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We study the morphological stability of layer growth by chemical vapor deposition onto a 
nonplanar substrate patterned with a facetted groove. Our analytic treatment indicates 
that, except under conditions of very modest supersaturation, diffusion effects in the gas 
phase generally preclude the stable growth of crystallographic facets that form the sidewalls 
of the groove. Instead, heterogeneous nucleation and the kinetics of step tIow combine 
to promote the evolution of an initially perfect facet into a stably propagating vicinaZ surface. 
Under more diffusion-limited conditions, even these “facets” do not survive and a 
characteristic rough morphology results. 

Recent reports of the in situ fabrication of narrow 
quantum well and quantum wire structures on nonplanar 
substrates by organometallic vapor phase epitaxy 
(OMVPE) Is2 crucially exploit the fact that different crys- 
tallographic facets grow at different rates. Implicit in the 
design of these structures is the assumption that the facets 
grow at a constant rate across their entire area. Here, we 
examine theoretically the range of conditions under which 
this assumption (which we call stable facet growth) is jus- 
tified for the case of V-groove substrates. 

We assume steady-state conditions so that the reactant 
concentration in the gas phase c(r) is determined by La- 
place’s equation3 

V2c( r) =o. (1) 

The boundary conditions for this equation at the growth 
fronts are determined4 by the requirement that the arrival 
rate of reactant molecules to the surface (by gas phase 
diffusion) equal the rate of mass incorporation into the 
crystal (by surface kinetic processes). Mathematically, this 
condition reads 

ac 
RD -j-yk[c(s) - c,J (2) 

at every point s of the surface of each facet. Here, fi is the 
volume of a growth unit, D is the gas phase diffusion con- 
stant, n denotes the normal to the surface, k is a first-order 
surface kinetic rate coefficient and ceq is the concentration 
of reactant molecules in equilibrium with a facet. Equa- 
tions (1) and (2) are sufficient to obtain c(r) up to a 
constant which is taken here to be an adjustable parameter, 
00, representing the value of the supersaturation 
a(s) = [c(s) - c,J/c,~ at the bottom of the groove. 

Stable growth (as defined above) actually corresponds 
to a rather simpler boundary condition at every point along 
the surface of the ith facet: 

ac 
&,=4i. 

I 
(3) 

The qi are constants which depend upon both material type 
and crystallographic orientation. We conclude that the 
true prerequisite for stable growth is that Eqs. (2) and (3) 

be satisfied simultaneously. Notice that this implies that 
c(s) itself must be constant across each facet. 

We have solved Eqs. ( 1) and (3) in the region above 
a flat substrate (terrace growth rate q, ) patterned with a 
single triangular groove (sidewall growth rate q2) for var- 
ious values of oo, q,, and q2. The solution is obtained by a 
conformal mapping technique.5 Quite generally, we find 
that c(s) decreases in magnitude as one proceeds into the 
groove. This result is easy to understand; only very few 
molecules undergoing random walk (diffusive) motion 
make it to the bottom of the groove without hitting a side- 
wall first. Stable facet growth within a groove thus gener- 
ally is inconsistent with surface incorporation kinetics [the 
right-hand side of Eq. (2)]. On the other hand, experi- 
mentsip2 apparently show that such growth does occur. 

The resolution of this paradox can be found in an old 
idea due to Chemov.6 Briefly, Eq. (2) always can be sat- 
isfied if the kinetic coefficient k is presumed to vary across 
a facet in just such a way as to precisely compensate the 
variations in c(s). This is not difficult to arrange because’ 
the presence of steps on a nominally flat surface strongly 
affects its growth rate. Thus, a “facet” endowed with just 
the right variations in step density (now more properly 
termed a vicinal surface) can be expected to grow uni- 
formly in a shape preserving manner.8 

Our quantitative strategy’ is to replace the right-hand 
side of Eq. (2) with an alternative expression for the 
growth rate which takes into account the fact that growth 
on facetted surfaces proceeds by the nucleation and spread 
of two-dimensional islands:” 

R,{u)=A&~ log( 1 + a) 1’6 exp( - B/a). (4) 

The constants A and B are material parameters. Now, since 
the supersaturation 0 on any facet depends on the solution 
of the complete Laplace’s equation, which in turn depends 
upon both q1 and q2 [from Eq. (3)], Eq. (2) rewritten 
using Eq. (4) (once for each facet) self-consistently deter- 
mines the qi as a function of oo: 

fWi=Rn[~(ql,q2,~0) I* (5) 
Finally, we require an explicit expression for the kinetic 
coefficient. Following Ref. 9, we suppose that two- 
dimensional islands spread across a facet by the step-flow 
mechanism.’ Then, if the slowly varying function p(x) 
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FIG. 1. Schematic view of shape-preserving (stable) vicinal surfaces 
which grow at a uniform rate across their entire length. The horizontal 
and inclined facets grow at rates 4, and q2, respectively. The height of a 
monoatomic step is greatly exaggerated in all cases. The dashed lines 
represent a best guess since the present theory cannot predict the step 
morphology in the immediate vicinity of a comer: (a) q, z qz, (b) ql c; qz, 
(cl 9l?a 

characterizes the local siope of the surface (relative to the 
corresponding perfect facet orientation), the facet growth 
rate is obtained from the velocity of monoatomic steps as 

