A Level-Set Method for Self-Organized Pattern Formation during Heteroepitaxial Growth

Christian Ratsch, UCLA

Institute for Pure and Applied Mathematics, and Department of Mathematics

Collaborators: Xiaobin Niu, Russ Caflisch, Young-Ju Lee, Jason DeVita, Peter Smereka

Motivation: strain induced ordering in experiments

Goal: Develop a kinetic model that includes strain!

Outline of this Talk

- Introduction
- The level-set method for epitaxial growth
- Spatially varying potential energy surface (due to surface defects, reconstructions, ...)
- Our elastic model
- Ordering in the submonolayer growth regime
- Ordering of stacked quantum dots

Physical Processes During Epitaxial Growth

Atomic Motion	Time Scale ~ 10 ⁻¹³ seconds	Length Scale: Ångstrom
Island Growth	Time Scale ~ seconds	Length Scale: Microns

Hierarchy of Theoretical Approaches

KMC Simulation of a Cubic, Solid-on-Solid Model

- Parameters that can be calculated from first principles (e.g., DFT)
- Completely stochastic approach

KMC Simulations: Effect of Nearest Neighbor Bond EN

Large E_N :

More Detailed KMC model

Kopatzki et al., Surf.Sci. 284 (1993) F. Grosse et al. PRL 89 (2002) Hwang et al., PRL 67 (1991)

Scaling of Island Size Distribution Function from KMC

Scaling form for island densities N_s:

 Θ : Coverage

s_{av}: Average island size

KMC Simulation vs. Experiment [(Fe/Fe(100); Stroscio et al., 1993]

 \bullet KMC reproduces scaling with D/F and coverage Q in agreement with experiment

• Scaling function depends only on degree of reversibility

Ratsch, Smilauer, Zangwill, Vvedensky, Phys. Rev. Lett., 1994; Surf. Sci. Lett., 1995

Christian Ratsch, UCLA

The challenge for including strain in a growth model

• Strain calculations for a system of typical size in 2+1 dimensions are expensive (at least seconds, maybe minutes)

- A typical timestep in an atomistic simulation is of order 10^{-6} seconds (which is the inverse of a typical diffusion constant D=10⁶.)
- Need of the order of I million timesteps (or more) to simulate I second

Possible solutions to this challenge

I) Don't solve global elastic field at every timestep

- solve it only locally, maybe not even every timestep
- do only occasional global updates.

2) Develop a model where the simulation timestep can be taken much larger, but where still all the microscopic dynamics are retained.

- We have developed a level set method
- Typical timestep in the simulation is of order 10⁻² seconds.

Outline of this Talk

- Introduction
- The level-set method for epitaxial growth
- Spatially varying potential energy surface (due to surface defects, reconstructions, ...)
- Our elastic model
- Ordering in the submonolayer growth regime
- Ordering of stacked quantum dots

The Island Dynamics Model for Epitaxial Growth

- Treat Islands as continuum in the plane
- Resolve individual atomic layer
- Evolve island boundaries with levelset method
- Treat adatoms as a mean-field quantity (and solve diffusion equation)

The level set method: schematic

- Level set function is continuous in plane, but has discrete height resolution
- Adatoms are treated in a mean field picture
- Governing Equation:

$$\frac{\partial \varphi}{\partial t} + v_n \mid \nabla \varphi \mid = 0$$

The Level Set Method

• Velocity: $v_n = \mathbf{n} \cdot \mathbf{D}(\nabla \rho)^- - \mathbf{n} \cdot \mathbf{D}(\nabla \rho^+)$: Adatom ρ $\mathbf{D} = \mathbf{D}(\mathbf{x}) = \begin{pmatrix} D_{xx}(\mathbf{x}) & 0 \\ \uparrow & 0 & D_{yy}(\mathbf{x}) \end{pmatrix} \text{ is diffusion matrix.}$ concentration **Diffusion in y-direction** $D_{ii}(\mathbf{x}) \approx \exp(-(E_{trans}(\mathbf{x}) - E_{ad}(\mathbf{x}))/kT)$ Diffusion in x-direction • Diffusion equation: $\frac{\partial \rho}{\partial t} = F + \nabla \cdot \mathbf{D}(\nabla \rho) - 2 \frac{dN}{dt} + drift$ $\mathsf{drift} \sim D_{xx} \nabla_x E_{ad} + D_{yy} \nabla_y E_{ad}$ Nucleation rate $\sim D\rho(\mathbf{x}, t)^2$ A typical potential energy surface • Boundary condition: $\rho = \rho_{eq} \left(D_{det}, \mathbf{X} \right)$ detachment rate - E_{trans} Stochastic element needed for nucleation

A typical level set simulation

t = 0.00

Validation by comparison of scaled island size distribution

Experimental Data for Fe/Fe(001),

Stroscio and Pierce, Phys. Rev. B 49 (1994)

Petersen, Ratsch, Caflisch, Zangwill, Phys. Rev. E 64, 061602 (2001).

Outline of this Talk

- Introduction
- The level-set method for epitaxial growth
- Spatially varying potential energy surface (due to surface defects, reconstructions, ...)
- Our elastic model
- Ordering in the submonolayer growth regime
- Ordering of stacked quantum dots

Assume spatially varying potential energy surface (no strain)

Experiment by Xie et al., UCLA

Interpretation:

Variation of potential energy surface is due to strain, that results from burried defect lines

Variation of adsorption and transition energy

Kinetic limit

Nucleation in region of fast diffusion

Nucleation in region of slow diffusion (but high adatom concentration), dominated by drift

Nucleation rate ~ $D\rho(\mathbf{x},t)^2$

Thermodynamic limit

Ordering by Cleaved Edge Overgrowth

Quantum dots grow on top of the AIAs stripes

Work of E. Uccelli, G. Abstreiter, et al.

