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1. Introduction and preliminaries

1.1. Notation. A (first-order) structureM = (M,R1, R2, . . . , f1, f2, . . . , c1, c2, . . .)
consists of an underlying set M , together with some distinguished relations Ri
(subsets of Mni , ni ∈ N), functions fi : Mni → M , and constants ci (distin-
guished elements of M). We refer to the collection of all these relations, func-
tion symbols and constants as the signature of M. For example, a group is
naturally viewed as a structure

(
G, ·,−1 , 1

)
, as well as a ring (R,+, ·, 0, 1), or-

dered set (X,<), graph (X,E), etc. A formula is an expression of the form
ψ (y1, . . . , ym) = ∀x1∃x2 . . . ∀xn−1∃xnφ (x1, . . . , xn; y1, . . . , yn), where φ is given by
a boolean combination of (superpositions of) the basic relations and functions (and
y1, . . . , yn are the free variables of ψ). We denote the set of all formulas by L. We
also consider formulas with parameters, i.e. expressions of the form ψ

(
ȳ, b̄
)
with

ψ ∈ L and b̄ a tuple of elements in M . Given a set of parameters B ⊆ M , we let
L (B) =

{
ψ
(
ȳ, b̄
)

: ψ ∈ L, b̄ ∈ B|b̄|
}
. If ψ (ȳ) ∈ L (B) is satisfied by a tuple ā of

elements of M , we denote it asM |= ψ (ā) or a |= ψ (ȳ), and we call ā a solution of
ψ. If Ψ (ȳ) is a set of formulas, we write a |= Ψ (ȳ) to denote that a |= ψ (ȳ), for all
ψ ∈ Ψ. Given a set A ⊆M |x|, we denote by ψ (A) the set

{
a ∈ A|x| : M |= ψ (A)

}
of all solutions of ψ in A. We say that X ⊆Mn is an A-definable set if there is some
ψ (x̄) ∈ L (A) such that X = ψ (Mn). If ψ has no free variables, then it is called a
sentence, and it is either true or false in M. By the theory of M, or Th (M), we
mean the collection of all sentences that are true in M .

Example 1.1. (1) Let M = (C,+,×, 0, 1). Then Th (M) eliminates quan-
tifiers, and definable subsets of Mn are precisely the constructible ones,
i.e. Boolean combinations of algebraic sets. Th (M) is axiomatized as the
theory of algebraically closed fields of char 0, denoted ACF0. Note in par-
ticular that every definable subset ofM is either finite, or cofinite. Theories
satisfying this property are called strongly minimal.

(2) LetM = (R,+,×, 0, 1, <). Then by Tarski’s quantifier elimination, defin-
able subsets ofMn are precisely the semialgebraic ones, i.e. Boolean com-
binations of polynomial equalities and inequalities. The theory Th (M) is
axiomatized as the theory of ordered real closed fields and denoted RCF.
In particular, all definable subsets of M are given by finite unions of points
and intervals. Theories with this property are called o-minimal.

(3) Consider (N,+,×, 0, 1). The more quantifiers we allow, the more compli-
cated sets we can define (e.g. non-computable sets, Hilbert 10, and in fact
a large part of mathematics can be encoded — “Gödelian phenomena”).

In general, we call any consistent set of sentences T in a language L a theory,
and we say that T is complete if for every L sentence ψ, either ψ or ¬ψ is in T . Two
structuresM and N in the same language are elementarily equivalent, denoted by
M ≡ N , if Th (M) = Th (N ). Given two L-structures M and N and a (partial)
map f : M → N we say that f is an elementary map if for all a ∈ Dom (f)
and φ ∈ L we have M |= φ (a) ⇐⇒ N |= φ (f (a)). We say that M is an



LECTURE NOTES ON STABILITY THEORY 3

elementary substructure of N if the embedding map is elementary. Model theory
studies complete first-order theories T , equivalently structures up to elementary
equivalence, and their corresponding categories of definable sets. Note that ifM is
finite and elementarily equivalent to N , then it is isomorphic to N 1. However, the
situation is quite different if T admits an infinite model.

Fact 1.2. (Löwenheim–Skolem theorem) Let M |= T be given, with |M| ≥ ℵ0.
Then for any cardinal κ ≥ |L| there is some N with |N | = κ and such that:

• M � N if κ > |M|,
• N �M if κ < |M|.

In particular, ZFC has a countable model. To keep things interesting, from now
on we will always be assuming that T admits infinite models2.

Exercise 1.3. Let M |= T and A ⊆ M is an infinite set. Then there is some
N �M such that A ⊆ N and |N | ≤ |A|+ |T |.

***
In fact, most of the structural properties of T that we will consider in this

course do not depend on the specifics of the language L, and are invariant up to bi-
interpretability. LetM be an L-structure, andN an L′-structure. An interpretation
ofM in N is given by a surjective map f from a subset of Nn onto M such that
for every definable relation X ⊆Mk, its preimage f−1 (X) is definable in N (note
that in particular f−1 (M) is definable and “=” on M). Two structuresM,N are
bi-interpretable if there exists an interpretation of M in N and an interpretation
of N inM such that the composite interpretations ofM in itself and of N in itself
are definable inM and N , respectively.

Example 1.4. (1) (Julia Robinson) (Z,+,×) is definable in (Q,+,×) (which
implies that Q is undecidable, in particular).

(2) If (G, ·) is a group and H is a definable subgroup, then G/H is interpretable
in G. We will see a general construction dealing with quotients soon.

(3) (C,+,×) is interpretable in (R,+,×), but not the other way around. (Why?)
(4) Every structure in a finite relational language is bi-interpretable with a

graph.
(5) (Mekler’s construction) Every structure in a finite relational language is

interpretable in a pure group, and this interpretation reflects most model-
theoretic properties.

Example 1.5. [“Morleyzation”] Starting with an arbitrary structureM0 in a lan-
guage L0, we can consider an expansion M1 in a language L1 such that L1 =
L0 ∪ {Rφ (x̄) : φ (x̄) ∈ L} and interpret Rφ (M) = φ (M). Thus, every L0-formula

1A celebrated theorem of Keisler and Shelah shows that in factM≡ N if and only if there is
some ultrafilter U such that the corresponding ultrapowersMU and NU are isomorphic.

2Finite model theory (https://en.wikipedia.org/wiki/Finite_model_theory) studies defin-
ability in finite structures, and has close connections to computational complexity. However,
first-order logic appears inadequate for that setting, it is both too weak (can’t express most of
the interesting properties of graphs such as connectivity, Hamiltonicity, etc.) and too strong
(a single first order sentence describes a finite structure up to isomorphism). Various at-
tempts to develop stability for finite structures were made, see e.g. notes of John Baldwin
http://www.math.uic.edu/~jbaldwin/pub/philtr.ps and references there. Some connections be-
tween the finite and infinite model theory can be seen in the setting of pseudo-finite theories.

https://en.wikipedia.org/wiki/Finite_model_theory
http://www.math.uic.edu/~jbaldwin/pub/philtr.ps
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is equivalent to a quantifier-free L1-formula. Repeating the same procedure for
L1 and catching our own tail, we obtain an expansionM∞ ofM in the language
L∞ =

⋃
i<ω Li. It is easy to see that M∞ eliminates quantifiers in the language

L∞, and thatM andM∞ have exactly the same definable sets and thus they are
bi-interpretable. The conclusion is that in the development of the abstract theory,
we can usually assume that T eliminates quantifiers.

Finally, recall the most important theorem of model theory.

Fact 1.6. (Compactness theorem) Let L be an arbitrary language, and let Ψ be a
set of L-sentences (of arbitrary size!). Assume that every finite subset Ψ0 ⊆ Ψ is
consistent (i.e. there is some L-structureM |=Ψ0), then Ψ is consistent.

It follows from Gödel’s completeness theorem3, or can be proved directly using
the ultraproduct construction.

1.2. Saturation, monster models, definable and algebraic closures. Let A
be a set of parameters in M. By a partial type Φ (x) over A we mean a collec-
tion of formulas of the form φ (x) with parameters from A such that every finite
subcollection has a common solution in M. By a complete type over A we mean
a partial type such that for every formula φ (x) ∈ L (A), either φ (x) or ¬φ (x)
is in it. For b ∈ M, we denote by tp (b/A) the complete type of b over A, i.e.
tp (b/A) = {φ (x) : b |= φ (x) , φ (x) ∈ L (A)}.

Definition 1.7. Let κ be an infinite cardinal.
(1) We say that M is κ-saturated if for any set of parameters A ⊆ M with
|A| < κ, every partial type Φ (x) over A with |x| < κ can be realized inM
(enough to verify it for 1-types).

(2) We say that M is κ-homogenous if any partial elementary map from M
to itself with a domain of size < κ can be extended to an automorphism of
M.

Fact 1.8. For any T and κ, there is a κ-saturated and κ-homogeneous model M
of T .

Proof. (Idea) Given M and a complete type p over it, by compactness theorem
(applied to L expanded by constants naming all elements ofM and a new constant
c) we can find some N � M and some c ∈ N such that c |= p. Now do this for
all types overM, and then take a union of the elementary chain catching our own
tail. �

We say thatM is saturated if it is |M|-saturated. Saturated models always exist
under some set-theoretic assumptions (such as GCH or inaccessible cardinals), but
it is also possible that e.g. RCF has no saturated models. This has something to
do with stability, in fact.

Example 1.9. (1) (C,+,×, 0, 1) is saturated (Exercise: an algebraically closed
field is saturated if and only if it has infinite transcendence degree).

(2) Let M = (R,+,×, 0, 1), and consider Φ (x) =
{

0 < x < 1
n : n ∈ N

}
. It is

clearly a partial type, but it is not realized in R, thus R is not ℵ0-saturated.
Passing to some ℵ0-saturated R∗ � R, the set of solutions of Φ (x) in R∗

3Both are equivalent to the Boolean Prime Ideal theorem, a weak form of the Axiom of Choice.
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is the set of “infinitesimal” elements, and we can do non-standard analysis
working in R∗.

(3) LetM = (N,+,×, 0, 1) and consider the partial type

Φ (x) = {p|x : p prime in N} ∪ {x 6= 0} .

Again, it is not realized in N, but it is realized in some non-standard ex-
tension N∗ of N.

From now on we fix a complete L-theory T . By the completeness of T , any
commutative diagram of models of T and elementary embeddings between them
can be realized in a single model of T , such that the embeddings become inclusions
among elementary submodels. We would like to work in a very rich model of T
akin to the “universal domain” of Weil in algebraic geometry, with all the action
taking place inside this fixed model. For this purpose, we fix some model M and
some sufficiently large cardinal κ (M) such that M is κ (M)-saturated and κ (M)-
homogeneous, and we will refer to M as a monster model. In particular, every
model of T of size ≤ κ (M) embeds elementarily into M. So now whenever we say
“a model”, “a set of parameters”, “a tuple” or “a definable set” we will mean an
elementary submodel of M, a set of parameters in M, a tuple of elements of M
or a definable subset of M, respectively. Whenever we say “small”, we mean “of
size < κ (M)”. Given φ (x) ∈ L (M) and a ∈ M we will write “ |= φ (a)” to denote
“M |= φ (a)”.

***
Given two sets of formulas Φ (x) ,Ψ (x) we will write Φ (x) ` Ψ (x) if for every

a ∈ M such that |= Φ (a) holds, also |= Ψ (a) holds. Note that, by saturation,
compactness theorem translates into the following.

Fact 1.10. Let φ (x) be an L (M) formula, and Φ (x) a small set of L (M)-formulas.
If Φ (x) ` φ (x), then there is some finite Φ0 ⊆ Φ (x) such that Φ0 ` φ (x).

Exercise 1.11. Let A ⊆ M be a small set of parameters, x is a small tuple of
variables, and assume that

⋂
i∈I Xi ⊆

⋃
j∈J Yj , whereXi, Yj are A-definable subsets

of M|x|. Then there are finite I0 ⊆ I, J0 ⊆ J such that
⋂
i∈I0 Xi ⊆

⋃
j∈J0 Yj .

Working in a monster model has several advantages, for example we can import
some Galois-theoretic ideas. Given a set of parameters A, let Aut (M /A) denote
the group of automorphisms of M (under composition) that fix A pointwise. Note
that by strong homogeneity of M, for any small A we have tp (b/A) = tp (c/A) ⇐⇒
σ (b) = c for some σ ∈ Aut (M /A) (as the assumption implies that the map bA 7→
cA is elementary).

Lemma 1.12. Let X be a definable subset of Mn. Then X is A-definable if and
only if σ (X) = X (as a set) for all σ ∈ Aut (M /A).

Proof. “⇒”. Assume that X = φ (M, b) for some φ ∈ L and b ∈ A. Then for any a ∈
M and σ ∈ Aut (M /A) we have a ∈ X ⇐⇒ |= φ (a, b) ⇐⇒ |= φ (σ (a) , σ (b)) ⇐⇒
|= φ (σ (a) , b) ⇐⇒ σ (a) ∈ X.

“⇐”. Assume that X = φ (M, b) where b is some tuple from M, and let p (y) :=
tp (b/A).
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Claim 1. p (y) ` ∀x (φ (x, y)↔ φ (x, b)). Indeed, let b′ |= p (y) be arbitrary.
Then tp (b/A) = tp (b′/A), so there is some σ ∈ Aut (M /A) with σ (b) = b′. Then
σ (X) = φ (M, b′), and by assumption σ (X) = X, thus φ (M, b) = X = φ (M, b′).

By Fact 1.10 it follows that there is some ψ (y) ∈ p such that

ψ (y) ` ∀x (φ (x, y)↔ φ (x, b)) .

Let θ (x) be the formula ∃y (ψ (y) ∧ φ (x, y)). Note that θ (x) is an L (A)-formula,
as ψ (y) is.

Claim 2. X = θ (M). If a ∈ X, then |= φ (a, b), and as ψ (y) ∈ tp (b/A) we have
|= θ (a). Conversely, if |= θ (a), let b′ be such that |= ψ (b′) ∧ φ (a, b′). But by the
choice of ψ this implies that |= φ (a, b) holds. �

A slight generalization of the previous lemma.

Lemma 1.13. Let X ⊆Mn be definable. The following are equivalent:
(1) X is almost A-definable, i.e. there is an A-definable equivalence relation

E on Mn with finitely many classes, such that X is a union of E-classes.
(2) The set {σ (X) : σ ∈ Aut (M /A)} is finite.
(3) The set {σ (X) : σ ∈ Aut (M /A)} is small.

Proof. (1) ⇒ (2). Again immediate, as any automorphism fixing A can only per-
mute the classes of E.

(2) ⇒ (1). Again assume X = φ (M, b) and p (y) = tp (b/A). By assump-
tion there are some b0, . . . , bk realizing p and such that for any σ ∈ Aut (M /A),
σ (X) = φ (M, bi) for some i ≤ k. Then, by homogeneity as before, we have
p (y) `

∨
i≤k ∀x (φ (x, y)↔ φ (x, bi)). By compactness there is some ψ (y) ∈ p such

that ψ (y) `
∨
i≤k ∀x (φ (x, y)↔ φ (x, bi)). Now define E (x1, x2) as

∀y (ψ (y)→ (φ (x1, y)↔ φ (x2, y))) ,

so it is A-definable. It is easy to check that E is an equivalence relation with finitely
many classes, and that X is a union of E-classes (unwinding, a1Ea2 iff they agree
on φ (x, bi) for all i ≤ k, and so X = φ (M, b0) is given by the union of all possible
combinations intersected with it).

(3) ⇒(1). Exercise. �

Definition 1.14. Let A be a set of parameters and b a tuple.
(1) We say that b is definable over A if there is some formula φ (x) ∈ L (A)

such that b is the unique solution of φ (x) in M.
(2) We say that b is algebraic over A if there is some formula φ (x) ∈ L (A)

such that |= φ (b) and φ (x) has only finitely many solutions in M.
(3) We denote by dcl (A) (acl (A)) the set of all elements definable over A (resp.

algebraic over A). Note that A ⊆ dcl (A) ⊆ acl (A) and that both dcl (A)
and acl (A) are preserved by Aut (M /A).

Corollary 1.15. (1) b ∈ dcl (A) ⇐⇒ σ (b) = b for all σ ∈ Aut (M /A)
(follows by Lemma 1.12 applied to X = {b}).

(2) b ∈ acl (A) ⇐⇒ the Aut (M /A)-orbit of b is finite ⇐⇒ the Aut (M /A)-
orbit of b is small (follows by Lemma 1.13).

Example 1.16. If T is a theory of a set, then a ∈ acl (B) = dcl (B) iff a ∈ B. If
T is a vector space, then acl = dcl = linear span. In ACF, dcl (A) is the perfect
hull of the field k generated by A (so in ACF0 it’s just k itself, and in ACFp it’s
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given by
⋃
n∈ω Frob

−n (k)). As any irreducible polynomial over k has no multiple
roots, if a ∈ dcl (k) ⊆ acl (k), its type is isolated by the minimal polynomial, can’t
have multiple roots, so has to be of degree one) and acl (A) coincides with the usual
algebraic closure in the field sense.

Corollary 1.17. For A ⊆M, acl (A) =
⋂
{M : M ≺M, A ⊆M}.

Proof. Assume that a ∈ acl (A), and let M ⊇ A be arbitrary. By definition this
means that there is some φ (x) ∈ L (A) such that |= φ (a) and |φ (M)| = n for some
n ∈ ω. But as M ≺M, |φ (M)| = n as well, so in particular a ∈M .

On the other hand, assume that a /∈ acl (A). Then by 1.15, the Aut (M /A)-orbit
of a is not small. Let M ⊇ A be an arbitrary small model. Then f (a) /∈ M for
some A-automorphism f . But then N = f−1 (M) is a model containing A, and
a /∈ N . �

***

1.3. M eq and strong types.

Remark 1.18. All the notions above generalize in an obvious way to multi-sorted
structures, i.e. the underlying set of our model is now partitioned into several sorts,
and for each of the variables for each relation and function symbols we specify
which sort they live in. Then formulas and other notions are defined and evaluated
accordingly.

We give a construction that allows to treat definable sets and quotient objects
in the same way as elements of the structure.

We start with an arbitrary L-structure M with Th (M) = T . Let ER (T ) be the
collection of all L-formulas E (x, y) that define an equivalence relation on a certain
tuple of sorts in M (i.e. we have a definable relation E (x1, . . . , xn;x′1, . . . , x

′
n)

and xi, x
′
i live on the same sort of M , for each i). We define a new language

Leq := L ∪ {SE : E ∈ ER (T )} ∪ {fE : E ∈ ER (T )} , where SE is a sort and fE is
a new function symbol from the sort on which E lives into the new sort SE . In
particular, for every sort S of M there is a corresponding sort S= , where = is the
equality on the sort S, and all the L-structure on it. Note that |L| = |Leq|.

We now enlargeM to a canonical Leq-structureM eq. The sorts (S= : S is a sort of M)
and all the L-structure on them is identified with M , the sort SE in M eq is given
by the set {a/E : a ∈Mx}, and the function fE is interpreted by a 7→ a/E. With
this identification we clearly have that for all M |= T , φ (x) ∈ L and a ∈ Mx,
M |= φ (a) ⇐⇒ M eq |= φ (a).

We define the Leq-theory

T eq := T ∪ {(∀y ∈ SE∃x ∈ S=fE (x) = y) : E ∈ ER (T )}∪

∪{(∀x1, x2 (fE (x1) = fE (x2)↔ E (x1, x2))) : E ∈ ER (T )} .
Clearly M |= T implies M eq |= T eq.

Lemma 1.19. (1) Every M∗ |= T eq is of the form M eq for some M |= T .
(2) Given E1, . . . , Ek ∈ ER (T ) and φ (x1, . . . , xk) ∈ Leq (with xi living on

SEi), there is some ψ (y1, . . . , yk) ∈ L such that

T eq ` (∀y1 . . . yk ∈ S=) (ψ (y1, . . . , yk)↔ φ (fE1
(y1) , . . . , fEk (yk))) .