R=p(x) v,,,,=CCp(x)tanh[po/Ip(x) IlMx) 
=k(xMn), (6) 

where the constants C and p. are activated quantities 
which depend upon, e.g., terrace and step edge binding 
energies. As expected, the derived mass incorporation co- 
efficient k(x) depends strongly on the local surface step 
density. So, given a0 and the material parameters, we first 
solve Fqs. ( 1) and (3) parametrically as functions of the 
qi for the supersaturation o(x) along each facet. Then, 
Eqs. (4) and (5) are used to compute the self-consistent 
growth rate for each facet. Finally, Eq. (6) determines the 
required compensating form of k(x) and hence, p(x). 

Figure 1 illustrates the three distinct vicinal morphol- 

FIG. 2. Unstable growth morphology obtained from (a) this work for the 
case of q, > q2 and (b) 2.n OMVPE experiment (see Ref. 11). Note that 
the present theory neglects the possibility of enhanced nucleation at the 
very bottom of the groove. 

ogies predicted by this anaIysis. When the terrace facet 
growth rate exceeds the sidewall growth rate [Fig. l(a)], 
the point of maximum supersaturation always occurs just 
at the comer where these two facets meet. Islands nucleate 
there and monatomic steps flow outward across the terrace 
and down the sidewall. The largest step density occurs 
deep in the groove where the supersaturation is minimum. 
The situation within the groove is largely unchanged when 
the sidewall growth rate exceeds that of the terrace facet 
[Fig. 1 (b)]. For the latter, however, the corner is a point of 
minimum supersaturation, and steps flow toward that 
point from elsewhere on that facet (the precise point of 
maximum supersaturation depends on the lateral size of 
the total substrate). If, on the other hand, one has q1%+q2 
[Fig. 1 (c)], the value of o,,, on the sidewall facet occurs a 
finite distance down the groove and the final stable mor- 
phology reflects this fact. The case of qI<q2 is not appre- 
ciably different from that of Fig. 1 (a). 

Stable growth eventually breaks down when the super- 
saturation difference across the total sidewall length, ha, 
becomes large. Very small values of a(x) near the bottom 
of the groove cannot be compensated by very large values 
of step density because k(x) quickly saturates to the value 
Cp, [Eq. (6)], When this occurs, the growth rate near the 
bottom of the groove rapidly lags behind the growth rate 
near the top of the groove. The facet is destroyed and 
morphological instability sets in [Fig. 2(a)]. The micro- 
graph in Fig. 2(b) illustrates this phenomena for the case 
of alternating layers of p- and n-type InP grown by 
OMVPE.” Our calculations show that Ao increases as any 
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FIG. 3. Diagram illustrating the boundary between stable and unstable 
growth as a function of growth rate R and a material parameter K [see Eq. 
(7)] for a V-groove substrate. 

one of the following increases: (i) the sidewall steepness, 
(ii) the sidewall length, or (iii) the growth rate, i.e., a,. 
We predict ultimate morphological instability if any of the 
foregoing becomes too large. 

We have computed a growth stability “phase diagram” 
for the case of a IO-pm-deep groove with sidewalls inclined 
72” from the horizontal (Fig. 3). The independent vari- 
ables in this plot are the growth rate R and a parameter 

K=exp[ + (EdiR + 2&,, + 2Ek>/3kTl 

which reflects the important material dependence in Eq. 
(4), i.e., the energies of surface diffusion, terrace desorp- 
tion, and kink evaporation. For very low growth rates, 
(T(X) is nearly constant across all the facets. No steps are 
required for compensation and a perfectly flat facet will 
propagate. As the mean supersaturation (and hence the 
growth rate) increases, steps appear on the stable growth 
front as sketched Fig. 1. At the most common experimen- 
tal growth rates, the (nonuniform) step densities which 

appear on these stable growth forms correspond to appar- 
ent local miscuts of no more than about 2” and thus still 
appear flat on a microscopic scale. We find that instability 
sets in when the apparent local miscut at the bottom of the 
groove approaches 4”. 

In summary, morphological evolution during chemical 
vapor deposition onto nonplanar substrates has been stud- 
ied with a phenomenological model. We find that facets 
which form the sidewalls of a triangular groove cannot be 
expected to grow outward at a uniform rate across their 
entire length unless the growth rate is quite low. At mod- 
erate growth rates, uniform shape-preserving growth oc- 
curs only for particular types of vicinal surfaces. At still 
higher growth rates, uniform growth is impossible and a 
morphological instability ensues. 
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