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Motivation: strain induced ordering in experiments

B. Lita et al., 
APL 74, (1999)

AlxGa1-xAs 
system

H. J. Kim, et al., 
PRB 68, (2003).

GeSi
system

Goal: Develop a kinetic model that includes strain!

Collaborators: Xiaobin Niu, Russ Caflisch, Young-Ju Lee, Jason DeVita, Peter 
Smereka
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Outline of this Talk

• Introduction

• The level-set method for epitaxial growth

• Spatially varying potential energy surface
(due to surface defects, reconstructions, … )

• Our elastic model

• Ordering in the submonolayer growth regime

• Ordering of stacked quantum dots
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Atomic Motion Time Scale ~ 10-13 seconds Length Scale: Ångstrom 
Island Growth Time Scale ~ seconds Length Scale: Microns 
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Physical Processes During Epitaxial Growth
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Hierarchy of Theoretical Approaches
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ES: Surface bond energy
EN: Nearest neighbor bond energy
G0 : Prefactor [O(1013s-1)]

• Parameters that can be calculated from first principles (e.g., DFT)

• Completely stochastic approach

D = Γ0 exp(-ES/kT)
F

Ddet = D exp(-EN/kT)

Ddet,2 = D exp(-2EN/kT)

KMC Simulation of a Cubic, Solid-on-Solid Model
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Large EN: Small EN:

Au/Ru(100) Ni/Ni(100)

Hwang et al., PRL 67 (1991) Kopatzki et al., Surf.Sci. 284 (1993)

KMC Simulations: Effect of Nearest Neighbor Bond EN 

More Detailed KMC model 

F. Grosse et al. PRL 89 (2002)

InAs(100)
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Ratsch, Smilauer, Zangwill, Vvedensky, Phys. Rev. Lett., 1994; Surf. Sci. Lett., 1995
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KMC Simulation vs. Experiment [(Fe/Fe(100); Stroscio et al., 1993]

Scaling form for island densities Ns:

• KMC reproduces scaling with D/F and coverage Q in agreement with experiment 
• Scaling function depends only on degree of reversibility

Scaling of Island Size Distribution Function from KMC
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• Strain calculations for a system of typical size in 2+1 dimensions are expensive 
(at least seconds, maybe minutes)

• A typical timestep in an atomistic simulation is of order 10-6 seconds (which is 
the inverse of a typical diffusion constant D=106.)

• Need of the order of 1 million timesteps (or more) to simulate 1 second

Possible solutions to this challenge

1) Don’t solve global elastic field at every timestep

• solve it only locally, maybe not even every timestep
• do only occasional global updates.

2) Develop a model where the simulation timestep can be taken much larger, but 
where still all the microscopic dynamics are retained. 

• We have developed a level set method 
• Typical timestep in the simulation is of order 10-2 seconds.

The challenge for including strain in a growth model
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Atomistic picture
(i.e., kinetic Monte Carlo)

F

D
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• Treat Islands as continuum in the plane
• Resolve individual atomic layer
• Evolve island boundaries with levelset method
• Treat adatoms as a mean-field quantity (and solve diffusion equation)

Island dynamics

The Island Dynamics Model for Epitaxial Growth
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Level set function ϕ Surface morphology
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• Level set function is continuous in plane, but has discrete height resolution

• Adatoms are treated in a mean field picture

•• Governing Equation: 0|| =∇+
∂
∂ ϕϕ

nv
t

The level set method: schematic
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The Level Set Method

• Stochastic element needed for nucleation
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A typical level set simulation
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Validation by comparison of scaled island size distribution

Experimental Data 
for Fe/Fe(001),

Stroscio and Pierce, Phys. 
Rev. B 49 (1994)

Petersen, Ratsch, Caflisch, Zangwill, Phys. Rev. E 64, 061602 (2001).
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Assume spatially varying potential energy surface (no strain)

Experiment by  Xie et al., UCLA

Interpretation:
Variation of potential energy 
surface is due to strain, that 
results from burried defect lines

Etrans

Ead
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Thermodynamic limit

Nucleation  in region of slow 
diffusion (but high adatom
concentration), dominated by drift

Etrans

Ead

Kinetic limit

Nucleation in region of fast diffusion

Etrans

Ead

2),( tD xρNucleation rate ~

Variation of adsorption and transition energy
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Ordering by Cleaved Edge Overgrowth
(a)(b)

Grow AlAs/GaAs superlattice Cleave and rotate          Grow InAs quantum dots

Quantum dots grow on top 
of the AlAs stripes

30 nm 42 nm 80 nm 100 nmWidth of AlAs stripe:

Work of E. Uccelli, 
G. Abstreiter, et al.



