1. For each of the following, check if \(W \subseteq V \) is an \(F \)-subspace of the \(F \)-vector space \(V \). If yes, write out a proof. If not, prove that. (2 pts each)

a) \(F = \mathbb{R}, V = \mathbb{R}^3 \) and \(W = \{v = (v_1, v_2, v_3) \in V | 2v_1 - v_2 = 1\} \).

Since \(2 \cdot 0 - 0 \neq 1 \), \((0, 0, 0) \notin W \), so \(W \) is not a subspace.

b) \(F = \mathbb{Q}, V = \mathbb{R} \) and \(W = \{x \in \mathbb{R} | x \sqrt{2} \in \mathbb{Q}\} \).

Take \(x \in W \) and \(y \in W \), and let \(\lambda \in \mathbb{Q} \). Then \(\sqrt{2}(x + y) = \sqrt{2}x + \sqrt{2}y \in \mathbb{Q} \), so \(x + y \in W \). Moreover, \(\sqrt{2}(\lambda x) = \lambda(\sqrt{2}x) \in \mathbb{Q} \), so that \(\lambda x \in W \). Finally, \(\sqrt{2} \cdot 0 = 0 \in \mathbb{Q} \), whence \(0 \in W \). That is, \(W \) is a subspace.

c) \(F = \mathbb{R}, V = C(\mathbb{R}) \) the set of continuous real-valued functions on the real numbers and \(W = \{f \in V | \int_0^1 f(x)dx = 0\} \).

Let \(f \in W \) and \(g \in W \), and let \(\lambda \in \mathbb{R} \). Then \(\int_0^1 (f + g)(x)dx = \int_0^1 f(x)dx + \int_0^1 g(x)dx = 0 + 0 = 0 \), so that \(f + g \in W \). Also, \(\int_0^1 (\lambda f)(x)dx = \lambda \int_0^1 f(x)dx = \lambda \cdot 0 = 0 \), so \(\lambda f \in W \). Finally, \(0 \) is obviously in \(W \). Therefore, \(W \) is a subspace.

2. For each of the following subsets \(S \subseteq V \) of the \(F \)-vector space \(V \), check if \(S \) is linearly independent. Prove your assertions. (2 pts each)

a) \(F = \mathbb{Q}, V = \mathbb{R} \) and \(S = \{1, \sqrt{2}\} \).

The general linear combination of \(\{1, \sqrt{2}\} \) looks like \(a + b\sqrt{2} \) for \(a \) and \(b \) rational numbers. Suppose \(a + b\sqrt{2} = 0 \). If \(b \neq 0 \), then \(\sqrt{2} = -(a/b) \) is rational; since this is not the case, we conclude that \(b = 0 \). But then it immediately follows that \(a = 0 \). That is, the only linear combination expressing \(0 \) is the trivial one, so the set is linearly independent.

b) \(F = \mathbb{R}, V = C \) and \(S = \{1, i\} \).

An \(\mathbb{R} \)-linear combination of \(\{1, i\} \) is of the form \(a + bi \) - that is, it’s simply a complex number. Because a complex number is \(0 \) if and only if its real and imaginary part are both \(0 \), the set \(\{1, i\} \) is linearly independent over \(\mathbb{R} \).

c) \(F = \mathbb{C}, V = \mathbb{C} \) and \(S = \{1, i\} \).

Let \(a = -i \in \mathbb{C} \) and \(b = 1 \in \mathbb{C} \). Then \(a + bi = -i + i = 0 \) is a non-trivial linear combination expressing \(0 \); thus, \(\{1, i\} \) is linearly dependent over \(\mathbb{C} \).

3. Let \(S \) be a set and write \(\mathbb{R}^S \) for the set of all real-valued functions on \(S \). (4 pts)

a) Explain how \(\mathbb{R}^S \) has a natural structure as an \(\mathbb{R} \)-vector space, giving the addition and scalar multiplication and checking the axioms.

