1. For each of the following functions T, determine if T is F-linear. Prove your answer. (2 pts each)

a) $F = \mathbb{R}$, $V = W = \mathbb{R}^3$ and $T : V \to W$ given by $T(v) = 2v - (1,0,0)$.

Solution: If T was linear, then $T(0,0,0) = (0,0,0)$. Since $T(0,0,0) = (-1,0,0) \neq (0,0,0)$, T is, in fact, not linear.

b) $F = \mathbb{C}$, $V = W = \mathbb{R}$ and $T : V \to W$ given by $T(a + bi) = a - b$.

Solution: Note that $W = \mathbb{R}$ is not an F-vector space! Therefore T can’t be F-linear.

c) $F = \mathbb{R}$, $V = C^1(\mathbb{R})$, $W = C(\mathbb{R})$ and $T : V \to W$ given by $T(f) = f' - f$.

Solution: We need to check that T is additive and commutes with scalar multiplication. So let F and g be continuously differentiable functions (elements of V) and let $c \in \mathbb{R}$ be a scalar. Then $T(f + g) = (f + g)' - (f + g) = f' - f + g' - g = T(f) + T(g)$ so T is additive. And $T(cf) = (cf)' - cf = c(f' - f) = cT(f)$, so T commutes with scalar multiplication. Thus, T is linear.

2. Find a basis for each of the following vector spaces. Prove your answer. (2 pts each)

a) $F = \mathbb{R}$, $V = \{a + bi \in \mathbb{C} | a + b = 0 \}$.

Solution: A basis of V is for example $\{1 - i\}$. Indeed, this set has one non-zero element, therefore it is linearly independent. Moreover, all elements of V are of the form $x - xi = x(1 - i)$ for some $x \in \mathbb{R}$, so $\{1 - i\}$ is a generating set for V.

b) $F = \mathbb{R}$, $V = \{f \in C^1(\mathbb{R}) | f' = 0 \}$.

Solution: V is the vector space of constant functions; any non-zero constant function can serve as a basis.

c) $F = \mathbb{R}$, $V = \mathbb{C}^2$.

Solution: The set $S = \{(1,0), (0,1), (i,0), (0,i)\}$ is a basis. Indeed, if a, b, c, d are real numbers such that $a(1,0) + b(0,1) + c(i,0) + d(0,i) = (0,0)$ then clearly $a = b = c = d = 0$, so S is linearly independent. On the other hand, a general element in V is of the form

$$ (a + ci, b + di) = a(1,0) + b(0,1) + c(i,0) + d(0,i) $$

for some a, b, c, d in \mathbb{R}, so S is also a generating set.

3. Let $T_1 : V \to W$ and $T_2 : W \to U$ be F-linear transformations. Suppose the Null space $N(T_2 \circ T_1) = \{0\}$. Prove that $N(T_1) = \{0\}$. Show by example that $N(T_2)$ need not be zero. (3 pts)
Solution: Suppose that \(v \in N(T_1) \), so \(T_1(v) = 0 \). Then \((T_2 \circ T_1)(v) = T_2(T_1(v)) = 0\) since \(T_2 \) is linear; therefore \(v \in N(T_2 \circ T_1) = \{0\} \), whence \(v = 0 \). Since \(v \) was arbitrary in \(N(T_1) \), this proves that \(N(T_1) = \{0\} \).

As an example, let \(F = \mathbb{R} \), \(V = U = \{0\} \) and \(W = \mathbb{R} \). Let \(T_1 \) and \(T_2 \) be the zero linear transformations. Then obviously \(N(T_2 \circ T_1) = \{0\} \) because it is a subspace of \(V = \{0\} \); but \(N(T_2) = \mathbb{R} \neq \{0\} \).

4. Let \(T : V \to W \) be an \(F \)-linear transformation and assume that \(N(T) = 0 \). Show that there exists an \(F \)-linear transformation \(S : W \to V \) such that \(S \circ T = id_V \). (5 pts)

Solution: Choose a basis \(B \) of \(V \). Then \(T(B) \subseteq W \) is linearly independent since \(N(T) = \{0\} \). Indeed, if \(v_1, \ldots, v_r \in B \) and \(a_1, \ldots, a_r \in F \) such that \(\sum_{i=1}^r a_iT(v_i) = 0 \), then \(\sum_{i=1}^r a_i v_i \in N(T) \), so \(\sum_{i=1}^r a_i v_i = 0 \), and since \(B \) is linearly independent, \(a_i = 0 \) for all \(i \).

Next we complete \(T(B) \) to a basis \(C = T(B) \cup A \) of \(W \) (any linearly independent set is contained in a basis), and there is a unique linear transformation \(S : W \to V \) such that \(S(T(v)) = v \) for \(v \in B \) and \(S(w) = 0 \) for \(w \in A \). Now \(S \circ T : V \to V \) is a linear transformation such that for all \(v \in B \), \(S \circ T(v) = v \). Since the identity transformation \(id_V \) has the same property, and since \(B \) is a basis for \(V \), we conclude that \(S \circ T = id_V \), as needed.