1. Give examples of the following: a ring R and module M such that M contains no simple submodule. And a ring R such that every module over R contains a simple submodule, and module M that is not semisimple.

2. Let k be a field, and $R = k[x]/(x^n)$ for some integer $n > 1$. Prove that the category of R-modules is equivalent to the category whose objects are pairs (V, A) with V a k-vector space and $A \in \text{End}_k(V)$ a linear transformation such that $A^n = 0$ and whose morphisms are linear transformations $T : V \to V'$ commuting with the nilpotent operators in the obvious manner, that is, such that $T \circ A = A' \circ T$. Further prove that if (V, A) and (V, B) are two such modules (with same underlying vector space) then they are isomorphic if and only if A and B are conjugate linear transformations.

3. Now let k be an algebraically closed field of positive characteristic p, and $R = k[x]/(x^p)$. List all simple R-modules up to isomorphism.

4. An R-module M is called indecomposable if, whenever we have an isomorphism $M \cong N \oplus Q$, then either $N = 0$ or $Q = 0$. Show that simple modules are indecomposable, and give an example of a ring R and an indecomposable R-module M that is not simple.

5. For the ring R of problem 3., list all indecomposable R-modules up to isomorphism.

6. Continuing with the same ring as in problems 3. and 5., show that every finitely generated R-module M is a direct sum of indecomposable modules, and that both these indecomposable modules up to isomorphism and their multiplicities are uniquely determined by M.

7. Consider the \mathbb{R}-algebra $\mathcal{D} = \mathbb{R}\{x, \partial\}$ with two generators x and ∂ subject to the relation $\partial x - x \partial = 1$. Show that the vector space \mathbb{C}^∞ of infinitely differentiable functions on the real line is a module over \mathcal{D} with x acting as multiplication with the function $f(x) = x$ and ∂ acting as derivative.

8. Continuing from problem 7., let $P \in \mathcal{D}$ be a linear algebraic differential operator, and set $M(P) = \mathcal{D}/\mathcal{D}P$. Show that the space of infinitely differentiable solutions of the differential equation $Pf = 0$ is isomorphic to the vector space $\text{Hom}_\mathcal{D}(M(P), \mathbb{C}^\infty)$.