Let \(f \) and \(g \) be two elements of \(\mathbb{R}^S \), that is, functions from \(S \) to \(\mathbb{R} \). Define \(f + g \) via \((f + g)(s) = f(s) + g(s) \), and if \(\lambda \in \mathbb{R} \), define \(\lambda f \in \mathbb{R}^S \) via \((\lambda f)(s) = \lambda f(s) \). The addition is associative and commutative because the addition of real numbers is; for \(f \in \mathbb{R}^S \), the function \((-1)f \) is a negative; scalar multiplication is associative because multiplication of
Real numbers is; the function \(f_0 \) defined by \(f_0(s) = 0 \) for all \(s \in S \) is a zero element; and, finally, the distributive laws (right and left) hold, once more, because they hold true for real numbers.

b) For \(s \in S \), write \(\chi_s : S \to \mathbb{R} \) for the function given by \(\chi_s(s) = 1 \) and \(\chi_s(t) = 0 \) for \(t \neq s \). Show that the set \(\{ \chi_s|s \in S \} \subseteq \mathbb{R}^S \) is linearly independent.

Let \(\lambda_1 \chi_{s_1} + \lambda_2 \chi_{s_2} + \cdots + \lambda_r \chi_{s_r} \) be a general linear combination of elements in the set \(\{ \chi_s|s \in S \} \). That is, \(\lambda_i \in \mathbb{R} \) and \(s_i \in S \), with \(s_i \neq s_j \) if \(i \neq j \) (recall that, in a linear combination, the same vector can only appear once). Suppose that
\[
\lambda_1 \chi_{s_1} + \lambda_2 \chi_{s_2} + \cdots + \lambda_r \chi_{s_r} = 0.
\]
(Recall that 0 here stands for the zero element of the vector space \(\mathbb{R}^S \), that is, the zero function \(f_0 \).)

We need to prove that this implies \(\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0 \). Remember that we are dealing with functions on \(S \) here; that means we are allowed to evaluate everything at an element of \(S \). So, evaluate the linear combination at \(s_i \in S \).

Observe that \(\chi_{s_j}(s_i) = 0 \) for \(j \neq i \) since \(s_j \neq s_i \) in that case, and that \(\chi_{s_i}(s_i) = 1 \). In other words,
\[
(\lambda_1 \chi_{s_1} + \lambda_2 \chi_{s_2} + \cdots + \lambda_r \chi_{s_r})(s_i) = \lambda_i.
\]
By assumption, we also have that
\[
(\lambda_1 \chi_{s_1} + \lambda_2 \chi_{s_2} + \cdots + \lambda_r \chi_{s_r})(s_i) = f_0(s_i) = 0.
\]
That is, \(\lambda_i = 0 \), for any \(i \in \{1, \ldots, r\} \), as required.

c) Find an example of a set \(S \) such that the set \(\{ \chi_s|s \in S \} \subseteq \mathbb{R}^S \) is not a basis of the vector space \(\mathbb{R}^S \). Prove your assertion.

We already know that this set is linearly independent. That means we have to find a set \(S \) such that the functions \(\chi_s \) do not form a generating set of \(\mathbb{R}^S \).

Observe that if \(f : S \to \mathbb{R} \) can be expressed by a linear combination of functions of the form \(\chi_s \), then there are only finitely many \(t \in S \) such that \(f(s) \neq 0 \) (this is because a linear combination is always a finite sum, and each of the \(\chi_s \) is non-zero only at one point - at \(s \)).

Now let \(S \) be an infinite set, and \(f : S \to \mathbb{R} \) be defined by \(f(s) = 1 \) for all \(s \in S \). Then \(f \) cannot be expressed as a linear combination of functions in \(\{ \chi_s|s \in S \} \), since it has non-zero value at infinitely many points of \(S \). Therefore, \(\{ \chi_s|s \in S \} \subseteq \mathbb{R}^S \) is not a generating system, a fortiori, it is not a basis.

4. Let \(V \) be an \(F \)-vector space, and \(S \subseteq T \subseteq V \) be subsets. Prove: if \(S \) is linearly dependent, then so is \(T \). (4 pts)

Since \(S \) is linearly dependent, there is a non-trivial linear combination of elements of \(S \) expressing zero. But elements of \(S \) are also elements of \(T \), so the very same linear combination shows that \(T \) is linearly dependent.