1. Let \(V \) be a finite-dimensional \(F \)-vector space of dimension \(n \) and \(T : V \to V \) a linear transformation. Show that \(T \) is an isomorphism if and only if there exist ordered bases \(\mathcal{A} \) and \(\mathcal{B} \) such that \([T]_\mathcal{A}^\mathcal{B} = I_n \) (here \(I_n \) is the \(n \times n \)-identity matrix). (5 pts)

Solution: Suppose there are such ordered bases \(\mathcal{A} = \{v_1, \ldots, v_n\} \) and \(\mathcal{B} = \{w_1, \ldots, w_n\} \). Then \(T \) has a matrix representation that is an invertible matrix, therefore it is an isomorphism. More precisely, \(T \) is the unique linear transformation such that \(T(v_i) = w_i \) for \(1 \leq i \leq n \), and we can define the inverse \(T^{-1} \) to be the unique linear transformation such that \(T^{-1}(W - I) = v_i \) for \(1 \leq i \leq n \).

Conversely, if \(T \) is an isomorphism, let \(\mathcal{A} = \{v_1, \ldots, v_n\} \) be any ordered basis of \(V \) and let \(w_i = T(v_i) \). Since \(T \) is one-to-one and onto, the set \(\mathcal{B} = \{w_1, \ldots, w_n\} \) is a basis of \(W \), and it is obvious from the definition of the matrix representation hat \([T]_\mathcal{A}^\mathcal{B} = I_n \).

2. Let \(V \) and \(W \) be finite-dimensional \(F \)-vector spaces and suppose that \(T : V \to W \) is an isomorphism with inverse \(T^{-1} \). Show that the map \(\Phi_T : \mathcal{L}(V) \to \mathcal{L}(W) \) given by \(\Phi_T(R) = T \circ R \circ T^{-1} \) for \(R \in \mathcal{L}(V) \) is an isomorphism. (5 pts)

Solution: First, we check that \(\Phi_T \) is linear. Indeed, if \(R_1 \) and \(R_2 \) are in \(\mathcal{L}(V) \) and \(c \in F \) then \(\Phi_T(cR_1 + R_2) = T \circ (cR_1 + R_2) \circ T^{-1} = cT \circ R_1 \circ T^{-1} + T \circ R_2 \circ T^{-1} \) since \(T \) and \(T^{-1} \) are linear. Moreover, the map \(\Phi_{T^{-1}} : \mathcal{L}(W) \to \mathcal{L}(V) \) defined by \(\Phi_{T^{-1}}(S) = T^{-1} \circ S \circ T \) is plainly an inverse of \(\Phi_T \), so \(\Phi_T \) is an invertible linear transformation, that is, and isomorphism.

3. Let \(W \subseteq V \) be a subspace of a finite-dimensional \(F \)-vector space. Show that there is a linear transformation \(P_W : V \to V \) such that \(P_W \circ P_W = P_W \) and \(R(P_W(w)) = W \) and for all \(w \in W \), \(P_W(w) = w \). (This is called a projector onto \(W \).) What is the range of \(P_W \)? (5 pts)

Solution: Choose a basis \(\beta' = \{v_1, \ldots, v_k\} \) of \(W \) and complete it to a basis \(\beta = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\} \) of \(V \). Now define the linear transformation \(P_W : V \to V \) on the basis by \(P_W(v_i) = v_i \) if \(1 \leq i \leq k \) and \(P_W(v_i) = 0 \) if \(k < i \leq n \). Since \(P_W \) is the identity on the basis \(\beta' \) of \(W \), we have \(P_W(w) = w \) for all \(w \in W \); we immediately check that \(P_W^2 = P_W \) on the basis \(\beta \), so these are equal as linear transformations; and the range is spanned by \(P_W(\beta) = \beta' \cup \{0\} \), so \(R(P_W) = W \). The rank of \(P_W \) is \(k = \dim(W) \).

4. Let \(V \) be a finite-dimensional \(F \)-vector space. The vector space \(V^* = \mathcal{L}(V,F) \) is called the dual vector space of \(V \). Show that the map \(i : V \to V^{**} = \mathcal{L}(V^*,F) \) to the dual of the dual vector space such that \(i(v)(f) = f(v) \) for \(v \in V \) and \(f : V \to F \) is an isomorphism. (5 pts)

Solution: First we show that \(i \) is linear. Indeed, let \(v \) and \(w \) be in \(V \) and \(c \in F \). Then for any \(f \in V^* \), we have \(i(cv + w)(f) = f(cv + w) = cf(v) + f(w) = ci(v)(f) + i(w)(f) \) since \(f \) is a linear transformation, and by the definition of \(i \). Moreover, we know that \(V \) and \(V^{**} \) have the same finite dimension, so to prove that \(i \) is an isomorphism it suffices to show it is one-to-one. Suppose \(v \neq 0 \) is in \(V \). Then we can find a linear transformation \(f : V \to F \) such that \(f(v) = 1 \neq 0 \) (by completing \(v \) to a basis of \(V \) and then simply defining \(f \) on that basis such that \(f(v) = 1 \)); but this means \(i(v)(f) = 1 \neq 0 \), so \(i(v) \neq 0 \in V^{**} \). That is, the null space \(N(i) = \{0\} \), so \(i \) is one-to-one as needed.