1. Find all irreducible polynomials of degree at most 3 over the field \(\mathbb{Z}/3\mathbb{Z} \). (4 pts)

2. Prove: if \(X \) is a finite set and \(f : X \to X \) is a function, then \(f \) is one-to-one if and only if \(f \) is onto. Show by example that this is false for infinite sets. (4 pts)

3. Show that the set \(\mathbb{Z}/2\mathbb{Z}[x] \) of all polynomials over \(\mathbb{Z}/2\mathbb{Z} \) is countably infinite. (4 pts)

4. Prove: the union of two countably infinite sets is countably infinite. (4 pts)

5. Let \(S \) be any subset of the natural numbers. Show that \(S \) is either finite or countably infinite. (4 pts)