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Level-set methods for the simulation of epitaxial phenomena
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We introduce a model for epitaxial phenomena based on the motion of island boundaries, which is described
by the level-set method. Our model treats the growing film as a continuum in the lateral direction, but retains
atomistic discreteness in the growth direction. An example of such an ‘‘island dynamics’’ model using the
level-set method is presented and compared with the corresponding rate equation description. Extensions of our
methodology to more general settings are then discussed.
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Modeling epitaxial growth presents an enormous ch
lenge to theoretical physicists and materials scientists.
range of length and time scales represented by problem
practical interest~e.g., the growth of device layers! spans
many orders of magnitude@1#, i.e., atomistic processes ca
significantly affect quantities such as surface morpholo
even at the largest length and time scales@2#. A complete
model for epitaxial growth would seamlessly combine t
submonolayer and multilayer regimes on lateral scales
several microns or more, be appropriate for a variety of
moepitaxial and heteroepitaxial systems, and be capabl
describing different growth techniques.

None of the models for epitaxial growth currently in u
can accomplish this objective. The most common approac
fall into one of two categories: analytic-based methods,
homogeneous rate equations and continuum equation
motion, and kinetic Monte Carlo~KMC! simulations. Homo-
geneous rate equations are straightforward to formulate@3#,
but do not readily yield information on surface morpholog
Moreover, the number of parameters required grows quic
once rate equations are extended to the coalescenc
multilayer growth regimes@4#. Even in the precoalescenc
regime, the physical interpretation and computation of th
parameters in terms of atomistic processes are often un
at best, unattainable at worst.

Continuum equations of motion that take the form of p
tial differential equations@5# for the surface height profile do
yield information on morphology at large length scales.
they are typically formulated@5,6#, however, continuum
equations are appropriate only in a regime where the sur
is already assumed to be macroscopically rough. Continu
methods are therefore unsuitable for describing atomic s
roughness. The primary advantage of these and rate equ
methods is the vast methodology available for, e.g., ident
ing asymptotic regimes~scaling! @7# and performing stability
analyses@8#.

KMC simulations@9# offer an alternative to analytic ap
proaches. They allow easy implementation of a wide ra

*Permanent address: The Blackett Laboratory, Imperial Colle
London SW7 2BZ, United Kingdom.
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of atomistic kinetic processes, which can in principle
identified and their rates determined from first principles c
culations @10#. However, simulations are usually based
the length and time scales of single atoms and adatom h
ping rates, so modeling systems of practical interest is
always feasible. In addition, due to the stochastic nature
simulations, the advantages of analytic approaches m
tioned above are not readily obtained.

Yet, despite the practical limitations of analytic and sim
lational methods, they have been used with great effec
provide a comprehensive conceptual and computatio
framework for describing homoepitaxial growth@11#, espe-
cially by molecular-beam epitaxy. Problems arise, howev
when attempts are made to extend these techniques to
eroepitaxial systems, where the effects of lattice misma
must be incorporated, or to other growth methods, such
vapor-phase epitaxy~VPE!, which requires coupling the ato
mistic kinetics on the substrate to the hydrodynamic deliv
of new material. Some aspects of these issues have
addressed for particular systems, but no general metho
ogy has emerged to provide a unifying framework in t
spirit of the analytic or simulational work described abov

In this Rapid Communication, we introduce a model a
closely related numerical technique that addresses thes
sues. In our model, growth is described by the creation
subsequent motion of island boundaries; hence, we refe
this model as ‘‘island dynamics.’’ The model is discrete
the growth direction, but continuous in the lateral directio
and therefore, in principle, can describe growth on arbitra
large lateral length scales. Moreover, since the lateral di
tions are treated continuously, continuum equations rep
senting any field variable can be coupled to the growth
solving the appropriate boundary-value problem for the fi
and using local values of this field to determine the lo
velocity of the island boundaries. For example, the str
fields that occur in the presence of lattice mismatch or
hydrodynamic fields in a VPE reactor can be accommoda
by this method.

Although island dynamics is a natural way of describi
many aspects of epitaxial growth, its implementation
quires tracking a large number of individual interfaces th
coalesce or are created by nucleation. Recent advance

e,
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applied mathematics, in particular, the development of
level-set method for simulating the motion of free boun
aries@12,13#, now make numerical implementation of such
model practical. We first will give a brief introduction to th
level-set method and then present results of a basic is
dynamics model to demonstrate its viability.