Width of AlAs stripe:

Level set simulations

Nucleation rate as function of position for increasing width of AlAs stripe

Outline of this Talk

- Introduction
- The level-set method for epitaxial growth
- Spatially varying potential energy surface (due to surface defects, reconstructions, ...)
- Our elastic model
- Ordering in the submonolayer growth regime
- Ordering of stacked quantum dots

Include Strain: Calculate Elastic Field at Every Timestep

• Our Model: Write down an atomistic energy density, that includes

• Nearest neighbor springs
$$E = k(S_{xx}^2 + S_{yy}^2)$$

Diagonal springs $E = k_{diag}(S_{xx} + 2S_{xy} + S_{yy})^2 + k_{diag}(S_{xx} - 2S_{xy} + S_{yy})^2$

• This can be related to (and interpreted as) continuum energy density

$$E = \alpha (S_{xx}^{2} + S_{yy}^{2}) + \beta S_{xy}^{2} + \gamma S_{xx} S_{yy}$$

- Minimize energy with respect to all displacements: $\partial_u E[u] = 0$
- The relevant microscopic parameters at every grid point can then be varied as a function of the local strain.

How does Strain affect the Parameters in our Model?

Density-functional theory (DFT) has been used to study strain dependence of surface diffusion D

GaAs(100) (a semiconductor) Ag/Ag(111) (a metal) -2.30 Obridge site □ foc site $\mathsf{E}_{\mathsf{trans}}$ -1.5-2.40Total Energy (eV) -2.50 -2 E_{ad} -2.60(a) -2.5-2.700.7 120 O DFT-LDA 100 DEMT Diffusion Barrier (meV) **Energy barrier** 0.6 80 for surface 60 0.5 diffusion 40 (b) 20 0.4 1.05 0.95 1.00 -0.08 - 0.040.04 0.08 0 **Relative Lattice Constant** ε

Ratsch et al. Phys. Rev. B 55, 6750-6753 (1997). E. Penev et al., Phys. Rev. B 64, 085401 (2001).

Christian Ratsch, UCLA

Dimer Dissociation and Detachment for Ag/Ag(100)

Adatom detachment

Dimer dissociation

Preliminary DFT Results suggest decrease of energy barrier for dimer dissociation and adatom detachment upon tensile and compressive strain:

$$D_{\rm det} = D_{\rm det,0} \exp\left(\frac{\Delta E_{Strain}}{k_B T}\right)$$

Tests show that the dependence of D_{det} is more important for ordering of island sizes, while dependence of D is more important for ordering of location.

Effect of Strain in the Simulation

Effect of Strain in the Simulation

Detachment rate

Morphologies

Elastic energies

Top row: Strain=1%

Bottom row: Strain=5%

•With increasing strain, islands become more regular, because small islands are more likely to break up, and growth of large islands slows down.

Adatom concentration

Christian Ratsch, UCLA

Sharpening of the Scaled Island Size Distribution

Level-set simulation

D. Leonard, M. Krishnamurthy, S. Fafard, J.L. Merz, and P.M. Petroff, J. Vac. Sci. Tech B 12, 1063 (1994)

Outline of this Talk

- Introduction
- The level-set method for epitaxial growth
- Spatially varying potential energy surface (due to surface defects, reconstructions, ...)
- Our elastic model
- Ordering in the submonolayer growth regime
- Ordering of stacked quantum dots

Simulation of Stacked Quantum Dots

Al_xGa_{1-x}As system

B. Lita et al., APL **74**, (1999)

Experimental observation: Stacked quantum dots align under certain conditions

Question/goal: can we understand and model this, and make some predictions and suggestions?

Simulation of Stacked Quantum Dots

- Growth of islands on substrate without strain (constant diffusion and detachment)
- Fill in capping layer "by hand"
- Calculate strain on top of smooth capping layer
- Modify microscopic parameters for diffusion and detachment) according to strain
- Run growth model

Repeat procedure

Ordering of stacked quantum dots

 $Al_xGa_{1-x}As$ system

B. Lita et al., APL 74, (1999)

• Spacing and size of stacked dots becomes more regular

X. Niu, Y.-J. Lee, R.E. Caflisch, and C. Ratsch, Phys. Rev. Lett. 101, 086103 (2008).

Christian Ratsch, UCLA

Simulation of growth of 20 superlayers

Regularization of dot size

Ordering of stacked quantum dots (top view)

Growth of stacked quantum dots of In_{0.5}Ga_{0.5}As/GaAs(100)

V.V. Strel'chuk et al., Semiconductors 41 (2007)

• We find an optimal thickness of capping layer for ordering

Nucleation rate as a function of capping layer thickness

Conclusions

- We have developed a numerically stable level-set method to model epitaxial growth
- A spatially varying potential energy surface can be exploited to obtain ordered structures.
- It is very efficient to include strain in the model, and solve the elastic equations at every numerical timestep.
- Strain leads to ordering in the submonolayer growth regime
- We model the formation and self organization of stacked quantum dots, and suggest that an optimal thickness exists.