(3) T eq is complete.
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(4) M eq = dcleq (M) (where dcleq means that the definable closure is taken in
the sense of M eq).

(5) Every X ⊆Mx definable (with parameters) in the structure M eq is already
definable in M .

(6) If M is κ-saturated (κ-homogeneous), then M eq is κ-saturated (resp. κ-
homogeneous).

(7) Every automorphism of M extends in a unique way to an automorphism of
M eq.

Every definable X ⊆ Mn “corresponds” to an element of Meq. Suppose X =
φ (M, b), let E (y1, y2) = ∀x (φ (x, y1)↔ φ (x, y2)). Then b/E ∈ SE in Meq, and we
have:

(1) ∀σ ∈ Aut (M) (equivalently, Meq), σ (X) = X iff σ (b/E) = b/E.
(2) X is (b/E)-definable in Meq, via ∃y (fE (y) = b/E ∧ φ (x, y)).
(3) Let ψ (x, b/E) be the Leq-formula defining X, then b/E is the unique ele-

ment z of sort SE such that X = ψ (x, z).
We say that b/E is a code for X, and can think of Meq as adjoining codes for all
definable equivalence relations (as c/E′ codes E′ (x, c) for an arbitrary equivalence
relation E). If the tuple a is a code, it depends on the shape of the formula defining
X, but is unique up to interdefinability: if b is another code for X, then a ∈ dcl (b)
and b ∈ dcl (a).

Definition 1.20. We say that T has elimination of imaginaries, or EI, if for any
∅-definable equivalence relation E on Mx and E-class X, there is some tuple a from
M such that for some L-formula φ (x, y), X is defined by φ (x, a) and whenever
φ (x, a′) also defines X, then a = a′.

Equivalently, for any definable X and a code e ∈Meq for X, there is some tuple
c from M such that e ∈ dcl (c) and c ∈ dcl (e).

Exercise 1.21. Using compatness, show that T has EI ⇐⇒ every ∅-definable
equivalence relation E is the kernel of some ∅-definable map f (i.e., there is some
f satisfying ∀x, y (xEy ↔ f (x) = f (y))).

Lemma 1.22. T eq eliminates imaginaries (using Lemma 1.19(2)).

In practice it is an important question to know if a particular theory of interest
eliminates imaginaries or not, in its natural language. We will see some examples
later on.

***

Lemma 1.23. Let X ⊆Mn be definable, and e ∈Meq a code for X.
(1) X is A-definable iff e ∈ dcl (A) in Meq (we may write dcleq (A) to stress it)

— by Lemma 1.12.
(2) X is almost A-definable iff e ∈ acleq (A) — by Lemma 1.13.

Lemma 1.24. Let X be definable, and let A be a set of parameters in M. Then X
is almost A-definable iff X is acleq (A)-definable in Meq.

Proof. Let e be the code for X, so X is definable over e in Meq. Then if X is almost
A-definable, e ∈ acleq (A) by the previous lemma, and so X is acleq (A)-definable.
Conversely, suppose X is acleq (A)-definable. As e is a code of X, it follows that
e ∈ dcleq (acleq (A)) = acleq (A). So e has only finitely many Aut (Meq /A)-images,
and then the same is true for X, so X is almost A-definable by Lemma 1.13. �
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Definition 1.25. Let ā, b̄ be n-tuples fromM. Then they have the same strong type
over C, written stp (ā/C) = stp

(
b̄/C

)
, if for every C-definable equivalence relation

E with finitely many classes, E
(
ā, b̄
)
holds. Note that stp (ā/C) = stp

(
b̄/C

)
⇒

tp (ā/C) = tp
(
b̄/C

)
.

Example 1.26. Let T be the theory of an equivalence relation with two infinite
classes, it has QE (by an easy back-and-forth). Let a, b be two elements in different
classes, then it is easy to see that tp (a/∅) = tp (b/∅), but their strong types are
different.

Lemma 1.27. TFAE:
(1) stp (a/A) = stp (b/A),
(2) if X ⊆Mn is almost A-definable, then a ∈ X iff b ∈ X,
(3) tp (a/ acleq (A)) = tp (b/ acleq (A)) (in Meq).

Proof. (1) ⇔ (2) immediate, (2) ⇔ (3) by Lemma 1.24. �

1.4. Stone duality and spaces of types.

Fact 1.28. (Stone duality) Let B be a Boolean algebra. Then there is an associated
topological space S (B), called the Stone space of B. Its points are ultrafilters on
B, and the topology is generated by the basis of (clopen) sets of the form 〈b〉 =
{u ∈ S (B) : b ∈ u}, where b is an element of B. For every Boolean algebra B,
S (B) is a compact totally disconnected (every subset with more than one point is
disconnected, i.e. is a disjoint union of two non-empty open sets) Hausdorff space.
Stone’s representation theorem says that every Boolean algebra B is isomorphic to
the algebra of clopen subsets of its Stone space S (B) (in fact, there is a duality
between the corresponding categories).

For A ⊆ M, we denote by Defx (A) the Boolean algebra of all A-definable sub-
sets of Mx. Applying this fact to Defx (A), we obtain a topology on Sx (A), the
space of complete types (in the variable x) over A (naturally identifying types with
ultrafilters on Defx (A)). The basis of clopens for Sx (A) is given by the sets ff the
form 〈φ (x)〉 = {p ∈ Sx (A) : φ (x) ∈ p} for φ (x) ∈ Lx (A). Elements of Sn (M) are
called global types.

Remark 1.29. Note that compactness theorem can be interpreted as compactness
of the space Sx (A).

M itself can be identified with the subset of realized types, i.e. {tp (a/M) : a ∈M} ⊂
S1 (M) (note that x = a ` tp (a/M) for all a ∈ M), and then S1 (M) is the topo-
logical closure of this set (take any p ∈ S (M), take any open set X ⊆ S (M)
containing p, by the definition of topology there is some φ (x) ∈ L (M) such that
p ∈ 〈φ (x)〉 ⊆ X, hence φ (x) ∈ p. But as p is a type, φ (x) is realized in M ,
say by b, and then tp (b/M) ∈ X). So one can think of the space of types as a
“compactification of the model”.

Example 1.30. (1) Let T be the theory of an infinite set, in the language of
equality. By QE we have S (M) = M ∪ {p∗}, where p∗ = {x 6= a : a ∈M}
is the type of a new element.

(2) Let T be the theory of dense linear orders without end points (DLO), it has
QE by an easy back-and-forth argument. Let M |= T , and let C = (A,B)
be a Dedekind cut in M (i.e. M = A ∪ B,A ∩ B = ∅ and a < b for all
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a ∈ A, b ∈ B). Let pC := {a < x < b : a ∈ A, b ∈ B}. This set of formulas
is consistent by density of the order, and defines a complete type by QE,
thus non-realized types correspond to Dedekind cuts.

***
The topology on Sx,y (A) is not the product topology. For each p (x, y) ∈

Sx,y (A), let px (y) ∈ Sy (A) be the type such that if (a, b) |= p then b |= px (y).
Note that also for any b |= px (y) there is some a ∈M such that (a, b) |= p (easy to
see via homogeneity). For each q (y) ∈ Sy (A), let bq in M be a realization of q.

Lemma 1.31. Define the map Sx,y (A)→
⋃
q∈Sy(A) Sx (Abq). Given p (x, y), take

a realization (a, b) |= p (x, y) and b = bq for q = px (y). Map p to the element
tp (a/Ab) ∈ Sx (Abq). This map is injective.

The conclusion is that usually one can bound the size of the space of types in
several variables by the size of the space of types in one variable.

In view of the Stone duality, we know that this space of types reflects the com-
plexity of definable sets. For many questions, working in the topological setting is
more intuitive and allows to use certain results from general topology.

References. Most of the material of this section is based on [Pil02, Section 1],
[vdD05, Sections 3,4,5] and [Pil96, Section 1.1]. For more details on basic model
theory see [Mar02] or [TZ12].

2. Stability

2.1. Historic remarks and motivations. Any theory with an infinite model has
models of arbitrary infinite cardinalities (larger then the size of the language). The
next question one can ask is, for a fixed infinite cardinal, how many models of this
cardinality can T have? More precisely, consider the function IT (κ) giving the
number of models of T of size κ, up to isomorphism. Note that 1 ≤ IT (κ) ≤ 2κ for
all infinite κ bigger than the cardinality of the language. A fundamental result of
Morley that started modern model theory (confirming a conjecture of Vaught):

Fact 2.1. Let T be a countable theory. If IT (κ) = 1 for some uncountable κ, then
IT (κ) = 1 for all uncountable κ.

For example, consider the theory of an infinite set — it is uncountably cate-
gorical, the isomorphism type of its model is completely determined by its size.
Consider the theory of a vector spaces over a fixed field — then the isomorphism
type of its model is completely determined by the dimension. For algebraically
closed fields, a model is determined up to isomorphism by the characteristic and
transcendence degree, if the size is κ uncountable, then the transcendence degree
has to be κ too).

Stability theory developed historically in Shelah’s work as a chunk of machinery
intended to generalize Morley’s theorem to a computation of the possible “spectra”
of complete first order theories, in particular to prove the following conjecture.

Conjecture 2.2. (Morley) Let T be countable, then function IT (κ) is non-decreasing
on uncountable cardinals.

Also, there is a version of Morley’s theorem for theories of arbitrary cardinality
(with “uncountable” replace by “sufficiently large relatively to |T |”).
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This project was essentially completed by Shelah in the early 80’s with the
“Main gap theorem” [She90]. Shelah isolated a bunch of “dividing lines” on the
space of first-order theories, showing that all theories on the non-structure side
of the dividing line have as many models as possible, and on the structure side
developing some kind of dimension theory and showing that the isomorphism type
of a model can be described by some “small” invariants implying e.g. that there are
few models (so in the case of a vector space we only need one cardinal invariant,
but if we have an equivalence relation then we need to know the size of each of
its classes). One of such dividing lines is stability. A complete classification of
the possible functions IT (κ) for countable theories was given by Hart, Hrushovski,
Laskowski [HHL00] (required some descriptive set-theoretic ideas in order to prove
a “continuum hypothesis” for a certain notion of dimension).

Later on, other perspectives developed, in the work of Macintyre, Zilber, Cher-
lin, Poizat, Hrushovski, Pillay and many others, in which stability theory is seen
rather as a way of classifying definable sets in a structure and describing the inter-
action between definable sets. Eventually this theory started to be seen as having
a “geometric meaning”. Moreover, more recently it was realized that a lot of tech-
niques from stability can still be developed in larger contexts, and the so-called
“generalized stability” is currently an active area of research.

2.2. Counting types and stability. Recall that the topological complexity of
type spaces reflects the complexity of definable sets. We consider the most basic
property of type spaces — their size.

Definition 2.3. For a complete first order theory T , let fT : Card → Card be
defined by fT (κ) = sup {|S1 (M)| : M |= T, |M | = κ}, for κ an infinite cardinal.

Exercise 2.4. Show that taking fT (κ) = sup {|Sn (M)| : M |= T, |M | = κ, n ∈ ω}
gives an equivalent definition (hint: use Lemma 1.31 inductively).

It is easy to see that κ ≤ fT (κ) ≤ 2κ+|T | (every p ∈ Sx (M) is determined by the
collection of all sets of the form {a ∈My : φ (x, a) ∈ p}, where φ (x, y) varies over
all formulas in L, which gives the upper bound; the lower bound is given by the set
of realized types of the form {tp (a/M) : a ∈M}).
Fact 2.5. (Keisler, Shelah [Kei76]) Let T be an arbitrary complete theory in a
countable language. Then fT (κ) is one of the following functions (and all of these
options occur for some T ):
κ, κ+ 2ℵ0 ,κℵ0 , dedκ, (dedκ)

ℵ0 , 2κ.

Here dedκ = sup {|I| : I is a linear order with a dense subset of size κ}, equiv-
alently sup {λ : there is a linear order of size κ with λ cuts} (it is enough to con-
sider dense linear orders).

Lemma 2.6. κ < dedκ ≤ 2κ.

Proof. To see κ < dedκ: let µ be minimal such that 2µ > κ, and consider the tree
2<µ. Take the lexicographic ordering I on it, then |I| ≤ κ by the minimality of µ,
but there are at least 2µ > κ cuts.

To see dedκ ≤ 2κ, note that every cut is uniquely determined by the subset of
elements in its lower half. �

Remark 2.7. (1) dedℵ0 = 2ℵ0 (as Q ⊂ R), and under GCH, dedκ = 2κ for all
κ.
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(2) (Mitchell [Mit72]) For any κ of uncountable cofinality, there is a cardinal
preserving Cohen extension such that dedκ < 2κ.

(3) (C., Kaplan, Shelah [CKS12]) It is consistent with ZFC that dedκ <

(dedκ)
ℵ0 for certain κ. E.g., starting with a model with GCH, we force

ℵω+ω = dedℵω < (dedℵω)
ℵ0 = ℵω+ω+1. It is open if both inequalities

dedκ < (dedκ)
ℵ0 < 2κ can be strict simultaneously for some κ.

(4) (C., Shelah [CS13]) On the other hand one can prove (in ZFC) that for
any κ we have 2κ ≤ ded (ded (ded (dedκ))). Again, the optimality of the
required number of iterations is open.

Exercise 2.8. Find an example of T for each of the possible values of fT listed
above.

Definition 2.9. Let M |= T .
(1) A formula φ (x, y), with its variables partitioned into two groups x, y, has

the k-order property, k ∈ ω, if there are some ai ∈ Mx, bi ∈ My for i < k
such that M |= φ (ai, bj) ⇐⇒ i < j.

(2) φ (x, y) has the order property if it has the k-order property for all k ∈ ω.
(3) We say that a formula φ (x, y) ∈ L is stable if there is some k ∈ ω such that

it does not have the k-order property.
(4) A theory is stable if it implies that all formulas are stable (note that this

is indeed a property of a theory, if M ≡ N then φ (x, y) has the k-order
property inM if and only if it has the k-order property in N ).

Proposition 2.10. Assume that T is unstable, then fT (κ) ≥ dedκ for all cardinals
κ ≥ |T |.

Proof. Fix a cardinal κ. Let φ (x, y) ∈ L be a formula that has the k-order property
for all k ∈ ω. Then by compactness we have:

Claim. Let I be an arbitrary linear order. Then we can find someM |= T and
(ai, bi : i ∈ I) from M such thatM |= φ (ai, bj) ⇐⇒ i < j, for all i, j ∈ I.

Let I be an arbitrary dense linear order of size κ, and let (ai, bi : i ∈ I) inM be
as given by the claim. By Löwenheim–Skolem (Exercise 1.3) we can assume that
|M| = κ.

Given a cut C = (A,B) in I, consider the set of L (M)-formulas

ΦC = {φ (x, bj) : j ∈ B} ∪ {¬φ (x, bj) : j ∈ A} .

Note that by compactness it is a partial type (consistency of finite subtypes is
witnessed by the appropriate ai’s), let pC ∈ Sx (M) be a complete type over M
extending ΦC (x). Given two cuts C1, C2, we have pC1 6= pC2 (say B1 ( B2, then
take j ∈ B2 \B1, it follows that φ (x, bj) ∈ pC2

, φ (x, bj) /∈ pC1
). As I was arbitrary,

this shows that sup {|Sx (M)| : M |= T, |M | = κ} ≥ dedκ. Note that we may have
|x| > 1, however using Exercise 2.4 we get fT (κ) ≥ dedκ as well. �

***
Recall:

Fact 2.11. (Ramsey theorem) ℵ0 → (ℵ0)
n
k holds for all n, k ∈ ω (i.e. for any

coloring of subsets of N of size n in k colors, there is some infinite subset I of N
such that all n-element subsets of I have the same color).
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Lemma 2.12. Let φ (x, y) , ψ (x, z) be stable formulas (where y, z are not necessar-
ily disjoint tuples of variables). Then:

(1) Let φ∗ (y, x) := φ (x, y), i.e. we switch the roles of the variables. Then
φ∗ (y, x) is stable.

(2) ¬φ (x, y) is stable.
(3) θ (x, yz) := φ (x, y) ∧ ψ (x, z) and θ′ (x, yz) := φ (x, y) ∨ ψ (x, z) are stable.
(4) If y = uv and c ∈Mv then θ (x, u) := φ (x, uc) is stable.
(5) It T is stable, then every Leq-formula is stable as well.

Proof. (3) Suppose that θ′ (x, yz) = φ (x, y) ∨ ψ (x, z) is unstable, i.e. there are
(ai, bib

′
i : i ∈ N) such that |= φ (ai, bj) ∨ ψ

(
ai, b

′
j

)
⇐⇒ i < j, for all i, j ∈ N.

Let

P :=
{

(i, j) ∈ N2 : i < j& |= φ (ai, bj)
}
, Q :=

{
(i, j) ∈ N2 : i < j& |= ψ

(
ai, b

′
j

)}
,

then P ∪Q =
{

(i, j) ∈ N2 : i < j
}
. By Ramsey there is an infinite I ⊆ N such that

either all increasing pairs from I belong to P (in which case φ is unstable), or all
increasing pairs from I belong to Q (in which case ψ is unstable). �

Theorem 2.13. (Erdős-Makkai) Let B be an infinite set and F ⊆ P (B) a col-
lection of subsets of B with |B| < |F|. Then there are sequences (bi : i < ω) of
elements of B and (Si : i < ω) of elements of F such that one of the following
holds:

(1) bi ∈ Sj ⇐⇒ j < i for all i, j ∈ ω,
(2) bi ∈ Sj ⇐⇒ i < j for all i, j ∈ ω.

Proof. Choose F ′ ⊆ F with |F ′| = |B|, such that any two finite subsets of B that
can be separated by an element of F , can already be separated by an element of
F ′ (possible as there are at most |B|-many pairs of finite subsets of B).

By assumption there is some S∗ ∈ F which is not a Boolean combination of
elements of F ′ (again there are at most |B|-many different Boolean combinations
of sets from F ′).

We choose by induction sequences (b′i : i < ω) in S∗, (b′′i : i < ω) in B \ S∗ and
(Si : i < ω) in F ′ such that:

• Sn separates {b′0, . . . , b′n} and {b′′0 , . . . , b′′n},
• b′n ∈ Si ⇐⇒ b′′n ∈ Si for all i < n.

Assume (b′i : i < n), (b′′i : i < n) and (Si : i < n) have already been constructed.
Since S∗ is not a Boolean combination of S0, . . . , Sn−1, there are b′n ∈ S∗, b′′n ∈ B\S∗
such that for all i < n,

b′n ∈ Si ⇐⇒ b′′n ∈ Si.
Choose Sn as any set in F ′ separating {b′0, . . . , b′n} and {b′′0 , . . . , b′′n}.
Now by Ramsey theorem we may assume that either: b′n ∈ Si for all i < n < ω,

or b′n /∈ Si for all i < n < ω (color the set of pairs (i, n) for i < n with two colors
according to whether b′n ∈ Si or b′n /∈ Si). In the first case we set bi = b′′i and get
(1), in the second case we set bi = b′i+1 and get (2). �

Definition 2.14. Let φ (x, y) be a formula, by a complete φ-type over a set of
parameters A ⊆ My we mean a maximal consistent collection of formulas of the
form φ (x, b) ,¬φ (x, b) where b ranges overA. Let Sφ (A) be the space of all complete
φ-types over A.
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Proposition 2.15. Assume that |Sφ (B)| > |B| for some infinite set of parameters
B. Then φ (x, y) is unstable.