The central idea behind the level-set method@12# is that
any boundary curveG, such as a step or the boundary of
island, can be represented as the setw50, called thelevel
set, of a smooth functionw @Fig. 1~a!#. For a given boundary
velocity v, the equation forw is then

]w

]t
1v•“w50 , ~1!

in which v has been extended in an arbitrary way from t
boundary G(t). Since ¹w5n̂u¹wu, then v•¹w5vu¹wu,
wherev5n̂•v is the normal component ofv and n̂ points
along the direction of¹w. Growth is naturally described b
the smooth evolution ofw as illustrated schematically in
Figs. 1~a! and 1~b!. The boundary curveG(t) generally has
several disjoint pieces that may evolve so as to merge@Fig.
1~c!# or split @13,14#.

We have extended this method to multilayer grow
where the~zero thickness! boundariesGk(t) of the islands
are defined as the set of spatial pointsx for which w(x,t)
5k for k50,1,2, . . . @Fig. 1~d!#. Overhangs and undercut
generally considered irrelevant in modeling epitaxial ph
nomena, are prevented by using one single-valued functiow
for all layers. The evolution of the level-set functionw is
obtained by numerically solving Eq.~1! with high-order ac-
curacy~typically third order! using essentially nonoscillator
~ENO! methods@15#.

An important feature of the level-set method is thatw
remains smooth throughout coalescence. This is crucial
applications to epitaxial growth because hundreds or e
thousands of island boundaries may merge in the course
typical simulation. While other methods for tracking boun
aries~e.g.,@16#! require additional input for accommodatin
the topological changes that occur during coalescence,

FIG. 1. Schematic evolution of one-dimensional island m
phologies~left! and the corresponding level set function,w ~right!:
~a! two spatially separated islands;~b! the same islands at a late
time, but before coalescence;~c! the islands after coalescence; a
~d! the nucleation of a new island on top of the coalesced islan
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evolution of boundaries with the level-set method is a dir
consequence of a particular choice for the boundary velo
v.

To illustrate the application of the level-set method
epitaxial growth, we consider a basic island dynamics mo
This model assumes that the adatom densityr5r(t) is spa-
tially uniform and that the incident fluxF is constant in space
and time. If we also assume that adatoms attach irrevers
to the islands, then the velocity of the island boundary h
magnitude

v5Dra , ~2!

whereD is the adatom diffusion constant anda is the lattice
constant. The adatom density increases due to the flux
decreases due to both nucleation of new islands and att
ment of adatoms to island boundaries. The equation for
evolution of the adatom density is thus given by

dr

dt
5F2n0

dN

dt
2

v

a2L2E ds, ~3!

wheren0 is the number of adatoms in a new island,N is the
density of islands,L is the system size, and the integral
over all the island boundaries. The form of the last ter
which accounts for the decrease of adatom density du
attachment to island boundaries, is easily understood by
serving that the integral over all island boundaries with
spatially constantv is just the total area of adatoms swept
by these boundaries in timedt. The factor ofa2 then con-
verts this area into the number of adatoms lost and the fa
of L2 converts this, in turn, into the corresponding densit

Equations~2! and ~3! are closed by specifying the nucle
ation rate. For the case of irreversible attachment,n052 and
the nucleation rate is

dN

dt
5Dr2 . ~4!

New islands are nucleated at the timestn whenNL2 crosses
the integer valuen. At these times a ‘‘peak’’ is inserted into
w @cf. Fig. 1~d!#. This peak is one unit high and spans seve
points on the numerical grid to ensure the smoothness ow.
Since there is no spatial dependence in the adatom de
and, hence, in the nucleation rate, we choose the locatioxn
of new islands to be random. This is equivalent to addin
source term(nd(t2tn)d(x2xn) to the right-hand side of
Eq. ~1!. While this nucleation scheme is appropriate here,
temporal and spatial dependence of nucleation can be ch
to include any desired physics, such as the spatial varia
of the adatom density.

The above model describes the growth of islands at a
proportional to their perimeter, which is appropriate for t
period immediately preceeding the aggregation regime@17#.
While no fixed island growth rates are correct for all regim
@17,18#, our choice is suitable for demonstrating the feasib
ity of applying the level-set method to a particular isla
dynamics model. Figure 2 shows islands at four differe
coverages obtained by integrating Eqs.~1!, ~3!, and ~4!.
Since the model is both isotropic and spatially uniform, t
islands are circular, but this is not an intrinsic limitation
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our method. The velocity for the island boundaries can
flect any underlying crystal symmetry@19#.

