Math 115A Homework 4 Due November 21st, 2008

1. Given the field \(F \), the \(F \)-vector space \(V \) and the linear transformation \(T : V \to V \), compute all the eigenvalues and eigenvectors of \(T \). (2 pts each)

 a) \(F = \mathbb{R} \), \(V = C^\infty(\mathbb{R}) \) the space of infinitely differentiable functions, and \(T : V \to V \) the second derivative, that is, \(T(f)(x) = f''(x) \).

 b) \(F = \mathbb{C} \), \(V = P_3 \) the space of complex polynomials of degree at most 3, and \(T : V \to V \) given by \(T(f)(z) = f(z) + f'(z) \).

2. Let \(F \) be a field, \(V \) an \(F \)-vector space and \(T : V \to V \) a linear transformation such that there exists a natural number \(k \) with \(T^k = 0 \). Determine all the eigenvalues of \(T \). (Remark: Such a linear transformation is called nilpotent.) (4 pts)

3. Let \(F \) be a field, \(V \) an \(F \)-vector space, and \(S : V \to V \) and \(T : V \to V \) two linear transformations such that \(S \circ T = T \circ S \). Suppose \(\lambda \in F \) is an eigenvalue of \(S \) and \(v \in V_\lambda = \{v \in V | S(v) = \lambda v \} \). Show that \(T(v) \in V_\lambda \). Assuming in addition that \(\dim_F(V_\lambda) = 1 \) and \(v \neq 0 \), show that \(v \) is an eigenvector of \(T \). (4 pts)

4. Let \(A \in M(n \times n, F) \). Using the properties of the determinant from section 4.4. of the textbook, prove that the characteristic polynomial \(p_A(\lambda) \) is a polynomial of degree \(n \) in the variable \(\lambda \) with constant term \(\det(A) \). (4 pts)

5. Let \(V \) be a finite-dimensional \(\mathbb{R} \)-vector space and let \(T : V \to V \) be a linear involution, that is, a linear transformation such that \(T^2 = \text{id}_V \). What are the possible eigenvalues of \(V \)? Show that there is a basis of \(V \) consisting of eigenvectors of \(T \). (Remark: The same argument works over any field \(F \) with the property that \(1 + 1 \neq 0 \).) (4 pts)