Proof. For any a ∈Mx, tpφ (a/B) is given by Sa = {b ∈ B :|= φ (a, b)} ⊆ B.
Applying the Erdős-Makkai theorem to B and F = {Sa : a ∈Mx} we obtain a

sequence (bi : i < ω) of elements of B and a sequence (ai : i < ω) of elements of Mx

such that either bi ∈ Saj ⇐⇒ j < i or bi ∈ Saj ⇐⇒ i < j for all i, j ∈ ω.
In the first case φ (x, y) is unstable by definition, in the second case by Lemma
2.12(1). �

2.3. Local ranks and definability of types. We will see several (ordinal-valued)
ranks playing a role in model theory.

Definition 2.16. We define Shelah’s local 2-rank taking values in {−∞}∪ω∪{+∞}
by induction on n ∈ ω (there are many other related ranks). Let ∆ be a set of
L-formulas, and θ (x) a partial type over M.

• R∆ (θ (x)) ≥ 0 iff θ (x) is consistent (and −∞ otherwise).
• R∆ (θ (x)) ≥ n + 1 if for some φ (x, y) ∈ ∆ and a ∈ My we have both
R∆ (θ (x) ∧ φ (x, a)) ≥ n and R∆ (θ (x) ∧ ¬φ (x, a)) ≥ n.

• R∆(θ(x)) = n if R∆(θ(x)) ≥ n andR∆(θ(x)) 6≥ n + 1, and R∆(θ(x)) = ∞
if R∆(θ(x)) ≥ n for all n ∈ ω.

If φ (x, y) is a formula, we write Rφ instead of R{φ}.

Proposition 2.17. φ (x, y) is stable if and only if Rφ (x = x) is finite (and so
also Rφ (θ (x)) is finite for any partial type θ). Here x = (xi : i ∈ I) is a tuple of
variables, and x = x is an abuse of notation for

∧
i∈I xi = xi.

Proof. Assume that φ (x, y) is unstable, i.e. it has the k-order property for all
k ∈ ω. By compactness we find (aibi : i ∈ [0, 1]) such that |= φ (ai,bj) ⇐⇒ i < j.
We know that both φ

(
x, b 1

2

)
and ¬φ

(
x, b 1

2

)
contain dense subsequences of ai’s.

Each of these sets can be split again, by φ
(
x, b 1

4

)
and φ

(
x, b 3

4

)
, resp., etc.

Conversely, assume that the rank is infinite, then we can find an infinite tree
of parameters B = (Bη : η ∈ 2<ω) such that for every η ∈ 2ω the set of formulas{
φη(i)

(
x, bη|i

)
: i < ω

}
is consistent (rank being ≥ k guarantees that we can find

such a tree of height k, and then use compactness to find one of infinite height).
This gives us that |Sφ (B)| > |B|, which by Proposition 2.15 implies that φ (x, y) is
unstable. �

***

Definition 2.18. (1) Let φ (x, y) ∈ L be given. A type p (x) ∈ Sφ (A) is
definable over B if there is some L (B)-formula ψ (y) such that for all a ∈ A,

φ (x, a) ∈ p ⇐⇒ |= ψ (a) .

(2) A type p ∈ Sx (A) is definable over B if p|φ is definable over B for all
φ (x, y) ∈ L.

(3) A type is definable if it is definable over its domain.
(4) We say that types in T are uniformly definable if for every φ (x, y) there

is some ψ (y, z) such that every type can be defined by an instance of
ψ (y, z), i.e. if for any A and p ∈ Sφ (A) there is some b ∈ A such that
φ (x, a) ∈ p ⇐⇒ |= ψ (a, b), for all a ∈ A.
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Remark 2.19. Another way to think about it:
Given a set A ⊆ Mx, we say that a subset B ⊆ A is externally definable (as a

subset of A) if there is some definable (over M) set X such that B = X ∩A.
Assume moreover that we have X = φ (M, c) above. Then tpφ (c/A) is definable

if and only if B is in fact internally definable, i.e. B = A ∩ Y for some A-definable
set Y . A set is called stably embedded if every externally definable subset of it is
internally definable.

Example 2.20. Consider (Q, <) |= DLO, and let p = tp (π/Q) (π ∈ R � Q). It is
easy to check by QE that p is not definable.

Lemma 2.21. (1) The set {e : Rφ (θ (x, e)) ≥ n} is definable, for all n ∈ ω.
(2) If Rφ (θ (x)) = n, then for any a ∈My, at most one of θ (x)∧φ (x, a) , θ (x)∧
¬φ (x, a) has Rφ-rank n.

Proposition 2.22. Let φ (x, y) be a stable formula. Then all φ-types are uniformly
definable.

Proof. Given p ∈ Sφ (A), call a subtype pi ⊆ p one-element minimal if Rφ (q) =
Rφ (pi) for all pi ⊆ q ⊆ p with |dom (q) \ dom (pi)| = 1.

Claim. For any p ∈ Sφ (A) there is a one-element minimal pi ⊆ p with |pi| ≤
Rφ (x = x).

Why? Let p0 = ∅, and given pi let pi+1 ⊆ p be any one-element extension of pi
of smaller Rφ-rank, if one exists.

Claim. For any p ∈ Sφ (A), if pi ⊆ p is one-element minimal then p is defined
by the formula “Rφ (pi (x) ∧ φ (x, a)) = Rφ (pi)”.

Why? For a ∈ A, φ (x, a) ∈ p implies Rφ (p ∪ {φ (x, a)}) = Rφ (pi) by minimality
of pi. And

φ (x, a) /∈ p⇒ ¬φ (x, a) ∈ p⇒ Rφ (pi ∪ {¬φ (x, a)}) = Rφ (pi)⇒

Rφ (pi ∪ {φ (x, a)}) 6= Rφ (pi)

by the previous lemma. �

Summarizing the results of the last sections we have the following characterization
of stability for formulas.

Theorem 2.23. The following are equivalent for a formula φ (x, y).
(1) φ (x, y) is stable.
(2) Rφ (x = x) < ω.
(3) All φ-types are uniformly definable.
(4) All φ-types over models are definable.
(5) |Sφ (M)| ≤ κ for all κ ≥ |L| and M |= T with |M | = κ.
(6) There is some κ such that |Sφ (M)| < dedκ for all M |= T with |M | = κ.

Proof. (1) ⇔ (2) by Proposition 2.17, (1) ⇒ (3) by Proposition 2.22, (3) ⇒ (4) is
obvious, (4) implies (5) since over a model M of size κ, there can be at most κ+L
definitions for types and all types over M are definable, (5) ⇒ (6) is obvious, and
(6) ⇒ (1) by Proposition 2.10. �

For a complete theory, this translates into the following corollary.
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Theorem 2.24. Let T be a complete first-order theory. Then the following are
equivalent.

(1) T is stable, i.e. it implies that all formulas are stable.
(2) There is no sequence of tuples (ai : i ∈ ω) from M and formula φ (z1, z2) ∈

L (M) such that |= φ (ci, cj) ⇐⇒ i < j.
(3) The inequality fT (κ) ≤ κ|T | holds for all infinite cardinals κ.
(4) There is some κ such that fT (κ) ≤ κ.
(5) There is some κ such that fT (κ) < dedκ.
(6) All formulas of the form φ (x, y) where x is a singleton variable, are stable.
(7) All types over models are definable.

Proof. (1) ⇔ (2): any φ (x1, x2) as in (2) has the order property witnessed by the
sequence (ai, bi) with bi = ai. Conversely, let φ (x, y) be an arbitrary formula with
the order property witnessed by the sequence (ai, bi). Consider φ∗ (x1y1, x2y2) :=
φ (x1, y2), and let ci := aibi. Then |= φ∗ (ci, cj) ⇐⇒ i < j.

(1) ⇒ (3): Let M |= T with |M | = κ ≥ |L| be given. By Theorem 2.23(5)
we have |Sφ (M)| ≤ κ for all φ ∈ L, and every p ∈ Sx (M) is determined by
{p|φ ∈ Sφ (M) : φ (x, y) ∈ L}.

For (3) ⇒ (4) take any κ = κ|T |, (4) ⇒ (5) is obvious, and (5) ⇒ (1) by 2.23(6).
Next, (6) is equivalent to the other conditions as we can bound the number of

types in a tuple of variable by the number of types in a single variable (by Exercise
2.4).

Finally, (7) is equivalent to (1) by the corresponding equivalence for φ-types in
Theorem 2.23. �

***

Example 2.25. Note that stability of T is characterized by the definability of
types over all models of T . Some unstable theories have certain special models
over which all types are definable.

(1) All types overM = (R,+,×, 0, 1) are (uniformly) definable (easy to check
for types in a single variable by o-minimality as the order is Dedekind-
complete. E.g., let ε ∈ R be arbitrary, and let ε+ ∈M realize the cut)
There is a theorem of Marker-Steinhorn [MS94] which says that in o-
minimal theories this is sufficient. In fact, this is the only model of the
theory RCF with this property.

(2) All types over (Qp,+,×, 0, 1) are (uniformly) definable [Del89].

2.4. Indiscernible sequences and stability. Model theory has a convenient way
of doing all the Ramsey theory that you may need in advance of doing anything
else.

Definition 2.26. Given a linear order I, a sequence of tuples (ai : i ∈ I) with
ai ∈ Mx is indiscernible over a set of parameters A if ai0 . . . ain ≡A aj0 . . . ajn for
all i0 < . . . < in and j0 < . . . < jn from I and all n ∈ ω.
Example 2.27. (1) A constant sequence (in any theory) is indiscernible over

any set.
(2) Of course, any subsequence of anA-indiscernible sequence isA-indiscernible.
(3) In the theory of equality, any sequence of distinct singletons is indiscernible.
(4) Any increasing (or decreasing) sequence of singletons in a dense linear order

is indiscernible.
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(5) Any basis in a vector space is an indiscernible sequence.

The following is a standard method of finding indiscernible sequences in an ar-
bitrary theory.

Definition 2.28. For any sequence ā = (ai : i ∈ I) and a set of parameters B, we
define EM (ā/B), the Ehrenfeucht-Mostowski type of the sequence ā over B, as a
partial type over B in countably many variables indexed by ω and given by the
following collection of formulas

{φ (x0, . . . , xn) ∈ L (A) : ∀i0 < . . . < in, |= φ (ai0 , . . . , ain) , n ∈ ω} .

Proposition 2.29. Let ā = (ai : i ∈ J) be an arbitrary sequence in M, where J is
an arbitrary linear order and A is a small set of parameters. Then for any small
linear order I we can find (in M) an A-indiscernible sequence (bi : i ∈ I) based on
ā, i.e. such that:

for any i0 < . . . < in in I and a finite set of formulas ∆ ⊆ L (A) there are
some j0 < . . . < jn in ω such that |= φ (bi0 , . . . , bin) ⇐⇒ |= φ (aj0 , . . . , ajn) for all
φ ∈ ∆.

Proof. Let (ci : i ∈ I) be a new set of constants, and consider the theory T ′ ⊇ T in
the language L′ = L ∪ {ci : i ∈ I} which in addition contains the following axioms:

• φ (ci0 , . . . , cin) for all i0 < . . . < in ∈ I and φ ∈ EM (ā/A),
• ψ (ci0 , . . . , cin) ↔ ψ (cj0 , . . . , cjn) for all i0 < . . . < in, j0 < . . . < jn in I

and ψ ∈ L (A).
It is enough to show that T ′ is consistent. By compactness it is enough to show that
every finite T0 ⊆ T ′ is consistent. Say T0 only involves formulas from some finite
∆ ⊆ L (A) with at most n free variables. Applying Ramsey theorem we can find
some infinite subsequence of ā′ = (ai : i ∈ I ′), I ′ ⊆ ω such that all the increasing
n-tuples from ā′ agree on all formulas from ∆, which is enough. �

Corollary 2.30. If (ai : i ∈ I) is an A-indiscernible sequence and J ⊇ I is an
arbitrary linear order, then (in M) there is an A-indiscernible sequence (bj : j ∈ J)
such that bj = aj for all j ∈ I (everything involved is small).

Proof. First let (bj : j ∈ J) be an arbitrary A-indiscernible sequence in M based on
I, exists by Proposition 2.29. It is easy to see that in particular (bj : j ∈ I) ≡A
(aj : j ∈ I), which by homogeneity of M implies that there is some σ ∈ Aut (M /A)
such that σ (bj) = aj . Then define b′j = σ (bj) for all j ∈ J . As indiscernibility of a
sequence is clearly preserved by an elementary map,

(
b′j : j ∈ J

)
is as wanted. �

Lemma 2.31. If ā = (ai : i ∈ I) is an infinite A-indiscernible sequence, then for
all S ⊆ I and i ∈ I \ S, ai /∈ acl (A (aj : j ∈ S)).

Proof. By definition, we want to show that for any formula φ (x) ∈ L
(
A (aj)j∈S

)
,

if |= φ (ai) holds then φ (x) has infinitely many solutions in M. Let S′ < i < S′′ be
two finite subsets of S such that A ∪ S′ ∪ S′′ contains all the parameters of φ (x).
First assume that the indexing order I is dense, then there is an infinite set S∗ ⊂ I
such that S′ < S∗ < S′′. By the A-indiscernibility of ā it follows that |= φ (aj) for
all j ∈ S∗, and we are done.

For an arbitrary I, extend the sequence ā to a larger A-indiscernible sequence
ā′ indexed by an arbitrary dense order J ⊇ I using Corollary 2.30, and apply the
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previous argument (recall that C ⊆ D ⇒ acl (C) ⊆ acl (D) for arbitrary sets of
parameters). �

Exercise 2.32. Start with the sequence (1, 2, 3, . . .) in (C,+,×, 0, 1) |= ACF0.
Give an explicit example of an indiscernible sequence based on it.

If we start with a very long sequence, we can “extract” an indiscernible sequence
preserving the full type of finite subtuples (rather than formula-by-formula as in
the previous proposition).

Proposition 2.33. Let κ, λ be small cardinals and let (ai)i∈λ be a sequence of
tuples with |ai| < κ and a set B be given. If λ ≥ i(2κ+|B|+|T |)

+ there is a B-

indiscernible sequence (a′i)i∈ω such that for every n ∈ ω there are i0 < . . . < in ∈ κ
such that a′0 . . . a′n ≡B ai0 . . . ain .

Proof. The same argument as above, but using the Erdős-Rado theorem (in (κ)
+ →

(κ+)
n+1
κ for all n ∈ ω) instead of Ramsey — this time we color tuples from the

sequence by their complete types over B (see e.g. [BY03, Lemma 1.2] for the
details). �

Remark 2.34. (1) In general (without any set-theoretic assumptions), it is not
possible to find an infinite indiscernible subsequence, no matter how long
is the sequence that we start with (but is always possible if its length is a
weakly compact cardinal, for example). In stable theories, if a sequence is
sufficiently long, then one can actually find an infinite indiscernible subse-
quence.

(2) Another way to phrase the definition of an indiscernible sequence is to
require that the type of a tuple from the sequence is determined by the
quantifier-free type of its indices in the indexing structures. Then our notion
of indiscernibility can be generalized to arbitrary indexing structures, and
an analog of Proposition 2.29 holds precisely when the indexing structure
satisfies the Ramsey property (see e.g. [TN14]).

Definition 2.35. A sequence (ai : i ∈ I) is totally indiscernible overA if ai0 . . . ain ≡A
aj0 . . . ajn for any i0 6= . . . 6= in, j0 6= . . . 6= jn from I (so the order of the indices
doesn’t matter any longer).

***

Theorem 2.36. T is stable if and only if every indiscernible sequence is totally
indiscernible.

Proof. Assume that T is unstable, then by Theorem 2.24(2) there is some sequence
of tuples (ai : i ∈ ω) and a formula φ (x1, x2) such that |= φ (ai, aj) ⇐⇒ i <
j. Let (a′i : i ∈ ω) be an indiscernible sequence based on (ai), we still have |=
φ
(
a′i, a

′
j

)
⇐⇒ i < j, so it is not totally indiscernible.

Conversely, assume that we have an indiscernible sequence ā = (ai : i ∈ I) that
is not totally indiscernible (by Proposition 2.29 we may assume that I = Q). This
means that there is some formula φ (x1, . . . , xn) ∈ L (A), some indices r1 < · · · < rn
and some permutation σ ∈ Sym (n) such that

|= φ (ar1 , . . . , arn) ∧ ¬φ
(
arσ(1) , . . . arσ(n)

)
.
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Say, we have σ = τ1 · · · τk, where each τi is a transposition of two consecutive
elements, and let σi :=

∏
1≤j≤i τj . Consider the sequence of the truth values of

|= φ(ar1 , . . . , arn),

|= φ(arσ1(1)
, . . . , arσ1(n)

),

|= φ(arσ2(1)
, . . . , arσ2(n)

),

. . .

Then we find the first place where it switches from true to false, say we have:
|= φ(arσj−1(1)

, . . . , arσj−1(n)
) ∧ ¬φ(arσj(1) , . . . , arσj(n)

), which used the transposi-
tion τj = (s, s + 1) for some 1 ≤ s < n. Then we define φ∗(x1, . . . , xn) :=
φ(xσj−1(1), . . . , xσj−1(n)) and ψ(x1, x2) = φ∗(ar1 , . . . , ars−1

, x1, x2, ars+2
, . . . , arn).

By indicsernibility of ā, ψ (x1, x2) defines the ordering on the infinite subsequence
(ai : rs−1 < i < rs+2). By Theorem 2.24(2) this contradicts stability. �

Proposition 2.37. For any stable formula φ (x, y), in an arbitrary theory, there is
some kφ ∈ ω depending just on φ such that for any indiscernible sequence I ⊆ Mx

and any b ∈My, either |φ (I, b)| ≤ kφ or |¬φ (I, b)| ≤ kφ.

Proof. Let a stable φ (x, y) be given, say φ (x, y) does not have the k-order property.
Let I be some indiscernible sequence and b a parameter. We claim that either φ (I, b)
or ¬φ (I, b) is of size smaller than k.

Assume not, then one of the following happens: we can find some i0 < . . . <
ik−1 < ik < ik+1 < . . . < i2k−1 such that

|=
∧

0≤j<k

¬φ
(
aij , b

)
∧

∧
k≤j<2k

φ
(
aij , b

)
,

or the same with the roles of φ and ¬φ reversed. Let’s do the first case, the other
is analogous. So, in the first case we have in particular

|= ∃y
∧

0≤j<k

¬φ
(
aij , y

)
∧

∧
k≤j<2k

φ
(
aij , y

)
.

By indiscernibility of the sequence this implies that for any 0 ≤ i < k,

|= ∃y
∧

0≤j<i

¬φ
(
aij , y

)
∧
∧

i≤j<k

φ
(
aij , y

)
holds. Let

bi |=
∧

0≤j<i

¬φ
(
aij , y

)
∧
∧

i≤j<k

φ
(
aij , y

)
be arbitrary, and let cj := aij , for i, j < k. Then the sequence (bi, ci : i < k) with
the order reversed shows that φ (x, y) has the k-order property, a contradiction. �

Corollary 2.38. In a stable theory, we can define the average type of an indis-
cernible sequence b̄ = (bi) over a set of parameters A as

Av
(
b̄/A

)
= {φ (x, a) ∈ L (A) :|= φ (bi, a) for all but finitely many i ∈ I} .

By Proposition 2.37 it is a complete consistent type over A.

***
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2.5. Stable = NIP∩NSOP and the classification picture. The failure of sta-
bility can occur in one of the following two “orthogonal” ways.

Definition 2.39. (1) A (partitioned) formula φ (x, y) ∈ L has the strict or-
der property, or SOP, if there is an infinite sequence (bi)i∈ω such that
φ (M, bi) ( φ (M, bj) for all i < j ∈ ω.

(2) A theory T has SOP if some formula does.
(3) T is NSOP if it doesn’t have the strict order property.

Remark 2.40. • If φ (x, y) has SOP, then by Proposition 2.29 we can choose
an indiscernible sequence (bi) satisfying the condition above. If we have
arbitrary long finite sequences (bi)i<n satisfying the condition above for a
fixed formula φ (x, y), then it has SOP by compactness.

• A typical example of an SOP theory is given by DLO.
• T is NSOP if and only if all formulas with parameters are NSOP (can

incorporate the parameters into the sequence of bi’s), if and only if all
formulas φ (x, y) with x singleton are NSOP [Lac75].