This simple island dynamics model is best understood
the context of rate equations that take into account the e
lution of a finite number of islands in a finite system of si
L, but with continuous island sizes. Consider Eq.~3! in the
slightly altered form

dr

dt
5F2n0

dN

dt
2

v

a2L2(i
2pr i , ~5!

where we make explicit the sum over the perimeter of ev
island in the system whose radius isr i . With evolution equa-
tions for eachr i given by

dri

dt
5v , ~6!

this set of equations, together with Eqs.~2! and ~4!, is then
formally identical to the island dynamics model prior to co
lescence, provided that allr i50 initially and that thekth
nucleation event adds a new island to the system with in
radiusr k5aAn0 /p. Because the system size enters exp
itly into these coupled equations, we refer to them as ‘‘r
space’’ rate equations@20#.

To provide a quantitative comparison between the isla
dynamics model and real space rate equations, we exa
the scaled island size distributions@21# produced by the two
models. Figure 3 shows the results of the island dynam
simulation and integration of the real space rate equatio
All data has been obtained withL/a5718; the island dy-
namics simulations were performed on a numerical grid

FIG. 2. Island boundaries in the first~solid!, second~dashed!,
and third~dashed-dotted! layers for the model of epitaxial growth
described in the text. The coverages in monolayers~ML ! are 0.1
~upper left!, 0.5~upper right!, 1.0~lower left!, and 1.3~lower right!.
Data were obtained forD/F5106, L/a5180, and a numerical grid
of linear size 256.
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linear size 1024. These values were chosen to resolve dim
in a numerically stable way. This system size is large eno
that finite size effects are neglible. To facilitate comparis
with the real space rate equations, seeding is chosen to
clude coalescence. The excellent agreement in Fig. 3 c
firms that the island dynamics simulation, in which isla
boundaries are moved by the level-set function, produ
quantitatively correct results for this simple model. In pa
ticular, it confirms the accuracy of the numerical evolution
the level-set function.

We now turn to the interpretation of the data. The isla
size distributions exhibit two distinct characteristics: a rath
sharp cutoff which moves to the left asD/F increases~not
shown!, and a long tail for smaller islands. This can be u
derstood as follows. The island dynamics model evolve
discrete number of islands of finite size. A large number
islands are nucleated near the onset of growth which t
grow to approximately the same size. This results in a p
near the largest island size followed by a sharp cutoff. S
sequently, the adatom density reaches a steady state

FIG. 4. Island density obtained from island dynamics simu
tions as a function ofD/F at a coverageu50.05 ml. The dashed
line is a guide to the eye and the solid line has slope21/2.

FIG. 3. Comparison of the scaled island size distributions for
island dynamics simulation and real space rate equations, whens

is the density of islands of sizes andsav is the average island size
Data shown were obtained forD/F5106 and a coverageu50.2
ML.



a
A

d
n

li

f
io
fo
la
ie
e
s

ve-
It
for
e-
ical

as

et
ep-

e
S-

ia-

RAPID COMMUNICATIONS

R6930 PRE 58MARK F. GYURE et al.
then, according to Eq.~4!, new islands are nucleated at
constant rate. This leads to the long tail for small islands.
D/F increases, the relative number of islands nucleate
early times increases at the expense of the smaller isla
leading to a shift of the peak position towards/sav51. As a
result, the island density decreases and we obtain sca
behavior consistent withN;(D/F)21/2 ~Fig. 4!. This agrees
with the standard rate equation analysis for this model@22#
and KMC simulations for the pre-aggregation regime@17#.

The approach we have described here has applicability
beyond the basic model we have used. The most obv
extension of our model is to solve a diffusion equation
the adatom density and use the density gradient at is
edges to determine the growth velocity of island boundar
This is currently being pursued and results will be publish
elsewhere. Just as in the case of adatom diffusion, value
d
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a local strain field can be used to determine the growth
locity of island boundaries during heteroepitaxial growth.
is also possible to construct an island dynamics model
VPE, in which a hydrodynamics simulation for an entire r
actor is used to provide local values of density and chem
composition at the surface of a wafer. Such a calculation w
done in a similar, but simpler, framework in Ref.@14#. In
conclusion, we believe that the availability of robust level-s
methods represents an opportunity to attack problems in
itaxial growth within a new framework.

We gratefully acknowledge support of this work by th
NSF and DARPA through cooperative agreement No. DM
9615854 as part of the Virtual Integrated Prototyping Init
tive.
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