to

improve the overall speed and accuracy of the code through further development of

method. In conclusion, we feel that the level set method applied to the island dynan
model is a useful and important addition to computational methods for simulating thin fi
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