Exercise 2.41. T has SOP if and only if there is a definable partial order with
infinite chains (on some sort in the monster model).

Definition 2.42. (1) A (partitioned) formula φ (x, y) has the independence
property, or IP, if (inM) there are infinite sequences (bi)i∈ω and (as : s ⊆ ω)
such that |= φ (as, bi) ⇐⇒ i ∈ s.

(2) A theory T has IP if some formula does, otherwise T is NIP.

Remark 2.43. • If we have arbitrary long finite sequences (bi)i<n satisfying
the condition above for a fixed formula φ (x, y), then by compactness we
can find an infinite sequence satisfying the condition above, hence φ (x, y)
it has IP. And if φ (x, y) has IP, then by Proposition 2.29 and compactness
we can choose an indiscernible sequence (bi) in the definition above.

• A typical example of a theory with IP is given by the theory of the countable
random graph, i.e. the theory of a single (symmetric, irreflexive) binary
relation E (x, y) axiomatized by the following list of “extension axioms”, for
each n ∈ ω:

∀a0 6= . . . 6= an−1 6= b0 6= . . . 6= bn−1∃c

(∧
i<n

E (c, ai) ∧
∧
i<n

¬E (c, bi)

)
.

• T is NIP if and only if all formulas with parameters are NIP, if and only
if all formulas φ (x, y) with x singleton are NIP. Also φ (x, y) is NIP if and
only if φ∗ (y, x) = φ (x, y) is NIP (see e.g. [Adl08]).

Proposition 2.44. A formula φ (x, y) is NIP if and only if for any indiscernible
sequence b̄ = (bi : i ∈ I) and a parameter a, the alternation of φ (a, y) on b̄ is finite,
bounded by some number n ∈ ω depending just on φ. That is, there are at most
n increasing indices i0 < . . . < in−1 such that |= φ (a, bi) ↔ ¬φ (a, bi+1) for all
i < n− 1.

Proof. If φ (x, y) has IP, then as remarked we can choose an indiscernible sequence
b̄ = (bi)i∈ω in the definition above. But then taking s ⊆ ω to be the set of even
number, φ (as, y) has infinite alternation on b̄.

Conversely, assume φ (a, y) has infinite alternation on an indiscernible sequence
b̄, without loss of generality b̄ = (bi : i ∈ ω) and |= φ (a, bi) ⇐⇒ i ≡ 0 (mod2). Let
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J ⊆ n be arbitrary. Choose indices i0 < i1 < . . . < in−1 such that ik is even if and
only if k ∈ J , hence |= φ (a, bik) ⇐⇒ k ∈ J . But bi0bi1 . . . bin−1 ≡ b0b1 . . . bn−1 by
indiscernibility, and so there is some aJ in M such that |= φ (aJ , bk) ⇐⇒ k ∈ J ,
for all k < n. As n was arbitrary, conclude by compactness. �

Remark 2.45. Working in an NIP theory and given an indiscernible sequence b̄ =
(bi : i ∈ I) with I an endless order, and A an arbitrary set of parameters, Proposi-
tion 2.44 allows us to define a complete consistent type

Av
(
b̄/A

)
= {φ (x) ∈ L (A) : the set {i ∈ I :|= φ (a, bi)} is cofinal} .

In the case of a stable theory this coincides with the definition from Corollary
2.38.

Theorem 2.46. [Shelah] T is unstable if and only if it has the independence prop-
erty or the strict order property.

Proof. We leave it as an exercise to show that if φ (x, y) has IP or SOP, then it is
unstable.

Now assume that φ (x, y) is unstable and T is NIP. Applying Proposition 2.29 we
can find an indiscernible sequence (aibi : i ∈ Q) such that |= φ (ai, bj) ⇐⇒ i < j.

(∗) As T is NIP, by Proposition 2.44 there exists some k such that{
φi(mod2) (x, bi) : i ∈ N, i < k

}
is inconsistent.

(∗∗) On the other hand by instability, for every l < k we have

{¬φ (x, bi) : i < l} ∪ {φ (x, bi) : i ≥ l}
is consistent (witnessed by al− 1

2
).

We can get from (∗) to (∗∗) by replacing φ (x, bi)∧¬φ (x, bi+1) with ¬φ (x, bi)∧
φ (x, bi+1) one at a time.

This means that there is some η : k → 2 and l < k such that{
φη(i) (x, bi) : i 6= l, l + 1

}
∪ {φ (x, bl) ,¬φ (x, bl+1)}

is inconsistent, but{
φη(i) (x, bi) : i 6= l, l + 1

}
∪ {¬φ (x, bl) , φ (x, bl+1)}

is consistent.
Let ψ1 (x) :=

∧
i 6=l,l+1 φ

η(i) (x, bi). By indiscernibility of the sequence (bi), for
any i < j ∈ Q ∩ (l, l + 1) we have the following:

• ψ1 (x) ∧ {φ (x, bi) ,¬φ (x, bj)} is inconsistent,
• ψ1 (x) ∧ {¬φ (x, bi) , φ (x, bi)} is consistent.

Define ψ (x, y) := ψ1 (x) ∧ φ (x, y) and b̄′ := (bi : i ∈ Q ∩ (l, l + 1)). Then on b̄′ we
have ∃x¬ψ (x, bi) ∧ ψ (x, bj) ⇐⇒ i < j, which shows that ψ (x, y) has the strict
order property. �

Exercise 2.47. Show that DLO is NIP, and that the theory of a random graph is
indeed NSOP.

***
We have the following classification picture for the space of all complete first-

order theories.
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An interactive map with more details and examples can be found at http:
//www.forkinganddividing.com/.

Example 2.48. Examples of stable theories.

(1) The theory of a countable number of equivalence relations En for n a nat-
ural number such that each equivalence relation has an infinite number
of equivalence classes and each equivalence class of En is the union of an
infinite number of different classes of En+1 (it has QE, so types are de-
termined by specifying the class with respect to each of the equivalence
relations, which implies that over any set A there are at most |A|ℵ0 -many
types).

(2) Modules are stable (so in particular vector spaces and abelian groups are
stable).
We consider a moduleM = (M, 0,+,−, (r (x) : r ∈ R)) where R is a ring,
and r (x) is a function x 7→ rx. Any theory of a module in this language
admits QE down to the pp-formulas [Bau76]. Namely, every formula is
equivalent to a Boolean combination of pp-formulas, where a pp-formula
is a formula of the form ∃ȳ (γ1 ∧ . . . ∧ γn), where γi (x̄ȳ) is an equation of
the form r1x1 + . . . + rnxn = 0. A pp-formula defines a subgroup of Mn,
and if φ (x, y) is a pp-formula and a ∈ M , then φ (x, a) is either empty
or defines a coset of φ (x, 0). Thus, given a pp-formula φ (x, y) and a, b in
M , φ (x, a) , φ (x, b) are either equivalent or contradictory. Since types are

http://www.forkinganddividing.com/
http://www.forkinganddividing.com/
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determined by pp-formulas, there are few of them, see e.g. [TZ12, Example
8.6.6]. Note that the ring R is incorporated into the language, and is not
a definable as a part of the structure. This is essential to obtain stability,
as for example every infinite finitely generated ring interprets arithmetic
([AKNS16]).

(3) Free groups are stable, in the pure group language (more generally, torsion-
free hyperbolic groups are stable). This is a deep theorem of Sela (https://
en.wikipedia.org/wiki/Zlil_Sela). Furthermore, if Fn is a free group
on n generators, then we have F2 ≺ F3 ≺ . . ., in particular they all have
the same first-order theory.

(4) Algebraically closed fields, ACF0 and ACFp, are stable. Let K be a small
subfield, by QE the type of an element a over K is determined by the
isomorphism type of the extension K [a] /K. If a is transcendental over K,
K [a] is isomorphic to the polynomial ring K [x]. If a is algebraic with a
minimal polynomial f (x) ∈ K [x], then K [a] is isomorphic to K [x] / (f).
Thus there are at most (|K|+ ℵ0)-many 1-types over K. In fact, we saw
that ACF0 is a strongly minimal theory (as well as ACFp), and all strongly
minimal theories are stable (Exercise).

(5) Separably closed fields are stable. Recall that a field K is separably closed
if every non-constant separable polynomial over K has a zero in K. Any
separably closed perfect field is algebraically closed, so we restrict to positive
characteristic, in which case Kp is a subfield. If the degree of [K : Kp] is
finite, it is of the form pe, and e is called the degree of imperfection of
K. For any e ∈ N, let SCFp,e be the theory of separably closed fields of
char p with the degree of imperfection e, and let SCFp,∞ be the theory
of separably closed fields of char p with infinite degree of imperfection.
These theories are complete, and they eliminate quantifiers after naming a
basis and adding some function symbols to the language. See e.g. [TZ12,
Example 8.6.7].
Open problem. Is every field K with Th (K) stable is separably closed?
(a positive answer is known for superstable fields [CS80] and some other
special cases).

(6) Differentially closed fields are stable. A differential field is a fieldK equipped
with a function symbol d : K → K for a derivation d, i.e. d is an additive
map such that d (r1r2) = d (r1) r2 + r1d (r2) (Leibniz rule). The theory
of differentially closed fields DCF0 is the theory of differential fields of
characteristic 0 satisfying the following property: for f ∈ K [x0, . . . , xn] \
K [x0, . . . , xn−1] and g ∈ K [x0, . . . , xn−1], g 6= 0, there is some a ∈ K such
that f (a, da, . . . dna) = 0 and g

(
a, da, . . . , dn−1a

)
6= 0 . Any differential

field can be extended to a model of DCF0, and DCF0 has QE. The theory
DCF0 is stable (using QE one can establish a bijection between n-types
over F and the so-called prime δ-ideals in F {x1, . . . , xn}, the ring of differ-
ential polynomials, and such ideals are always generated by finitely many
differential polynomials — a form of Noetherianity. Thus there are few
types.) There is a positive characteristic analogue. See e.g. [Mar00].

(7) [PZ78] Let G be a planar graph, in the language with only the edge relation
{E (x, y)}. Then G is stable (it is easy to see that e.g. if the relation E (x, y)

https://en.wikipedia.org/wiki/Zlil_Sela
https://en.wikipedia.org/wiki/Zlil_Sela
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has the order property, then E is not planar, but one has to take care of
formulas with quantifiers as well).

***

2.6. Stability in continuous logic. A good reference for continuous logic is
Ben Yaacov, Berenstein, Henson, Usvyatsov “Model theory for metric structures”
[BYBHU08].

Basically, every structureM now is a complete metric space of bounded diameter,
with metric d. Signatures are given by:

• function symbols with given moduli of uniform continuity (interpreted as
uniformly continuous functions from Mn to M),

• predicate symbols with given moduli of uniform continuity (uniformly con-
tinuous functions from M to [0, 1]).

Connectives are given by the set of all continuous functions from [0, 1] → [0, 1], or
any subfamily which generates a dense subset (e.g.

{
¬, x2 , −̇

}
, where ¬x = 1−x and

x−̇y = max {0, x− y}, compare to the standard Boolean operations that generate
all possible functions to {0, 1}). Quantifiers are given by sup for ∀ and inf for
∃ (so truth is 0 and false is 1, but formulas can also have any truth value in
the interval [0, 1]). By induction one defines formulas with truth values in [0, 1],
and using the assumptions one shows that they all define uniformly continuous
functions. This logic admits a compactness theorem and basic stability can be
developed in a manner analogous to the discrete case. Of course, modulo some
natural changes: cardinality is replaced by the density character, in acl “finite” is
replaced by “compact”, some equivalences are replaced by the ability to approximate
uniformly up to any ε > 0, etc. Recently it was realized that in fact basic stability
theory as developed by Shelah follows from some classical results of Grothendieck in
functional analysis (stable formulas correspond to weakly almost periodic functions,
etc.), which provides a natural generalization to continuous logic, but also covers
the discrete case (this gives no bounds however) — see [BY14].

Example 2.49. Let (Ω,F , µ) be a probability space, let L1 ((Ω,F , µ) ; [0, 1]) be
the space of [0, 1]-valued random variables on it. We consider it as a continuous
structure in the language LRV =

{
0,¬, x2 , −̇

}
with the natural interpretation of

the connectives (e.g.
(
X−̇Y

)
(ω) = X (ω) −̇Y (ω)) and the distance d (X,Y ) =

E [|X − Y |] =
´

Ω
|X − Y | dµ. Consider the following continuous theory RV in the

language LRV, we write 1 as an abbreviation for ¬0, E (x) for d (0, x) and x∧ y for
x−̇
(
x−̇y

)
:

• E (x) = E
(
x−̇y

)
+ E (y ∧ x)

• E (1) = 1
• d (x, y) = E

(
x−̇y

)
+ E

(
y−̇x

)
• τ = 0 for every term τ which can be deduced in the propositional continuous

logic.
The theory ARV of atomless random variable is defined by adding:

• Atomlessness: infy

(
E (y ∧ ¬y) ∨

∣∣∣E (y ∧ x)− E(x)
2

∣∣∣) = 0.

The following is demonstrated in [BY13].
(1) M |= ARV⇔ it is isomorphic to L1 (Ω, [0, 1]) for some atomless probability

space (Ω,F , µ).
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(2) ARV is the model completion of the universal theory RV (so every proba-
bility space embeds into a model of ARV).

(3) ARV eliminates quantifiers, and two tuples have the same type over a set
A ⊆ M if and only if they have the same joint conditional distribution
as random variables over σ (A), where σ (A) ⊆ F denotes the minimal
complete subalgebra with respect to which every random variable X ∈ A
is measurable.

(4) The theory ARV is stable. In fact, by Theorem 2.36 stability of ARV
is equivalent to the following classical theorem of Ryll-Nardzewski from
probability theory: a sequence of random variables is exchangeable iff it is
spreadable (see e.g. [Kal88]), which in view of (3) means precisely that any
infinite indiscernible sequence is totally indiscernible.

2.7. Number of types and definability of types in NIP.

Lemma 2.50. If F ⊆ 2λ and |F | > dedλ, then for each n < ω there is some I ⊆ λ
such that |I| = n and F � I = 2I .

Proof. Assume F, λ are a counterexample, with λ minimal. Note that F can be
naturally identified with a set of branches of the tree

⋃
i<λ F � i. By minimality of

λ we may assume that for each i < λ, |F � i| ≤ dedλ.
For each f ∈ F � i, let F (f) := {g ∈ F : f ⊆ g}, Gi := {f ∈ F � i : |F (f)| > dedλ}

and G = {f ∈ F : f � i ∈ Gi for all i < λ}. Then G ⊆ F is a set of branches of
the tree

⋃
i<λGi. Note that F \ G =

⋃
i<λ

⋃
g∈(F �i)\Gi F (g), hence |F \G| ≤

λ × dedλ × dedλ = dedλ, and so |G| > dedλ. Therefore we may assume that
G = F , i.e. we can assume that for each i < λ and f ∈ F � i, |F (f)| > dedλ.

Now we prove by induction on n, that for each n < ω, for each f ∈
⋃
i<λ F � i

there is some I ⊆ λ such that |I| = n and F (f) � I = 2I . This is clear for n = 0
since F (f) 6= ∅, and consider the case of n+1. By definition of ded, since F (f) is a
set of branches of the tree

⋃
i<λ F (f) � i, this tree has cardinality > λ and therefore

|F (f) � i| > λ for some i < λ. By the induction hypothesis, for each g ∈ F (f) � i
there is some Ig ⊆ λ such that |Ig| = n and F (g) � Ig = 2Ig . By pigeonhole, there
are two different g, h ∈ F (f) � i such that I := Ig = Ih. Choose some j < i such
that h (j) 6= g (j). Then j /∈ I. If J = I ∪ {j}, then F (f) � J = 2J . �

Proposition 2.51. (1) If φ (x, y) has IP, then for each cardinal κ there is a
set A of cardinality κ such that |Sφ (A)| = 2κ.

(2) If φ (x, y) is NIP, then for each cardinal κ and a set of parameters A, if
|A| = κ then |Sφ (A)| ≤ dedκ.

Proof. (1) If φ (x, y) has IP, then so does φ∗ (y, x) := φ (x, y). Thus by compactness
for any κ we can find a set A of size κ, such that for any S ⊆ A there is some aS
with |= φ (aS , b) ⇐⇒ b ∈ S, for all b ∈ S.

(2) Assume |A| = κ and
∣∣Sφ(x,y) (A)

∣∣ > dedκ. Fix an enumeration A =
(ai : i < κ). For each p ∈ Sφ (A) let fp ∈ 2κ be defined by fp (i) = 0 ⇐⇒
φ (x, ai) ∈ p. Let F = {fp : p ∈ Sφ (A)}. Since |F | > dedκ, for each n ∈ ω
there is some I ⊆ κ such that |I| = n and F � I = 2I . Then for each X ⊆ I,
{φ (x, ai) : i ∈ X} ∪ {¬φ (x, ai) : i ∈ I \X} is contained in one of the types over A,
and so consistent. Hence φ (x, y) has IP. �

Thus, the NIP property is precisely the dividing line between the last two cases
in Fact 2.5.
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***
If we consider φ-types over finite sets, this translates into the following lemma

of Sauer/Shelah/Perles/Vapnik, Chervonenkis (the ded function becomes a poly-
nomial over finite sets).

Fact 2.52. A formula φ (x, y) is NIP if and only if there are some d, c ∈ ω such
that for any finite set A with |A| = n we have |Sφ (A)| ≤ cnd. In fact, d can be
taken to be the maximal size of a set that can be shattered by instances of φ (x, y).

So, over finite sets the bound on the number of types in stable theories is not
better than in NIP theories. Recall that uniform definability of types is a character-
istic property of stability (Theorem 2.23). Let’s consider definability of types again.
We have already observed that if we consider a type given by a non-realized cut
over (Q, <), then it is not definable. However, all cuts over finite subsets actually
have an endpoint, which gives a uniform definability procedure. More generally:

Fact 2.53. [CS15b] Let T be NIP. Then types over finite sets are uniformly defin-
able. I.e., for every formula φ (x, y) there is a formula ψ (y, z) such that for every
finite set A ⊆ My (with |A| ≥ 2) and every p (x) ∈ Sφ (A) there is some tuple b
from A such that φ (x, a) ∈ p ⇐⇒ |= ψ (a, b) for all a ∈ A.

This is related to a conjecture of Warmuth on the existence of compression
schemes for families of sets of finite VC-dimension (note that a formula φ (x, y)
is NIP iff the family F = {φ (M, a) : a ∈M} has finite VC-dimension). Fact 2.53
establishes a weaker form of this conjecture (it requires that not only the family
given by φ (x, y) has finite VC-dimension, but also that certain families defined
from it using quantifiers have finite VC-dimension). Very recently the conjecture
was proved in [MY15].

3. Forking calculus

Now we begin moving towards some more “geometric” parts of the theory. First
we define some notions of “small” and “large” definable sets, then we consider various
“generic” extensions of types and show how in an arbitrary stable theory one can
use it to define a notion of “independence” for subsets of the monster, generalizing
for example linear independence in vector spaces and algebraic independence in
algebraically closed fields.

3.1. Keisler measures and generically prime ideals.

Definition 3.1. (1) AKeisler measure (over a set of parameters A) is a finitely-
additive probability measure on the Boolean algebra of A-definable subsets
of Mx. That is, a Keisler measure over A is a map µ : Defx (A) → [0, 1]
such that
(a) µ (Mx) = 1,
(b) µ (P ∪Q) = µ (P ) + µ (Q) for all disjoint P,Q ∈ Defx (A).

(2) A Keisler measure µ is invariant over A if a ≡A b implies µ (φ (x, a)) =
µ (φ (x, b)).

Exercise 3.2. One can think of a Keisler measure over A as defined on the clopen
subsets of the space of types Sx (A) (recall Section 1.4). Then every Keisler measure
over A can be extended in a unique way to a regular countable additive Borel
probability measure on the space of types over A (regular means that for all Borel
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sets X and ε > 0 there are some closed Y and open Z such that Y ⊆ X ⊆ Z and
µ (Z)− µ (Y ) < ε).