Christian Ratsch, UCLA UCSB, Feb. 19, 2009

Level set simulations
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Nucleation rate as function of position 
for increasing width of AlAs stripe
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• Minimize energy with respect to all displacements: ∂u E [u] = 0

• This can be related to (and interpreted as) continuum energy density

• Our Model: Write down an atomistic energy density, that includes

Nearest neighbor springs

22 )2()2( yyxyxxdiagyyxyxxdiag SSSkSSSkE +−+++=

)( 22
yyxx SSkE +=

yyxxxyyyxx SSSSSE γβα +++= 222 )(

• The relevant microscopic parameters at every grid point can then be varied 
as a function of the local strain. 

Diagonal springs

Include Strain: Calculate Elastic Field at Every Timestep
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Ag/Ag(111) (a metal)

Density-functional theory (DFT) has been used to study strain dependence of 
surface diffusion D 

Etrans

Ead

E. Penev et al.,  Phys. Rev. B 64, 085401 (2001). 

GaAs(100) (a semiconductor)

Ratsch et al. Phys. Rev. B 55, 6750-6753 (1997). 

Energy barrier 
for surface 
diffusion

How does Strain affect the Parameters in our Model?
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Dimer Dissociation and Detachment for Ag/Ag(100)

Preliminary DFT Results suggest decrease of 
energy barrier for dimer dissociation and adatom
detachment upon tensile and compressive strain:

Dimer dissociation Adatom detachment

Tests show  that the dependence of Ddet is more important for ordering of 
island sizes, while dependence of D is more important for ordering of location.
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Effect of Strain in the Simulation

morphologies Elastic energies Adatom concentration
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Effect of Strain in the Simulation
Morphologies Elastic energies Adatom concentration

Top row: Strain=1%

Detachment rate

Bottom row: Strain=5%

•With increasing strain, islands become more regular, because small islands are 
more likely to break up, and growth of large islands slows down.
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Level-set simulation Experiment: InxGa1-xAs/GaAs(100)

7% misfit

4.7% misfit

2.3% misfit

D. Leonard, M. Krishnamurthy, S. Fafard, J.L. Merz, 
and P.M. Petroff, J. Vac. Sci. Tech B 12, 1063 (1994)

Sharpening of the Scaled Island Size Distribution



Christian Ratsch, UCLA UCSB, Feb. 19, 2009

Outline of this Talk

• Introduction

• The level-set method for epitaxial growth

• Spatially varying potential energy surface
(due to surface defects, reconstructions, … )

• Our elastic model

• Ordering in the submonolayer growth regime

• Ordering of stacked quantum dots



Christian Ratsch, UCLA UCSB, Feb. 19, 2009

B. Lita et al., APL 74, (1999)

AlxGa1-xAs system Experimental observation: Stacked 
quantum dots align under certain 
conditions

Question/goal: can we understand 
and model this, and make some 
predictions and suggestions?

Simulation of Stacked Quantum Dots
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Si Substrate

n capping layers of Si

Repeat Capping and 
Growth of N Super 

layers

b b

Ge

a aa • Growth of islands on substrate without 
strain (constant diffusion and detachment)

• Fill in capping layer “by hand”

• Calculate strain on top of smooth capping 
layer

• Modify microscopic parameters for 
diffusion and detachment) according to strain

• Run growth model

Repeat procedure

Simulation of Stacked Quantum Dots
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B. Lita et al., APL 74, (1999)

AlxGa1-xAs system

• Spacing and size of stacked dots becomes more regular

Ordering of stacked quantum dots

X. Niu, Y.-J. Lee, R.E. Caflisch, and C. Ratsch, Phys. Rev. Lett. 101, 086103 (2008).
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Simulation of growth of 20 superlayers



Christian Ratsch, UCLA UCSB, Feb. 19, 2009

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

 N = 1
 N = 40

s/<s>

n s<s
>2 /T

Regularization of dot size



Christian Ratsch, UCLA UCSB, Feb. 19, 2009

Ordering of stacked quantum dots (top view)

V.V. Strel’chuk et al., Semiconductors 41 (2007)

Growth of stacked quantum dots of In0.5Ga0.5As/GaAs(100)

2 periods 7 periods 9 periods
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• We find an optimal thickness of capping layer for ordering

2 capping layers0 capping layer 4 capping layers

Thickness dependence of vertical ordering
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Nucleation rate as a function of capping layer thickness
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Conclusions

• We have developed a numerically stable level-set method to model 
epitaxial growth

• A spatially varying potential energy surface can be exploited to obtain 
ordered structures. 

• It is very efficient to include strain in the model, and solve the elastic 
equations at every numerical timestep. 

• Strain leads to ordering in the submonolayer growth regime

• We model the formation and self organization of stacked quantum 
dots, and suggest that an optimal thickness exists. 
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