From now on by a measure we always mean a Keisler measure. A type can be
thought of as a {0, 1}-measure.

Definition 3.3. Recall that a set I ⊆ Defx (A) is an ideal if:
(1) ∅ ∈ I,
(2) φ (x, a) ` ψ (x, b) and ψ (x, b) ∈ I implies φ (x, a) ∈ I,
(3) φ (x, a) ∈ I and ψ (x, b) ∈ I implies φ (x, a) ∨ ψ (x, b) ∈ I.

An ideal I is invariant over A if φ (x, a) ∈ I and a ≡A b implies φ (x, b) ∈ I. As
usual, an ideal I in Def (M) is prime if whenever φ (x, a) ∧ ψ (x, b) ∈ I, then either
φ (x, a) ∈ I or ψ (x, b) ∈ I. However, in the Boolean algebra Defx (M), prime ideals
correspond to complete types in Sx (M) (as for any φ (x, b), φ (x, b) ∧ ¬φ (x, b) =
∅ ∈ I, so either φ (x, b) or ¬φ (x, b) has to belong to I, hence the complement of I
is a complete type). We introduce a weaker notion.

Definition 3.4. Given a cardinal κ, we say that an ideal I in Defx (A) is κ-prime
if for any family (Si)i<κ of A-definable sets with Si /∈ I for all i < κ, there are
some i < j < κ such that Si ∩ Sj /∈ I. We say that an ideal I is generically prime
if it is κ-prime for some κ.

Example 3.5. (1) With this definition an ideal is prime if and only if it is
2-prime.

(2) Let µ be an arbitrary finitely-additive probability measure on X, and let 0µ
be its 0-ideal. Then 0µ is ℵ1-prime. Indeed, take J = ℵ1 and assume we are
given a family (Si : i ∈ J) of sets of positive measure, say µ (Si) >

1
ni

for
some ni ∈ ω. Then by pigeon-hole there is some n ∈ ω and some infinite
J ′ ⊆ J such that µ (Si) >

1
n for all i ∈ J ′. Then it follows from basic

probability theory that we can find an infinite subsequence J ′′ ⊆ J such
that µ (Si0 ∩ . . . ∩ Sim) > 0 for any m ∈ ω and i0 < . . . < in from J ′′.

Generically prime ideals are closely related to Hrushovski’s notion of S1-ideals
(see [Hru12]).

Proposition 3.6. Let I be an A-invariant ideal in Defx (M). Then the following
are equivalent:

(1) I is S1, i.e. for any A-indiscernible sequence (bi)i∈ω and any formula
φ (x, y), if φ (x, b0) /∈ I then φ (x, b0) ∧ φ (x, b1) /∈ I.

(2) I is generically prime.
(3) I is

(
2|A|+|T |

)+
-prime.

Proof. Assume that we have anA-indiscernible sequence (ai)i∈ω such that φ (x, a0)∧
φ (x, a1) ∈ I but φ (x, a0) /∈ I. By compactness, indiscernibility and invariance of
I, for any κ we can find a sequence (ai)i∈κ such that φ (x, ai) /∈ I and φ (x, ai) ∧
φ (x, aj) ∈ I for all i 6= j ∈ κ, thus I is not generically prime.

Conversely, assume that I is not generically prime. Then for any κ we can find
(φi (x, ai))i∈κ with φi (x, ai) /∈ I and φi (x, ai) ∧ φj (x, aj) ∈ I. Taking κ large
enough and applying Fact 2.33 we find an A-indiscernible sequence starting with
ai, aj for some i 6= j and such that φi = φj . �
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In fact a refinement of this proof shows that if an ideal I is generically prime
and invariant over A, then one can always take κ =

(
2|A|+|T |

)+
in the definition.

***

3.2. Dividing and forking.

Definition 3.7. (1) A formula φ (x, a) divides over B if there is a sequence
(ai)i∈ω and k ∈ ω such that ai ≡B a and {φ (x, ai)}i∈ω is k-inconsistent.
Equivalently, if there is a B-indiscernible sequence (ai)i∈ω starting with a
and such that {φ (x, ai)}i∈ω is inconsistent (by compactness and Fact 2.33).

(2) A formula φ (x, a) forks over B if it belongs to the ideal generated by the
formulas dividing over B, i.e. if there are ψi (x, ci) dividing over B for i < n
and such that

φ (x, a) `
∨
i<n

ψi (x, ci) .

(3) We denote by F (B) the ideal of formulas forking over B. It is invariant
over B.

Example 3.8. Let T be DLO, then a < x does not divide over ∅, but a < x < b
does (easy to check using QE).

Example 3.9. In general there are formulas which fork, but do not divide. Con-
sider the unit circle around the origin on the plane, and a ternary relation R (x, y, z)
on it which holds if and only if y is between x and z, ordered clock-wise. Let T be
the theory of this relation. Check:

(1) This theory eliminates quantifiers.
(2) There is a unique 2-type p (x, y) over ∅ consistent with “x 6= y”.
(3) R (a, y, c) divides over ∅ for any a, c.
(4) The formula “x = x” forks over ∅ (but it does not divide, of course — no

formula can divide over its own parameters).

Definition 3.10. A (partial) type does not divide (fork) over B if it does not imply
any formula which divides (resp. forks) over B.

Note: if a /∈ acl (A) then tp (a/Aa) divides over A. Also, if π (x) is consistent
and defined over acl (A), then it doesn’t divide over A.

Exercise 3.11. Let p ∈ Sx (M) be a global type, and assume that it doesn’t divide
over a small set A. Then it doesn’t fork over A.

Proposition 3.12. F (B) is contained in every generically prime B-invariant ideal.

Proof. It is enough to show that if ϕ (x, a) divides over B and I is a generically
prime ideal, then ϕ (x, a) ∈ I. We use the equivalence from Proposition 3.6. Let
(ai)i∈ω be indiscernible over B with a0 = a and {ϕ (x, ai)}i∈ω inconsistent. If
ϕ (x, a0) /∈ I, then by induction using that I is generically prime (and that if
(ai)i∈ω is indiscernible over B, then (a2ia2i+1)i∈ω is indiscernible over B), we see
that

∧
i<k ϕ (x, ai) /∈ I for all k ∈ ω. But as ∅ ∈ I this would imply that {ϕ (x, ai)}

is consistent, a contradiction. �

Notice that any intersection of B-invariant generically prime ideals is still B-
invariant and generically prime.
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Definition 3.13. (1) Let GP (A) be the smallest generically prime ideal in-
variant over A.

(2) Let 0 (A) be the ideal of formulas which have measure 0 with respect to
every A-invariant Keisler measure.

Summing up the previous observations, we have the following picture:

Proposition 3.14. In any theory and for any set A, F (A) ⊆ GP (A) ⊆ 0 (A).

Example 3.15. There are theories with F (A) ( GP (A), equivalently theories in
which the forking ideal is not generically prime. Look at the triangle-free random
graph (i.e. the model completion of the theory of graphs saying that there are no
triangles — it exists and eliminates quantifiers, an important property for us is that
it embeds any finite graph without triangles). Then we have:

(1) R (x, a) does not divide for any a (as any indiscernible sequence of singletons
has to be an anti-clique).

(2) R (x, a)∧R (x, b) divides for any a 6= b (witnessed by a sequence (aibi) such
that R (ai, bj)⇔ i 6= j).

(3) Thus for any infinite indiscernible sequence of singletons (ai), R (x, a0) does
not divide while R (x, a0) ∧R (x, a1) does.

Problem 3.16. Hrushovski suggested an example of a (simple) theory in which
F (∅) = GP (∅) ( 0 (∅). I don’t known any examples of F (A) ( GP (A) ( 0 (A)
and of F (A) ( GP (A) = 0 (A). In NIP theories we have that F (M) = 0 (M).

3.3. Special extensions of types.
• Let A ⊆ B and p ∈ Sx (A). Then of course there is some q ∈ Sx (B) with
p ⊆ q (as p is a filter in Defx (B), so extends to an ultrafilter).

• We would like to be able to choose a “generic” extension q of p, such that
it doesn’t add any new conditions on q with respect to the new parameters
from B which were not already present with respect to the parameters from
A (as opposed to something like “(x = b) ∈ q”, this can be also thought of
as a far-reaching generalization of taking a generic point on an algebraic
variety).

• We begin by understanding special extensions of types over models, which
is easier, and then proceed to types over arbitrary sets, where the situation
in stable theories is explained by M eq.

Definition 3.17. A global type p (x) ∈ S (M) is called invariant over C if it is
invariant under all automorphisms of M fixing C. That is, for every a ≡C b and
φ (x, y) ∈ L, φ (x, a) ∈ p ⇔ φ (x, b) ∈ p.

Applying Proposition 3.12 to {0, 1}-measures, every global type invariant over A is
non-forking over A.

Definition 3.18. Let A ⊆ B, p ∈ Sx (A) and q ∈ Sx (B) extending p be given (so
p = q �Defx(A), which we also denote as p = q|A).

(1) We say that q is an heir of p (or “an heir over A”) if for every formula
φ (x, y) ∈ L (A), if φ (x, b) ∈ q for some b ∈ B, then φ (x, b′) ∈ p for some
b′ ∈ A. Note that if q is an heir of p, then in fact A has to be a model of T .

(2) We say that q is a coheir of p ( “coheir over A”, “finitely satisfiable in A”)
if for any φ (x, b) ∈ q there is some a ∈ A such that |= φ (a, b).
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Exercise 3.19. Let A ⊆ B be given.
(1) If a type q ∈ S (B) is definable over A or is finitely satisfiable in A, then it

does not split over A, i.e. for all a ≡A a′ from B and φ (x, y) ∈ L (A) we
have that φ (x, a) ∈ q ⇐⇒ φ (x, a′) ∈ q. In particular, if B = M then q is
A-invariant.

(2) If A is a model of T and q ∈ S (B) is definable over A, then it is an heir
over A.

(3) If B = M and q ∈ S (B) is A-invariant then it doesn’t fork over A (use
3.12).

(4) tp (a/Mc) is an heir of tp (a/M) if and only if tp (c/Ma) is a coheir of
tp (b/M).

Example 3.20. Let M = (Q, <) and consider the type p ∈ Sx (M) given by
p = {a < x : a ∈M}. Now consider two global extensions q1, q2 ∈ Sx (M) of p:

• q1 (x) = {a < x : a ∈M},
• q2 (x) = p (x) ∪ {x < b : M < b ∈M}.

It is easy to check that q1 is M -definable, so it is an heir of p, but not a coheir
of p. On the other hand, q2 is a coheir of p, but it is not an heir over M .

Remark 3.21. Note that the space of A-invariant global types is a closed subset
of S (M) (as it equals

⋂
φ∈L,a≡Ab∈M 〈φ (x, a)↔ φ (x, b)〉), thus compact. Similarly,

the space of types finitely satisfiable in A is a closed subset of A — it equals⋂
φ(x,a)∈L(M),φ(A,a)=∅ 〈¬φ (x, a)〉. It can also be described as the closure of the set

of types realized in A, i.e. of {tp (a/M) : a ∈ A}.
***

Proposition 3.22. Let p ∈ Sx (M) be arbitrary, where M |= T is a small model.
(1) There is a global coheir q of p.
(2) There is a global heir r of p.

Proof. (1) Let A ⊆Mx be small, and let U be an ultrafilter on P (A). We can define
a global type qU ∈ Sx (M) in the following way. For a formula φ (x, b) ∈ L (M) we
define φ (x, b) ∈ qU ⇐⇒ φ (A, b) ∈ U .

Then qU is finitely satisfiable in A. Conversely, every global type q is finitely
satisfiable in A is of the form qU for some ultrafilter U on P (A). Namely, let
V = {φ (A, b) : φ (x, b) ∈ q}— by finite satisfiability of q this is an ultrafilter on the
Boolean algebra of all externally definable subsets of A. But then let U ⊇ V be an
arbitrary ultrafilter on P (A), it is easy to see that q = qU (note that such a U need
not be unique). Note that if U is a principal ultrafilter, then qU is realized.

Now, any p ∈ Sx (M) is finitely satisfiable in M (for any formula φ (x) ∈ p we
have M |= ∃xφ (x); as φ (x) ∈ L (M) andM ≺M we haveM |= ∃xφ (x)). It follows
that {φ (M) : φ (x) ∈ p} is a filter, so extends to some ultrafilter U on P (M). Then
the global type qU is a coheir of p.

(2) It is enough to show that the following set of formulas is consistent
s (x) := p (x) ∪ {φ (x, c) : c ∈M, φ (x, y) ∈ L (M) , φ (x,m) ∈ p for all m ∈M} .
As then any complete type r (x) ∈ Sx (M) with r ⊇ s is an heir of p (indeed, the

first condition guarantees that r extends p, and the second condition implies that
for any φ (x, c) ∈ r there has to be some c′ ∈M with φ (x, c′) ∈ r|M ).

Assume it is not consistent, then by compactness there are some formulas φ (x, c) ∈
p and φi (x, ci) , i < n from s (x) such that their conjunction is inconsistent, i.e.
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|= φ (x, c) →
∨
i<n ¬φ (x, ci). As φ (x, c) ∈ L (M) and M ≺ M, it follows that

there are some mi, i < n such that M |= φ (x, c) →
∨
i<n ¬φ (x,mi). But by the

definition of s (x) we have φ (x,mi) ∈ p for all i < n, as well as φ (x, c) ∈ p — thus
their conjunction is consistent, a contradiction. �

Proposition 3.23. Let p ∈ Sx (M) be a definable type. Then it has a unique global
heir q ⊇ p, which is in fact definable over M .

Proof. First we show that p has a global M -definable extension. As p (x) is defin-
able, it follows that for every φ (x, y) ∈ L there is some dφ (y) ∈ L (M) such that
φ (x, a) ∈ p ⇐⇒ |= dφ (a), for all a ∈M . Consider the following set of formulas

q (x) := {φ (x, a) : φ (x, y) ∈ L, a ∈My, |= dφ (a)} .

We claim that it is consistent. Indeed, by compactness it is enough to show that
for any n ∈ ω and any φi (x, yi) ∈ L,

|= ∀y0 . . . yn−1∃x (φi (x, yi)↔ dφi (yi))

holds. But as dφi (y) ∈ L (M) and M ≺M, this is equivalent to

M |= ∀y0 . . . yn−1∃x (φi (x, yi)↔ dφi (yi))

Recalling that {dφi (yi)} is in fact a definition schema for the type p, which is
consistent, we see that this holds. Now it is easy to see that in fact q (x) is a
complete type extending p (x).

Assume that q, r are two global types extending p which are both definable over
M . This implies that for their corresponding defining schemas, (dqφ (y))φ(x,y)∈L
and (drφ (y))φ(x,y)∈L we must have dqφ (M) = drφ (M). But again, as M ≺ M,
this implies that dqφ (M) = drφ (M), and so q = r.

By Exercise 3.19, q (x) is an heir of p (x). Now if q′ 6= q is another global type
extending p, then for some φ (x, b) ∈ q′ we have ¬φ (x, b) ∈ q, so 6|= dφ (b), and so
(φ (x, b) ∧ ¬dφ (b)) ∈ q′. But as there can be no m ∈M with |= φ (x,m)∧¬dφ (m),
and as φ (x, y) ∧ ¬φ (y) ∈ L (M), it follows that q′ is not an heir of p. �

Proposition 3.24. Let p ∈ Sx (M) be a global A-invariant type.
(1) If p is definable, then in fact it is definable over A.
(2) If p is finitely satisfiable in some small set, then in fact it is finitely satis-

fiable in any model M ⊇ A.

Proof. (1) As p is definable, for any formula φ (x, y) ∈ L there is some dφ (y) ∈
L (M) such that for any b ∈ M we have φ (x, b) ∈ p ⇐⇒ b ∈ dφ (M). As p is
A-invariant, the definable set dφ (M) is also (setwise) Aut (M /A)-invariant. But
then the set dφ (M) is in fact A-definable by Lemma 1.12, which implies that p is
definable over A.

(2) Let’s say p is finitely satisfiable in some small model N . Let M be an
arbitrary small model containing A. Let φ (x, b) ∈ p be arbitrary. Consider the
type tp (N/M), so it is a type in |N |-many variables. By Proposition 3.22 this has
a global coheir r (x̄), let N1 |= r|Mb. Then by invariance p is finitely satisfiable in
N1, in particular φ (N1, b) 6= ∅. But as the type tp (N1/Mb) is finitely satisfiable in
M , it follows that φ (M, b) 6= ∅. �

***
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3.4. Tensor product of invariant types and Morley sequences.

Definition 3.25. Let p ∈ Sx (M) , q ∈ Sy (M) be two global, A-invariant types.
Then we define their tensor product p⊗ q ∈ Sxy (M) as follows:

given a formula φ (x, y) ∈ L (B), A ⊆ B ⊆ M, we set φ (x, y) ∈ p ⊗ q ⇐⇒
φ (x, b) ∈ p for some (equivalently, any, by invariance of p) b ∈ My such that
b |= q|B .

Remark 3.26. (1) Note that p⊗ q is indeed a complete type, as

p⊗ q =
⋃

A⊆B⊂smallM
{tp (ab/B) : a |= p|bB , b |= q|B} .

(2) If both p, q are A-invariant, then p⊗ q is also A-invariant (Exercise).
(3) The operation ⊗ is associative, i.e. p ⊗ (q ⊗ r) = (p⊗ q) ⊗ r. The reason

is that for any small set B, both products restricted to B are equal to
tp (abc/B) for c |= r, b |= q|Bc, a |= p|Bbc.

(4) However, ⊗ need not be commutative. Let T be DLO, and let p = q
be the type at +∞, it is ∅-invariant. Then p (x) ⊗ q (y) ` x > y, while
q (y)⊗ p (x) ` x < y. (Check however that any two distinct types in DLO
commute).

(5) In fact, in the definition of the tensor product, we have only used that p is
invariant.

Definition 3.27. Let p ∈ Sx (M) be a global A-invariant type. Then for any
n ∈ ω we define by induction p(1) (x0) := p (x0) and p(n+1) (x0, . . . , xn) := p (xn)⊗
p(n) (x0, . . . , xn−1). We also let p(ω) (x0, x1, . . .) :=

⋃
n∈ω p

(n) (x0, . . . , xn−1). For
any set B ⊇ A, a sequence (ai : i ∈ ω) |= p(ω)|B is called a Morley sequence of p
over B (indexed by ω).

Remark 3.28. (1) We can define p(I) for an arbitrary order type I in a natural
way.

(2) Note that for any (ai : i < ω) , (bi : i < ω) |= p(ω)|B we have that (ai : i < ω) ≡B
(bi : i < ω). In particular, any Morley sequence of p overB isB-indiscernible,
by the associativity of ⊗.

The following characterization of dividing will be very useful.

Lemma 3.29. The following are equivalent.
(1) tp (a/Ab) does not divide over A.
(2) For every infinite A-indiscernible sequence I such that b ∈ I, there is some

a′ ≡Ab a such that I is Aa′-indiscernible.
(3) For every infinite A-indiscernible sequence I such that b ∈ I, there is some

J ≡Ab I such that J is Aa-indiscernible.

Proof. The equivalence of (2) and (3) follows by taking an A-automorphism.
(3) implies (1) is clear since (3) cannot hold for any sequence I witnessing di-

viding, i.e. such that I = (bi) with b0 = b, |= φ (a, b0) and {φ (x, bi) : i ∈ ω}
inconsistent.

We prove (1) implies (2). Without loss of generality A = ∅, I = (bi : i ∈ ω)
and b0 = b. Let p (x, b) = tp (a/b) and let Γ (x, (xi : i < ω)) be a set of formu-
las expressing that (xi : i ∈ ω) is indiscernible over x. It is enough to show that
p (x, b0) ∪ Γ (x, (bi : i ∈ ω)) is consistent, as then any a′ realizing it satisfies the
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requirement. By (1) and compactness, the partial type q (x) :=
⋃
i∈ω p (x, bi) is

consistent. Let c |= q (x), and let Γ0 be an arbitrary finite subset of Γ, enough to
show that Γ0 is consistent. By Ramsey’s theorem there is an order-preserving func-
tion f : ω → ω such that |= Γ0

(
c,
(
bf(i) : i ∈ ω

))
. By indiscernibility, (bi : i ∈ ω) ≡(

bf(i) : i ∈ ω
)
, and so by taking an automorphism we can find some c′ such that

c′ (bi : i ∈ ω) ≡ c
(
bf(i) : i ∈ ω

)
. Then c′ |= q (x)∪Γ0 (x, (bi : i ∈ ω)), as wanted. �

Corollary 3.30. If tp (a/B) does not divide over A ⊆ B and tp (b/Ba) does not
divide over Aa, then tp (ab/B) does not divide over A.

Proof. Using the equivalence in Lemma 3.29. Let I be an arbitrary A-indiscernible
sequence starting with B. Then by the first assumption we find I ′ ≡B I such that
I ′ is aA-indiscernible. By the second assumption, we find I ′′ ≡Ba I ′ such that I ′′
is abB-indiscernible. As in particular I ′′ ≡B I, we conclude. �

Corollary 3.31. If φ (x, a) k-divides over A and tp (b/Aa) does not divide over A,
then φ (x, a) k-divides over Ab.

Proof. Let I = (ai :∈ ω) be an infinite A-indiscernible sequence such that a0 = a
and {φ (x, ai) : i ∈ ω} is k-inconsistent. By assumption and Lemma 3.29 there is
some J ≡Aa I which is Ab-indiscernible. Then J witnesses that φ (x, a) k−divides
over Ab. �

***

Proposition 3.32. Let p ∈ Sx (M) be a global type, and let M be a small model.
TFAE:

(1) If p is definable over A, then p does not divide over A.
(2) If T is stable and p does not divide over M , then p is definable over M .

Proof. We already know (1), and we prove (2).
Assume that T is stable and that p does not divide over M . We will show that

p is an heir of p|M , which is enough (as p|M is a definable type by stability and
Theorem 2.23, which using Proposition 3.23 implies that p is definable overM). So
let φ (x, y) ∈ L (M) be given, and assume that φ (x, b) ∈ p. We want to show that
φ (x, b′) ∈ p for some b′ ∈M . Let I = (bi : i ∈ ω) be a Morley sequence of a global
coheir extension of tp (b/M) over M starting with b0 = b (exists by Proposition
3.22). Let a |= p|Mb. Since tp (a/Mb) does not divide over M , by Lemma 3.29
we may assume that I is indiscernible over Ma. So we have |= φ (a, bi) for all
i ∈ ω. Again by stability and Theorem 2.23, the type q = tp (a/MI) is definable.
Let n ∈ ω be such that all of the parameters of dφ (y) are in M ∪ {b0, . . . , bn−1} .
Since tp (bn/b<nM) is a coheir of tp (b/M) and |= dφ (bn) (as |= φ (a, bn)), it follows
that there is some b′ ∈ M with |= dqφ (b′). This implies that |= φ (a, b′), and so
φ (x, b′) ∈ tp (a/M) = p|M , as wanted. �

3.5. Forking and dividing in simple theories. Now we consider the question
of the equality of forking and dividing (recall that in general they can be different,
Example 3.9). We work in the larger context of simple theories.

Definition 3.33. A theory T is simple if every type p ∈ Sx (A) does not divide
over some subset A0 ⊆ A of size |A| ≤ |T |.
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Simple theories were introduced by Shelah [She80] and were extensively studied
in the 90’s by numerous authors starting with the work of Hrushovski in the finite
rank case and Kim and Pillay in general. See e.g. [Har00, Cas11b, Cas07, Wag00].

Exercise 3.34. (1) Show that if T is stable then it is simple, and that if T is
simple then it is NSOP.

(2) Show that the theory of a random graph is simple.

Example 3.35. (1) Let F be an arbitrary ultraproduct of finite fields. Then
the theory Th (F ) is simple (see [Cha97]).

(2) Any completion of the theory of an algebraically closed field with a generic
automorphism (ACFA) is simple (see [Cha00]).

Note that, according to Definition 3.7, it is possible that a formula φ (x, a) divides
over A, witnessed by a certain A-indiscernible sequence I = (ai) (i.e. a0 = a and
{φ (x, ai)} is inconsistent), yet there is some other A-indiscernible sequence J = (bi)
such that b0 = a but {φ (x, bi)} is consistent. However, we can isolate a class of
indiscernible sequences which always witness that a formula divides.

Lemma 3.36. [Kim’s lemma for simple theories] Let T be simple. Assume that
φ (x, a) divides over A and let (ai : i ∈ ω) be an A-indiscernible sequence such that
moreover tp (ai/a<iA) does not divide over A, for all i (such a sequence is also
called a Morley sequence in the type tp (a/A)). Then {φ (x, ai) : i ∈ ω} is inconsis-
tent.

Proof. Without loss of generality A = ∅. Assume that φ (x, a) divides over A, but
for some Morley sequence (ai) in tp (a/∅) we have {φ (x, ai)} is consistent. Let

X be the linear order
(
|T |+

)∗
, i.e. the reverse order for |T |+. We may assume

that in fact our sequence is (ai : i ∈ X) (by compactness, as dividing is Aut (M)-
invariant). Let c |= {φ (x, ai) : i ∈ X}. By simplicity there is some Y ⊆ X with
|Y | ≤ |T | such that tp (c/ (ai : i ∈ X)) does not fork over (ai : i ∈ Y ). By our
choice of the order X there is some i∗ ∈ X with i∗ < Y . Then tp ((ai : i ∈ Y ) /ai∗)
does not divide over ∅ (by assumption and applying Corollary 3.30 inductively).
Since φ (x, ai∗) divides over ∅, it divides over (ai : i ∈ Y ) by Corollary 3.31. But
φ (x, ai∗) ∈ tp (c/ (ai : i ∈ X)), so tp (c/ (ai : i ∈ X)) divides over (ai : i ∈ Y ) — a
contradiction. �

***
But do we actually always have such Morley sequences?

Definition 3.37. We say that A is an extension base if every type over A does not
fork over A. (Note that this is always true for non-dividing).

Proposition 3.38. Let A be an extension base and p ∈ Sx (A) be given. Then
there is a Morley sequence in p.

Proof. Since p doesn’t fork over A and the set of all L (M)-formulas forking over
A is an ideal, there is some global q extending p and non-forking over A. Then for
any small cardinal κ we can find a sequence ā = (ai : i < κ) in M such that ai |=
q|Aa<i . Note that ā need not be A-indiscernible. However, taking κ large enough
compared to |A| and |ai| and applying Fact 2.33, we find some A-indiscernible
sequence (a′i : i ∈ ω) which is A-indiscernible and such that for any n ∈ ω there are
some i0 < . . . < in−1 such that

(
a′j : j < n

)
≡A

(
aij : j < n

)
. But by construction
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of ā and as dividing over A is Aut (A)-invariant, it follows that tp
(
a′i/a

′
<iA

)
does

not divide over A for all i ∈ ω, so (āi) is a Morley sequence in p. �

Example 3.39. (1) If T is arbitrary and M |= T then M is an extension base
(Exercise).

(2) If T is an arbitrary theory with Skolem functions, and A is an arbitrary set,
thenA is an extension base (Exercise). In particular, if T = Th (Qp,×,+, 0, 1)
then any set A is an extension base.

(3) If T is o-minimal and A is arbitrary, then A is an extension base.
(4) If T = ACVF, i.e. the theory of algebraically closed valued fields. Then

any set A is an extension base.

Lemma 3.40. If φ (x, b) k-divides over A and A ⊆ B then there is some B′ ≡A B
such that φ (x, b) k-divides over B′.

Proof. Let (bi) be an A-indiscernible witnessing that φ (x, b) k-divides over A. Ex-
tract a B-indiscernible (b′i) based on (bi). Note that b′0 ≡A b0, so let σ ∈ Aut (M /A)
be such that σ (b′0) = b0. Then (σ (b′i) : i ∈ ω) shows that φ (x, b) k-divides over
B′ := σ (B). �

Theorem 3.41. Let T be simple, and let A be an arbitrary set. Then A is an
extension base.

Proof. Suppose p ∈ Sx (A) forks over A, i.e. p (x) `
∨
l<d φl (x, b) such that each

of φl (x, b) k-divides over A. Let ∆ = {φl (x, y) : l < d}. We show by induction on
n ∈ ω that for any n ∈ ω there is a sequence (ψi (x, ai) : i < n) such that:

(1) ψi (x, y) ∈ ∆,
(2) ψi (x, ai) k-divides over A ∪ {aj : j < i},
(3) p (x) ∪ {ψi (x, ai) : i < n} is consistent.

Assume we have found {ψi (x, ai) : i < n}. There is some b′ ≡A b such that
{ψi (x, ai) : i < n} satisfies (1)–(3) with Ab′ instead of A (follows by a repeated
application of Lemma 3.31). But now one of the formulas φl (x, b′), say φ0 (x, b′),
has to be consistent with p (x) ∪ {ψi (x, ai) : i < n}. So the sequence

φl′ (x, b
′) , ψ0 (x, a0) , . . . , ψn (x, an−1)

satisfies (1)–(3) for n+ 1.
But now, by pigeon-hole, there is in fact some φ (x, y) ∈ ∆ such that for any

n ∈ ω we can find some (ai : i < n) such that {φ (x, ai) : i < n} is consistent and
φ (x, ai) k-divides over a<i. By compactness (and it’s crucial here that we have
k-dividing everywhere for a fixed k) we can find a sequence

(
ai : i < |T |+

)
such

that still
{
φ (x, ai) : i < |T |+

}
is consistent and φ (x, ai) k-divides over a<i for all

i ∈ κ. Let B = {ai : i < κ} and q ∈ S (B) be any completion of {φ (x, ai)}. Then
q divides over any subset of B of size |T | , contradicting simplicity. �

***

Theorem 3.42. Let T be a simple theory.
(1) φ (x, a) forks over B if and only if φ (x, a) divides over B.
(2) Forking is symmetric: tp (a/bC) does not fork over C if and only if tp (b/aC)

does not fork over C.
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Proof. (1) Assume φ (x, a) forks over B, i.e. φ (x, a) `
∨
i<k φi (x, ai) for some

φ (x, ai) dividing overB. By Theorem 3.41 and Proposition 3.38, let (aja0,j . . . ak−1,j : j ∈ ω)
be a Morley sequence in the type tp (aa0 . . . ak−1/A). Note that in particular
each of (ai,j : j ∈ ω) is a Morley sequence in tp (ai/A), and so by Kim’s lemma
{φi (x, ai,j) : j ∈ ω} is inconsistent for each i < k. On the other hand, if φ (x, a)
does not divide over A, then {φ (x, aj) : j ∈ ω} is consistent. But since φ (x, aj) `∨
i<k φi (x, ai,j) for all j ∈ ω by indiscernibility, it follows by pigeonhole that there

is some i < k and some infinite set I ⊆ ω such that {φi (x, ai,j) : j ∈ I} is consis-
tent. Again by indiscernibility this implies that {φi (x, ai,j) : j ∈ ω} is consistent,
a contradiction.

(2) Assume that tp (a/bC) does not fork over C. By (1) it is enough to show
tp (b/aC) does not divide over C. As tp (a/bC) does not fork over C, by the proof
of Lemma 3.38 we can find a sequence (ai : i ∈ ω) indiscernible over bC and such
that a0 = a and tp (ai/a<ibC) does not divide over C. Let p (x, y) = tp (ab/C).
Then

⋃
i∈ω p (ai, y) is consistent as it is realized by b. But then by Lemma 3.36

p (a, y) does not divide over C. �

Remark 3.43. As with the other properties arising from Shelah’s classification, there
is a characterization of simplicity in terms of the combinatorics of the definable
families of sets. Let us say that a formula φ (x, y) has the tree property, or TP, if
there is a tree of parameters (aη : η ∈ ω<ω) and k ∈ ω such that:

(1) {φ (x, aηi) : i ∈ ω} is k-inconsistent for every η ∈ ω<ω,
(2) {φ (x, aη�i) : i ∈ ω} is consistent for everyη ∈ ωω.

Then T is simple if and only if no formula has the tree property.
There are two extreme opposite ways in which a tree property can occur. Namely,

the requirements (1) and (2) above do not specify what happens in general for aη, aν
with η and ν that are incomparable but are not siblings. Then the tree property
of the first kind, or TP1, essentially requires that all such pairs are inconsistent,
while the tree property of the second kind, or TP2, requires that all such pairs are
consistent. This gives rise to two classes of theories NTP1 (no formula has TP1)
and NTP2 (no formula has TP2), and a result of Shelah shows that NTP1 ∩NTP2

is exactly the class of simple theories.
Theory of forking over extension bases can be developed in a larger class of NTP2

theories which contains both simple and NIP theories. See [CK12, BYC14, Che14] +
my notes on forking in NTP2 theories4. The case of NTP1 theories is less understood
so far (see e.g. [CR15]).

3.6. Properties of forking in stable theories.

Theorem 3.44. Let T be stable, M a small model, p ∈ S (M) and A ⊇ M given.
Then p has a unique extension q ∈ S (A) with the following equivalent properties:

(1) q does not divide over M ,
(2) q does not fork over M ,
(3) q is definable over M ,
(4) q is an heir of p,
(5) q is a coheir of p.

Proof. As every stable theory is simple, forking equals dividing over arbitrary sets
by Theorem 3.42.

4http://www.math.ucla.edu/~chernikov/teaching/ForkingLyon2012/ForkingLectures.pdf

http://www.math.ucla.edu/~chernikov/teaching/ForkingLyon2012/ForkingLectures.pdf
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If q does not fork over M , then it extends to a global type non-forking over M ,
which by Proposition 3.32 is definable over M , and so q itself is definable over M .
Since p is definable over M , q is the unique heir of p by 3.23.

For the equivalence with (5), combine the equivalence of (2) and (4) with the
symmetry of forking given by Theorem 3.42 (recalling that tp (a/Mb) is a coheir of
tp (a/M) if and only if tp (b/Ma) is an heir of tp (b/M)). �

***
Now we would like to understand the situation over an arbitrary base set rather

than over a model.

Definition 3.45. Let p be a global type. By a canonical base of p we mean a set of
parameters A such that for any f ∈ Aut (M), f (p) = p ⇐⇒ f (A) = A (setwise).

Note that if A and B are canonical bases for p, then by 1.15 we have dcl (A) =
dcl (B). Thus if p has a canonical base, then there is a unique definably closed one,
and we will denote it by Cb (p).

Proposition 3.46. Assume that T has elimination of imaginaries, and let p (x)
be a definable global type. Then p has a canonical base, and in fact Cb (p) is the
smallest definably closed set over which p is definable.

Proof. As p is definable, for each formula φ (x, y) ∈ L we have a definition dφ (y) ∈
L (M). Let cφ in M be a code for the definable set dφ (M), exists by the elimination
of imaginaries. Let A = {cφ : φ (x, y) ∈ L}, then for any f ∈ Aut (M) we have
f (p) = p ⇐⇒ f (A) = A (pointwise). The second claim follows by Proposition
3.24(1) and the fact that a code a of a B-definable set is in dcl (B), for any a,B. �

Remark 3.47. One can make sense of the notion of a canonical base in an arbitrary
simple theory, however working with imaginaries is not enough and one has to
work with hyperimaginaries — these are the classes of type-definable equivalence
relations. See [Cas11b] for the details.

Definition 3.48. Let p ∈ S (B) be a definable type, say defined by a definition
schema (dφ (y) : φ (x, y) ∈ L) with dφ (y) ∈ L (B). We say that this definition is
good if it actually is a definition for some global type (or, equivalently, it is a
definition for some type over some model M containing B).

Exercise 3.49. Find a theory T and a type p over ∅ such that p is definable, but
no definition of p defines a global type.

Proposition 3.50. Let T be stable. A type p (x) ∈ S (B) does not fork over A ⊆ B
if and only if p has a good definition over acleq (A).

Proof. If p does not fork over A, then it has a global extension p′ ∈ S (M) non-
forking over A. Let M be an arbitrary model containing A. Then p′ in particular
does not fork over M , and by 3.44 p′ is definable over M . By Proposition 3.46,
Cb (p′) ⊆ M eq. By 1.17 it follows that Cb (p) ⊆

⋂
M⊇AM

eq = acleq (A), which
implies that p is acleq (A)-definable.

Conversely, if p has a good definition over acleq (A), then some global extension
p′ of p is definable over acleq (A), which implies by Proposition 3.32 that p′ does
not fork/divide over acleq (A), and therefore does not fork over A. �
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Lemma 3.51. Let T be stable, and let p (x) and q (y) be global types. Then for
any formula φ (x, y) ∈ L (M) we have dpφ (y) ∈ q (y) ⇐⇒ dqφ (x) ∈ p (x) for any
definitions such that dpφ (b) ⇐⇒ φ (x, b) ∈ p (x) and dqφ (a) ⇐⇒ φ (a, y) ∈ q (y)
for all a, b in M.

Proof. Let A be a small set such that p, q, φ (x, y) are all definable over A. We define
a sequence (ai, bi : i ∈ ω) recursively. Given (ai, bi : i < n), let bn |= q|Aa0...an−1

and
let an |= p|Ab0...bn . Then for i < j we have

|= φ (ai, bj) ⇐⇒ φ (ai, y) ∈ q ⇐⇒ |= dqφ (ai) ⇐⇒ dqφ (x) ∈ p,

and for j ≤ i we have

|= φ (ai, bj) ⇐⇒ φ (x, bj) ∈ p ⇐⇒ |= dpφ (bj) ⇐⇒ dpφ (y) ∈ q.

Since φ (x, y) does not have the order property, the claim follows. �

Definition 3.52. A type p is stationary if it has a unique global non-forking
extension.

Corollary 3.53. Let T be stable. Then any type over A = acleq (A) is stationary.

Proof. Let A = acleq (A), and let p′, p′′ be two global non-forking extensions of
p ∈ S (A). Let φ (x, b) ∈ L (M) be an arbitrary formula, and let q be a global
non-forking extension of tp (b/A). By Proposition 3.50, p′, p′′ and q are definable
over A. Applying Lemma 3.51 we have:

φ (x, b) ∈ p′ ⇐⇒ |= dp′φ (b) ⇐⇒ dp′φ (y) ∈ q ⇐⇒ dqφ (x) ∈ p′ ⇐⇒ dqφ (x) ∈ p ⇐⇒

dqφ (x) ∈ p′′ ⇐⇒ dp′′φ (y) ∈ q ⇐⇒ |= dp′′φ (b) ⇐⇒ φ (x, b) ∈ p′′.
�

Corollary 3.54. In a stable theory, all types over models are stationary.

For the remainder of this section, let us assume that T eliminates imaginaries,
that is we are working in T eq.

Definition 3.55. In an arbitrary theory, we define a ternary notion of independence
|̂ on small subsets of the monster:
a |̂

C
b ⇐⇒ tp (a/bC) does not fork over C.

Proposition 3.56. Properties of |̂ in arbitrary theories (“non-commutative fork-
ing calculus”):

(1) Invariance under automorphisms: a |̂
C
b if and only if σ (a) |̂

σ(C)
σ (b),

for any σ ∈ Aut (M).
(2) Finite character: a 6 |̂

C
b implies that a′ 6 |̂

C
b′ for some finite a′ ⊆ a, b′ ⊆ b.

(3) Monotonicity: aa′ |̂
C
bb′ implies a |̂

C
b.

(4) Base monotonicity: a |̂
C
bb′ implies a |̂

Cb′
b.

(5) Left transitivity: a |̂
C
b and a′ |̂

aC
b implies aa′ |̂

C
b.

(6) Right extension: if a |̂
C
b, then for any d there is d′ ≡bC d such that

a |̂
C
bd′.
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Proof. (1), (2), (3) are clear from the definition of forking.
(6) As non-forking types can be extended, there is some |Cb|+-saturated model

M ⊇ Cb such that a |̂
C
M . But then for any d we can realize tp (d/bC) by some

d′ ∈M by saturation, and a |̂
C
bd′ by (3).

(5) First we know that it holds for |̂ d, non-dividing, by Corollary 3.30. Now for
forking. Let M1 ⊇ Cb be saturated enough with a |̂

C
M1, and let M2 ≡abC M1

such that a′ |̂
aC
M2 — exists by (6). It then follows that a |̂

C
M2 by invariance,

and together with a′ |̂
aC
M2 it implies aa′ |̂ d

C
M2. As M2 is saturated enough it

implies that aa′ |̂
C
M2 hence aa′ |̂

C
b by (3). �

We will call any relation |̂ ′ satisfying these axioms a preindependence relation.

Proposition 3.57. Let T be simple. Then in addition |̂ satisfies
(1) Local character: For any a and B, there is some C ⊆ B with |C| ≤ |T |

such that a |̂
C
B.

(2) Symmetry: a |̂
C
b ⇐⇒ b |̂

C
a.

This is proved in Corollary 3.42. In fact, each of these properties of forking
characterizes simplicity of the theory (see [Kim01]). Note that by symmetry we
have right transitivity and left extension (i.e. Proposition 3.56(5) and (6) with
the roles of the left and right sides interchanged). A symmetric preindependence
relation is called an independence relation.

Finally, we specialize to the stable case.

Lemma 3.58. Let p′, p′′ ∈ S (acl (A)) be two extensions of p ∈ S (A). Then p′ and
p′′ are conjugate over A.

Theorem 3.59. Assume that T is stable. Then in addition forking satisfies the
following.

(1) (Conjugacy) Let A be a small set of parameters. Then all global non-forking
extensions of p ∈ S (A) are conjugate over A.

(2) (Boundedness) Any p ∈ S (A) has at most 2|T | global non-forking exten-
sions.

Proof. (1) Let q1, q2 be two non-forking extensions of pto M. Note that acl (A)
is preserved by A-automorphisms, and that by homogeneity of M there is some
σ ∈ Aut (M /A) such that σ|acl(A) takes q1|acl(A) to q2|acl(A). But since qi|acl(A) is
stationary for i = 1, 2 by Corollary 3.53, and an A-conjugate of a type non-forking
over A is still non-forking over A, it follows that σ (q1) = q2.

(2) Let A0 ⊆ A with |A0| ≤ |T | be such that p does not fork over A0 (exists as T
is simple in particular). Then by (1) p has at most as many non-forking extensions
as p|A0

has extensions to acl (A0), of which there are ≤ 2|acl(A0)| ≤ 2|T |. �

Corollary 3.60. Let T be stable and p ∈ S (A) be given. Then p is stationary if
and only if it has a good definition over A.

Proof. Let p be stationary, and let q be the global non-forking extension of p. So
q is definable (apriori over some set larger than A). Since p is stationary and all
of its non-forking extensions are conjugate over A by Theorem 3.59, it follows that
q is actually A-invariant, and so definable over A by Lemma 3.24. It’s definition
gives a good definition for p.
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Conversely, assume that p has a good definition over A. Then p has a global
extension p′ definable over A, so in particular p′ is a non-forking extension. But
again, since all global non-forking extensions of p are conjugates of p′, and p′ is
fixed by automorphism over A, it is the unique non-forking extension of p. �

Definition 3.61. Let p ∈ S (A) be a stationary type.
(1) We define the canonical base of p, Cb (p), as Cb (q) for q the unique global

non-forking extension of p.
(2) We say that p is based on B if p is parallel to some stationary type q defined

over B, i.e. if p and q have the same global non-forking extension.

Lemma 3.62. A stationary type p ∈ S (A) is based on B if and only if Cb (p) ⊆
dcl (B). So p does not fork over B ⊆ A if and only if Cb (p) ⊆ acl (B).

Proof. Let r be the global non-forking extension of p and let q = r|B . Assume that
p is based on B. Then q is stationary and r is the unique non-forking extension of
q. By Corollary 3.60 q has a good definition over B, which also defines r. So ris
definable over B, which implies Cb (p) ⊆ dcl (B).

Conversely, if r is definable over B, we know that r does not fork over B, and
that q is stationary by Corollary 3.60.

For the last statement observe that p does not fork over B if and only if p is
based on acl (B). �

For A ⊆ B, let N (B/A) ⊆ S (B) be the set of all types over B that do not
fork over A. Note that N (B/A) is a closed subset of S (B) (as for every type that
forks, there is some formula that forks). Let π : S (B) → S (A) be the restriction
map p 7→ p|A, obviously π is continuous, and so closed (as a continuous map from
a compact space to a Hausdorff space).

Theorem 3.63. (Open mapping theorem) The restriction map π : N (B/A) →
S (A) is open.

Proof. First note that we may replace B by M. Now if π (q) = π (q′) for some
q, q′ ∈ N (M /A), then q and q′ are A-conjugate. So if O is an open subset of
N (M /A) then O′ = π−1 (π (O)) =

⋃
{α (O) : α ∈ Aut (M /A)} is also open. Thus

S (A) \ π (O) = π (N (M /A) \O′) is closed as it is the image of a closed set. �

Exercise 3.64. (Herzog-Rothmaler) Show that a theory T is stable if and only if
for any M |= T , the map π : S (M)→M,p 7→ p|M admits a continuous section.

***
Finally for this section, we demonstrate that in fact the existence of an indepen-

dence relation |̂ ′ on the monster model of T satisfying some natural axioms implies
that T is stable, and that the relation |̂ ′ is precisely the non-forking independence
|̂ .

Theorem 3.65. Let T be a complete theory and n > 0. Then T is stable if and
only if there is a special class of extensions of n-types, denoted by p @ q, with the
following properties.

(1) (Invariance) @ is invariant under Aut (M).
(2) (Local character) There is a small cardinal κ such that for any q ∈ Sn (C)

there is some C0 ⊆ C of size at most κ and such that q|C0
@ q.
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(3) (Weak boundedness) For all A and p ∈ Sn (A) there is a small cardinal µ
such that p has at most µ special extensions p @ q ∈ Sn (M).

Moreover, if @ satisfies in addition the following properties, then @ co-
incides with non-forking.

(4) (Existence) For all p ∈ Sn (A) and A ⊆ B there is some q ∈ Sn (B) such
that p @ q.

(5) (Transitivity) p @ q @ r implies p @ r.
(6) (Weak monotonicity) If p @ r and p ⊆ q ⊆ r then p @ q.

Proof. If T is stable, then non-forking extensions satisfy all of the listed properties
by Proposition 3.56, Proposition 3.57 and Theorem 3.59.

Assume, conversely, that (1), (2) and (3) hold. Note that there are at most
2κ+|T |-types over ∅ in κ-many variables. For each such r ∈ Sκ (∅), let Ar |=
r. Note that |Sn (Ar)| ≤ 2κ. Now, by (3) for each type p ∈ Sn (Ar), there is
some µr,p such that p has at most µr,p global @-special extensions. Let µ′ =
{µr,p : r ∈ Sκ (∅) , p ∈ Sn (Ar)} — still a small cardinal. By (1) it follows that for
any set A of size ≤ κ, for any p ∈ Sn (A) there are at most µ′ global special
extensions of p.

Let A be an arbitrary set of parameters. As by (2) every type over A is a special
extension of it’s restriction to some subset of A of size ≤ κ, it follows that the
number of n-types over A is bounded by the (number of subsets A0 of A of size at
most κ)×(the number of types p over A0)×(the number of special extensions of p
to A). So we have

|Sn (A)| ≤ |A|κ × 2max{κ,|T |} × µ′,

which implies that |Sn (A)| = |A| for all A of size λ with λ = λκ and λ ≥
max

{
2|T |, µ′

}
. This implies stability as |S1 (A)| ≤ |Sn (A)| and it is enough to

have such a bound for 1-types by 2.24
Assume now that (1)–(6) hold, and let p ∈ Sn (A) and q ∈ Sn (B) with p ⊆ q be

given.
Assume first that p @ q. Let µ be the cardinal given by (3) applied to p.
Claim. For any r ∈ Sn (M), if r forks over A then r has more than µ conjugates

over A.
Proof of the claim. If r forks over A, then some formula φ (x, b) ∈ r divides over

A. Then there is some k ∈ ω such that by compactness for any small cardinal λ
we can find an A-indiscernible sequence (bi : i ∈ λ) such that {φ (x, bi) : i ∈ λ} is
k-inconsistent. Note that by homogeneity of M we have that φ (x, bi) belongs to
some conjugate of r. If there were less than λ A-conjugates of r, it would belong
to the same conjugate of r for infinitely many i’s, contradicting k-inconsistency.

Now by (4) q has an extension r ∈ Sn (M) with q @ r, and so by (5) we have
p @ r. By (1) we have that p @ r′ holds for any A-conjugate r′ of r. So r has no
more than µ conjugates over A, which implies that r does not fork over A by the
claim, and so in particular q is a non-forking extension of p.

Now assume that q is a non-forking extension of p. Let r ∈ Sn (M) be a non-
forking extension of q, and let r′ ∈ Sn (M) be such that p @ r′, exists by (4). By
the above r′ is a non-forking extension of p. Besides, we already know that T is
stable. Then by Theorem 3.59 r and r′ are conjugate over A. This implies that
p @ r by (1), and so p @ q by (6). �
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Remark 3.66. In a simple unstable theory, one can always find a type with unbound-
edly many global non-forking extensions. However, a version of Theorem 3.65 can
be given to characterize simple theories and forking in simple theories. The key
point is that boundedness (or stationarity) has to be replaced by an amalgamation
statement (the so-called “independence” theorem):

Assume that we are given a type p ∈ S (M), two sets of parameters A,B ⊇ M
with A |̂

M
B and p1 ∈ S (A) , p2 ∈ S (B) two non-forking extensions of p. Then

there is some q ∈ S (M) a global non-forking extension of p and such that qi ⊆ q
for i = 1, 2.

3.7. Forking and ranks in stable theories. We have already considered the
so-called “Shelah’s 2-rank” in Section 2.3. The aim of this section is to demonstrate
that in a stable (or simple) theory, if q is an extension of p that forks, then this is
characterized by a drop of a certain “rank” or “dimension”. This can be described
via certain local and global ranks coming from the Cantor-Bendixson rank on the
associated spaces of types. Recall:

Definition 3.67. Let X be a compact Hausdorff topological space.
(1) For a point p ∈ X, its Cantor-Bendixson rank CB (p) is defined by induction

on an ordinal α:
(a) CB (p) ≥ 0 for all p ∈ X,
(b) CB (p) = α iff p is isolated in the subspace {q ∈ X : CB (q) ≥ α}.

(2) If CB (p) <∞ for all p ∈ X, then {CB (p) : p ∈ X} has the greatest element,
say α, and the set {p ∈ X : CB (p) = α} is finite, say of cardinality n (by
compactness ofX). We then say that α is the CB-rank ifX, or CB (X) = α,
and that n is the CB-multiplicity of X,CB−mult (X) = n.

First we consider local ranks. Let ∆ be a finite collection of formulas of the form
φ (x, y), x fixed and y may vary. We consider S∆ (M), the space of global ∆-types.

Proposition 3.68. Let all formulas in ∆ be stable. Then CB (S∆ (M)) < ω.

Proof. Similarly to the proof of Proposition 2.17: if the rank is infinite, we can
construct a binary tree of formulas (witnessing the the type is not isolated) such
that at each level the formulas corresponding to the two children split their parent
into two disjoin parts; using that ∆ is finite, we may assume that it is the same
formula at each level, which produces too many types for it to be stable. See [Pil96,
Lemma 3.1] for the details. �

***

Remark 3.69. It also follows that if Y is an arbitrary compact subspace of S∆ (M),
then CB (Y ) is finite as well.

Definition 3.70. Let Φ (x) be a set of formulas over a small set of parameters.
By the ∆-rank of Φ (x), or R∆ (Φ (x)), we mean the CB-rank of the subspace
Y = {q ∈ S∆ (M) : q (x) ∪ Φ (x) is consistent}. And by the ∆-multiplicity of Φ (x),
or mult∆ (Φ), we mean the CB-multiplicity of Y .

The following list of properties are more or less immediate from the basic properties
of the CB-rank.

Lemma 3.71. (1) If Ψ (x) ` Φ (x) then R∆ (Ψ) ≤ R∆ (Φ).
(2) R∆ (Φ (x)) = min {R∆ (Φ′ (x)) : Φ′ ⊆ Φ finite}.
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(3) R∆ (φ (x) ∨ ψ (x)) = max {R∆ (φ (x)) , R∆ (ψ (x))}.
(4) If Φ (x) is a set of formulas over a small set A, then there is some p ∈

S∆ (A) such that R∆ (Φ (x) ∪ p (x)) = R∆ (Φ (x)).
(5) If Φ (x) is a set of ∆-formulas, then R∆ (Φ (x)) = max {CB (p) : p ∈ S∆ (M) ,Φ (x) ⊆ p}.
(6) R∆ is Aut (M)-invariant.
(7) If φ (x) is a ∆-formula, then R∆ (Φ) ≥ n + 1 if there is an infinite set
{φi (x) : i < ω} of pairwise contradictory ∆-formulas each implying φ (x)
and such that R∆ (φi) ≥ n for all i.

(8) Let φ (x) be a ∆-formula with R∆ (φ) = n. Then mult∆ (φ) is the maximal
k ∈ ω for which there are pairwise contradictory ∆- formulas φ1, . . . , φk
with φi ` φ and R∆ (φi) = n for all i = 1, . . . , k.

Proposition 3.72. Let A ⊆ B, q (x) ∈ S∆ (B) and p (x) = q|A ∈ S∆ (A). Then q
does not fork over A if and only if R∆ (q) = R∆ (p).

Proof. Suppose q does not fork over A. Let φ (x) ∈ q by such that R∆ (φ) = R∆ (q),
exists by Lemma 3.71(2). By inspecting carefully the proof of the open mapping
theorem, there is some positive Boolean combination ψ (x) of A-conjugates of φ (x)
such that ψ (x) ∈ p. By Lemma 3.71 (1) and (3) we have R∆ (ψ (x)) ≤ R∆ (φ (x)).
Thus R∆ (p) ≤ R∆ (q) by Lemma 3.71(2), and we get the equality by (1).

Conversely, suppose that q forks over A. Let q′ ∈ S∆ (M) be a non-forking
extension of q (i.e. q′ does not fork over B). By the first part of the proof R∆ (q) =
R∆ (q′). Also q′ forks over A, thus q′ (x) has infinitely many conjugates under A-
automorphisms, say {qi : i ∈ ω} (by the claim in the proof of Theorem 3.65). Then
we can find an infinite set S ⊆ ω and formulas φi (x) ∈ qi for i ∈ S such that
{φi : i ∈ S} are pairwise contradictory. It follows, using Lemma 3.71(6) and (7),
that R∆ (q′) < R∆ (p) and thus R∆ (q) < R∆ (p). �

Corollary 3.73. Let A ⊆ B, q (x) ∈ S (B), p (x) = q|A. Then q does not fork
over A if and only if R∆ (p|∆) = R∆ (q|∆) for all finite sets ∆ (x) of L-formulas iff
R∆ (p) = R∆ (q) for all finite sets of formulas.

Remark 3.74. Let p (x) ∈ S∆ (A) be given. Then p is stationary if and only if
mult∆ (p) = 1.

Proof. By Proposition 3.72 and Lemma 3.71(8). �

Remark 3.75. Note that this characterization of forking via the drop of the local
ranks only works in stable theories. A version of it holds in simple theories as well,
however in general, e.g. in NIP, an appropriate rank does not seem to exist.

The global analogue of R∆ is called Morley rank, and historically this was the
first CB-type rank introduced in model theory. This time we consider the space
Sx (M) of complete global types.

Definition 3.76. (1) T is called totally transcendental, or t.t., if for every
variable x, CB (Sx (M)) <∞ (i.e. bounded by some ordinal).

(2) Let Φ (x) be a set of formulas over a small set. Let Y = {p ∈ Sx (M) : Φ ⊆ p},
a closed subspace of Sx (M). By the Morley rank of Φ, RM (Φ), we mean
CB (Y ). If CB (Y ) < ∞, then the Morley degree of Φ, dM (Φ), is defined
to be the CB−mult (Y ).

So, essentially, RM (−) is R∆ (−) where ∆ is the set of all L-formulas. We have
an analogue of Lemma 3.71.
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Lemma 3.77. (1) RM (φ (x)) ≥ α + 1 if and only if there is an infinite set
{φi (x) : i ∈ ω} of pairwise contradictory formulas such that φi (x) ` φ (x)
and RM (φi) ≥ α for all i ∈ ω.

(2) RM (Φ (x)) = max {CB (p) : p ∈ Sx (M) ,Φ ⊆ p}.
(3) RM (Φ (x)) = min {RM (Φ′ (x)) : Φ′ ⊆ Φ finite }. If RM (Φ) < ∞, then

dM (Φ) is the minimum of dM (φ) where φ is a finite conjunction of formulas
in Φ and RM (φ) = RM (Φ).

(4) RM (φ (x)) = 0 iff φ (x) is algebraic.
(5) RM (φ (x) ∨ ψ (x)) = max {RM (φ) ,RM (ψ)}.
(6) For any set Φ (x) of formulas over A, there is a complete type p ∈ Sx (A)

such that RM (Φ) = RM (p).
(7) If RM (φ) = α then dM (φ) is the greatest k ∈ ω such that there are pairwise

contradictory φ1, . . . , φk with φi (x) ` φ (x) and RM (φi) ≥ α.
(8) Suppose p ∈ Sx (A) , q ∈ Sx (B) , A ⊆ B and p (x) ⊆ q (x). Suppose that at

least one of RM (p) ,RM (q) is < ∞. Then q does not fork over A if and
only if RM (p) = RM (q).

Exercise 3.78. Prove this lemma.

***
Finally, we discuss one more global rank.

Definition 3.79. Let T be a stable theory. For a type p, we define SU (p) ≥ α by
recursion on α:

(1) SU (p) ≥ 0 for all types p,
(2) SU (p) ≥ β + 1 if p has a forking extension q with SU (q) ≥ β,
(3) SU (p) ≥ λ for a limit ordinal λ if SU (p) ≥ β for all β < λ,

and the SU-rank SU (p) is the maximal α such that SU (p) ≥ α. If there is no
maximum, we set SU (p) =∞.

Exercise 3.80. (“Diamond lemma”) Let T be simple and p ∈ Sx (A). Let q be
a non-forking extension of p and r any extension of p (all types over small sets).
Then there is an A-conjugate r′ of r and a non-forking extension s of r′ such that
s also extends q.

Lemma 3.81. Let T be simple. Let p have ordinal-valued SU-rank and let q be an
extension of p. Then q is a non-forking extension of p if and only if q has the same
SU-rank as p. If p has SU-rank ∞, then so does any non-forking extension of it.

Proof. Clearly the SU-rank of an extension cannot increase. So it is enough to show
for all α that SU (p) ≥ α implies SU (q) ≥ α whenever q is a non-forking extension
of p ∈ S (A) . The case of a limit α is obvious, so assume α = β + 1. Then p has a
forking extension r with SU (r) ≥ β.

By the “Diamond lemma” there is an A-conjugate r′ of r and s a non-forking
extension of r, such that s also extends q. By the inductive assumption SU (s) ≥ β,
but s is a forking extension of q, so SU (q) ≥ β. �

Remark 3.82. Since every type does not fork over some set of size ≤ |T |, there are
at most 2|T | different SU-ranks. Since they form an initial segment of the ordinals,
it follows that all ordinal ranks are ≤

(
2|T |

)+
.

Exercise 3.83. Show that actually they are smaller than |T |+.
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Definition 3.84. A theory T is supersimple if every type does not fork over some
finite subset of its domain. A stable, supersimple theory is called superstable.

Exercise 3.85. Any totally transcendental theory is superstable.

Lemma 3.86. T is supersimple if and only if every type has SU-rank <∞.

Proof. If SU (p) = ∞, there is an infinite sequence p = p0 ⊆ p1 ⊆ . . . of forking
extensions of SU-rank ∞. Then the union

⋃
i∈ω pi forks over every finite subset of

its domain.
If p ∈ S (A) forks over every finite subset of A, we can choose an infinite sequence

A0 ⊆ A1 ⊆ . . . of finite subsets of A such that p|Ai+1
forks over Ai. This shows

that p|∅ has SU-rank ∞. �

We give the proof of the stable cases in Fact 2.5.

Theorem 3.87. Let T be a countable complete theory. Then one of the following
cases occurs.

(1) T is totally transcendental. Then fT (κ) = κ for all κ ≥ ℵ0.
(2) T is superstable, but not totally transcendental. Then fT (κ) = 2ℵ0 + κ.
(3) T is stable, but not superstable. Then fT (κ) = κℵ0 .

Proof. (1) This follows from the well-known fact that a countable theory T is totally
transcendental then it is ℵ0-stable, i.e. there can be only κ many complete types
over a set A of size κ. (Idea: assume not, then we can find infinitely many disjoint
clopen sets each of which contains more than κ types, then each of those clopens
can be split again into disjoint clopens each of which contains > κ types, etc - this
produces infinite Morley rank. See e.g. [TZ12, Chapter 6 + Theorem 5.2.6] for the
details).

(2) Let T be superstable and |A| = κ. Since every type doesn’t fork over a finite
subset of A, we have: |S (A)| ≤(the number of finite subsets E of A)×(the number of
types p ∈ S (E))×(the number of non-forking extensions of p to A)≤ κ×2ℵ0×2ℵ0 =
max

{
2ℵ0 , κ

}
(using Theorem 3.59). If T is not totally transcendental, then by the

usual construction of a splitting tree we can produce 2ℵ0 complete types over a
countable set.

(3) We know that if T is stable, then |S (A)| ≤ |A||T | = |A|ℵ0 by Theorem 2.24.
If T is not superstable, it follows from the proof of Lemma 3.86 that there is a type
p ∈ S (∅) with SU (p) = ∞ with a forking extension p′ of infinite SU-rank. Let q
be a non-forking global extension of p’ and let κ ≥ ℵ0. By the Claim in the proof
of Theorem 3.65, q has κ many different A-conjugates {qα : α < κ} (since p′ does).
Let A0 of size κ be such that all of pα := qα|A0

are different. By Lemma 3.81 we
have SU (pα) = ∞. Continuing in this manner we get a sequence A0 ⊆ A1 ⊆ . . .
of parameter sets and a tree of types pα0...αn ∈ S (An+1), n < ω, αi < κ. We may
assume that all Ai have size κ, and each path through this tree defines a type over
A =

⋃
n<ω An. This implies that |S (A)| ≥ κℵ0 . �

***

4. Stable groups

We proceed to study stable groups. A group G is stable if it is definable in a
stable theory, i.e. the underlying set G is a definable subsets of Mn for some n ∈ ω
and the group operation · : G (Mn) × G (Mn) → G (Mn) is a definable function.
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For simplicity of notation we assume that n = 1, G (M) = M and that G, · are
∅-definable.

Recall from Example 2.48:

Example 4.1. The following groups are stable.
(1) Affine algebraic groups over algebraically closed fields (e.g. GLn (C), etc.).

These are definable in a strongly minimal theory of algebraically closed
fields, so they are of finite Morley rank. A long standing open conjecture of
Cherlin-Zilber is that every simple group of finite Morley rank is algebraic
over an algebraically closed field (we know that every superstable field is
algebraically closed).

(2) Algebraic matrix groups over any stable ring, abelian varieties (equipped
with their induced structure from the underlying field).

(3) Abelian groups (as pure groups).
(4) Free group on n generators, n ∈ ω (as a pure group). More generally,

torsion-free hyperbolic groups are stable (both are deep results of Z. Sela).
(5) In general, given an arbitrary stable theory T in a finite relational language,

Mekler’s construction produces a pure group G (in fact nilpotent, class 2)
such that G is stable and interprets T . This shows in a sense that one
can’t really hope to obtain any strong classification result for general stable
groups. However, Mekler’s construction doesn’t preserve ℵ0-categoricity
(i.e. the property of having a unique countable model, up to isomorphism).
It is known that every ℵ0-categorical stable group is nilpotent-by-finite (i.e.
it contains a normal nilpotent subgroup of finite index), and that every ℵ0-
categorical ω-stable group is abelian-by-finite (Felgner’78, Baur, Cherlin,
Macintyre’79).
Open problem: Is every ℵ0-categorical stable group abelian-by-finite?
By a result of Lachlan, every ℵ0-categorical superstable theory is ω-stable,
but Hrushovski has constructed ℵ0-categorical stable theories that are not
superstable.

Large part of the basic results and terminology around stable groups, especially
in the finite Morley rank case, is motivated by the study of algebraic groups over
algebraically closed fields (see [Poi01]). More recently it was realized that it also
follows from the general theory of WAP dynamical systems ([Gla03]).

4.1. Chain conditions. By a uniformly definable family of subgroups of G we
mean a family of subgroups (Hi : i ∈ I) of G such that for some φ (x, y) ∈ L we
have Hi = φ (M, ai) for some parameter ai, for all i ∈ I.

Lemma 4.2. Let G be an NSOP group. For every formula φ (x, y) there is some
n = n (φ) ∈ ω such that every chain H1 ⊆ H2 ⊆ . . . of subgroups of G uniformly
defined by φ has length at most n.

Proof. Immediate from the definition of NSOP (see Definition 2.39). �

Lemma 4.3. Let G be an NIP group. For every formula φ (x, y) there is some
number m = m (φ) ∈ ω such that if I is finite and (Hi : i ∈ I) is a uniformly
definable family of subgroups of G of the form Hi = φ (M, ai) for some parameters
ai, then

⋂
i∈I Hi =

⋂
i∈I0 Hi for some I0 ⊆ I with |I0| ≤ m.
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Proof. Otherwise for each m ∈ ω there are some subgroups (Hi : i ≤ m) such that
Hi = φ (M, ai) and

⋂
i≤mHi (

⋂
i≤m,i6=j Hi for every j ≤ m. Let bj be an element

from the set on the right hand side and not in the set on the left hand side. Now, if
I ⊆ {0, 1, . . . ,m} is arbitrary, define bI :=

∏
j∈I bj . It follows that |= φ (bI , ai) ⇐⇒

i /∈ I. This implies that φ (x, y) is not NIP. �

Combining, we get:

Theorem 4.4. (Baldwin-Saxl) Let G be stable. Then for any formula φ (x, y) there
is some k = k (φ) ∈ ω such that any descending chain of intersections of φ-definable
subgroups has length at most k.

Proof. By Lemma 4.3, every element of such a chain is an intersection of at most
mφ φ-definable subgroups, and so we may assume that the elements of the chain
are themselves uniformly definable. But then by Lemma 4.2 such a chain can only
have length at most nψ where ψ (x, ȳ) =

∧
i<mφ

φ (x, yi). �

Corollary 4.5. It follows that if G is stable and A ⊂ G then there is some finite
A0 ⊆ A such that CG (A) = CG (A0), where CG (A) = {g ∈ G : g · a = a · g for all a ∈ A}
is the centralizer of A in G.

Proof. Apply Theorem 4.4 to the formula φ (x, y) given by x · y = y · x. �

Corollary 4.6. Let G be a stable group, and let A ⊆ G be an abelian subgroup
(not necessarily definable). Then there is a definable abelian subgroup A′ ⊇ A of
G. The same statement is true for nilpotent and solvable subgroups.

Proof. Let A′ be the center of the centralizer of A. It is an abelian subgroup of G,
and by Corollary 4.5 it is definable. �

If G is moreover ω-stable, then the same chain condition holds with respect to
all families of definable subgroups, not only the uniformly definable ones.

Proposition 4.7. If G is ω-stable then G has no infinite decreasing chains of
definable subgroups.

Proof. If Hi+1 ( Hi then there are at least two disjoint cosets of Hi+1 in Hi, and so
either RM (Hi+1) < RM (Hi) or RM (Hi+1) = RM (Hi), in which case the Morley
degree of Hi+1 has to be smaller than the Morley degree of Hi (see Lemma 3.77).
As Morley rank is an ordinal and Morley degree is a natural number, this decrease
can happen only finitely many times. �

4.2. Connected components.

Definition 4.8. (1) Given a definable group G (recall, we are always assuming
it is ∅-definable) and a set of parameters A, we let SG (A) denote the set of
all types in S (A) which concentrate onG, i.e. SG (A) = {p ∈ S (A) : G (x) ∈ p}.

(2) For any set of parameters A, we consider the action of G (A) on SG (A)
given by: g · p := tp (g · b/A), where b is some/any element realizing p.
Exercise: check that this is a well-defined continuous action of G (A) on
SG (A) by homeomorphisms.

We would like to understand better this action in the case of a stable group
G. First we discuss several model-theoretic connected components associated to a
definable group G.
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Definition 4.9. Let G be a stable group.
(1) For φ (x, y) ∈ L, letG0

φ :=
⋂
{H ≤ G : H = φ (M, a) for some a and [G : H] <∞}.

By Theorem 4.4 G0
φ is in fact a definable subgroup. Besides, it is clear from

the definition that G0
φ is Aut (M /∅)-invariant, which implies that G0

φ is
∅-definable.

(2) Let G0 :=
⋂
φ∈LG

0
φ. This is a normal subgroup of G (as the set of all

definable subgroups of finite index is closed under conjugation) of bounded
index (i.e. the index is small, compared to the saturation of the monster).
In fact,

[
G : G0

]
< 2|T |.

(3) Similarly, one can define:

G00 :=
⋂
{H ≤ G : [G : H] is bounded and H is type-definable} .

(4) In a stable theory, G0 = G00, as any type-definable group is an intersection
of definable groups.

Exercise 4.10. Stability is necessary in the last claim. Give an example of a
type-definable group which is not an intersection of definable groups.

Remark 4.11. The term “connected component” comes from algebraic geometry.
Namely, if G is an algebraic group, then G0 is precisely the connected component
in the sense of Zariski geometry. If G is ω-stable then G0 is ∅-definable.

***
The quotient G/G00 can be equipped with a natural topology.

Definition 4.12. Let E be a type-definable (over ∅) equivalence relation on M.
We say that E is bounded if M /E has small cardinality.

Exercise 4.13. E is bounded if and only for some (every) small model M , a ≡M b
implies E (a, b).

Now fix a type-definable bounded equivalence relation, and let π : M → M/E
be the quotient map. We define logic topology on M /E: a set S ⊆ M /E is closed
if π−1 (S) is type-definable over some (any) small model M .

Proposition 4.14. The space M /E equipped with the logic topology is a compact
Hausdorff space.

Proof. Given a small model M , we have a map f : S (M) → M /E given by
p 7→ a/E for some/any a |= p. This is well-defined by Exercise 4.13, and f is
clearly continuous by the definition of the logic topology. Thus M /E is compact,
as an image of a compact set.

Let now a, b ∈M be arbitrary such that ¬E (a, b). Then for any x.y ∈M we have
E (x, a)∧E (y, b)→ ¬E (x, y). As E is type-definable, by compactness there is a for-
mula φ (x, y) such that E (x, y) ` φ (x, y) and |= φ (x, a) ∧ φ (y, b)→ ¬E (x, y). Let
Na :=

{
x ∈M /E : π−1 (x) ⊆ φ (M, a)

}
, Nb :=

{
y ∈M /E : π−1 (y) ⊆ φ (M, b)

}
.

Then Na and Nb are two disjoint open neighborhoods of π (a) and π (b), respec-
tively. �

Now if G is definable (or just type-definable), the equivalence relation E (x, y)
given by xG00 = yG00 is a bounded equivalence relation type-definable over ∅ (as
explain in 4.9). Thus we can equip G/G00 with the logic topology, and in fact the
groups operation is compatible with it (exercise).



LECTURE NOTES ON STABILITY THEORY 49

Proposition 4.15. The group G/G00 equipped with the logic topology is a compact
Hausdorff group.

Example 4.16. (1) If G = G00, for example if G is a stable group, then G/G00

is a profinite group — it is the inverse image of the groups G/H with H
ranging over all definable subgroups of finite index.

(2) Say, consider G = (Z,+). Then G0 = G00 is the set of elements divisible
by all n ∈ N (of course, it has no elements in the standard model Z, so
needs to be calculated in the monster). Then G/G00 is isomorphic as a
topological group to Ẑ = limZ/nZ.

(3) Consider an unstable example. Let G = S1 be the circle group defined in a
saturated real closed field R. Then G00 is the set of infinitesimal elements of
G, and G/G00 is isomorphic to the Lie group of the standard circle S1 (R).

Remark 4.17. One can consider an even smaller connected component, G000 (also
denoted as G∞) given by the intersection of all Aut (M /∅)-invariant subgroups of G
of bounded index. By a result of Shelah and Gismatullin, assuming that T is NIP,
the groups G00 and G∞ are themselves type-definable (invariant) subgroups of G
of bounded index. In a general NIP theory, each of the inclusions G∞ ⊆ G00 ⊆ G0

can be strict (see [CP12]). In a stable theory we have G0 = G00 = G∞.

4.3. Generics.

Definition 4.18. (1) A definable subset A of G is called left generic if G is
covered by finitely many left translates of A, i.e. G = g1 · A ∪ . . . ∪ gn · A
for some g1, . . . , gn ∈ G.

(2) Similarly, A is right generic (bi-generic) if G =
⋃
i<nA · gi for some gi ∈ G

(resp., G =
⋃
i<n gi ·A · hi for some gi, hi ∈ G).

(3) A (partial) type π (x) is (left-, right-, bi-) generic if it only contains (left-,
right-, bi-) generic formulas.

In topological dynamics generic sets are called syndetic. We will show that all
three notions coincide in stable groups, but for now by generic we will mean
bi-generic. Note that a (two-sided) translate of a generic set is generic and both
left generic sets and right generic sets are bi-generic. Also if p is a generic type,
then p−1 is generic as well. Also note that any automorphism in Aut (M) preserves
genericity.

Lemma 4.19. Let G be stable, and let A be a definable subset of G. Then either
A is left-generic, or its complement ¬A is right-generic.

Proof. Suppose not. Then for any a1, . . . , an ∈ G we can find some d ∈ G such
that d /∈

⋃
1≤i≤n (¬A) · a−1

i . Hence dai ∈ A for 1 ≤ i ≤ n. Analogously, there is
some e such that aie ∈ ¬A for 1 ≤ i ≤ n .

Using this we can choose inductively (bi, ci : i ∈ ω) inG such that cn+1b1, . . . , cn+1bn ∈
A and c1bn+1, . . . , cnbn+1 ∈ ¬A. Then i < j =⇒ ci · bj /∈ A, and j < i =⇒
cibj ∈ A. This shows that the formula φ (x, y) := (x · y ∈ A) has the order prop-
erty. �

Corollary 4.20. If G is a stable group, then the family of all non-generic sets is
an ideal (recall that “generic” refers to “bi-generic” for now).
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Proof. We show that if A ∪ B is generic, then either A or B is generic. If G =⋃
i<n ai ·(A ∪B)·bi, then G =

(⋃
i<n ai ·A · bi

)
∪
(⋃

i<n ai ·B · bi
)
. By Lemma 4.19

either the first or the second union is generic. Hence either A or B is generic. �

Corollary 4.21. If G is stable then it admits a global generic type.

Proof. By Corollary 4.20 and compactness. �

Theorem 4.22. Let G be stable and p ∈ SG (M) generic. Then p does not fork
over ∅.

Proof. We are using the local ranks (see Lemma 3.71). Recall that if q is an
extension of p which forks, witnessed by a formula φ (x, a), then Rφ(x,y) (p) >
Rφ(x,y) (q). The formula φ (x, a) can also be written as φ (1 · x · 1, a) where 1 is the
identity element of the group, so we also have Rφ(u·x·v,y) (p) > Rφ(u·x·v,y) (q) where
u, v, y are viewed as the parameter variables.

Now let p ∈ SG (M) be generic, and let q ∈ SG (M) be a type of maximal
Rφ(u·x·v,y)-rank (exists by Lemma 3.71). For every definable subset A of G, if
A ∈ p then a ·A · b ∈ q for some a, b ∈ G by genericity of p, and so Rφ(u·x·v,y) (A) =
Rφ(u·x·v,y) (a ·A · b). Therefore p has maximal local rank with respect to all of these
formulas simultaneously, and thus does not divide over ∅. �

Lemma 4.23. For every formula φ (x, y) there is a number n = n (φ) ∈ ω such that
for any parameter c, if φ (x, c) is generic then G (M) can be covered by n two-sided
translates of φ (M, c).

Proof. Let p ∈ SG (M) be generic, it exists by Corollary 4.20. Note that p is
definable by stability. We have that φ (x, c) is generic if and only if there are some
a, b ∈ G (M) with a · φ (x, c) · b ∈ p. As p is definable, we have φ (x, c) is generic
iff |= ∃u, v dφ (u, v, c), where dφ (u, v, y) is the definition for φ (u · x · v, y) ∈ p. The
lemma follows from compactness. �

Thus, for every formula φ (x, y) there is some formula ψφ (y) such that |= ψφ (c) ⇐⇒
φ (x, c) is generic.

Corollary 4.24. If p ∈ SG (M) is generic, B ⊇M and q ∈ SG (B) is a non-forking
extension of p then q is generic.

Proof. By Theorem 3.44, q is an heir of p. Assume it is not generic, then φ (x, c)∧
¬ψφ (c) ∈ q for some φ and c. But as q is an heir of p, φ (x, c′) ∧ ¬ψφ (c′) ∈ p for
some c′ ∈M — which is impossible as p is generic. �

Exercise 4.25. Show that the same statement is true for p ∈ SG (A) where A is
an arbitrary set (reduce to the case of a model).

Proposition 4.26. (1) If a and b are generic and independent over A, then
ab is generic. Furthermore, a and ab are independent over ∅, as well as b
and ab.

(2) Any g ∈ G is a product of two generics.

Proof. If tp (a/A) is generic and a |̂
A
b, then the tp (a/Ab) is also generic (by

Exercise 4.25). In particular, tp (a · b/Ab) only contains generic formulas (if a ·
b |= φ (x) ∈ L (Ab) then a |= φ (x) b−1 ∈ L (Ab) and genericity is preserved by
translation). In particular, a · b |̂ b by Theorem 4.22. Similarly for a · b |̂ a.
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(2) Assume we are given g ∈ G. Let h |̂ g be such that tp (h/g) is generic.
Note that tp

(
h−1/g

)
is also generic, as well as tp

(
h−1g/g

)
(as in (1)). Then

g = h ·
(
h−1 · g

)
is a product of two generics (which need not be independent in

general). �

Corollary 4.27. A formula φ (x) is left-generic if and only if it is right-generic if
and only if it is bi-generic.

Proof. By symmetry it is enough to show that a bi-generic formula φ (x) is left-
generic. Let M be a model containing the parameters of φ (x). By compactness it
is enough to show that every type p ∈ SG (M) is in some left G (M)-translate of
φ (x). Take p = tp (b/M) arbitrary, and let tp (a/Mb) be a bi-generic containing
φ (x) (exists by Corollary 4.21). If c := a·b−1 then tp (c/Mb) is also generic, c |̂

M
b

and c |= φ (x · b). By stability tp (c/bM) is finitely satisfiable in M , and so exists
some c′ ∈M with φ (c′ · b), i.e. (c′)

−1
φ (·x) ∈ p. �

Recall that G0 =
⋂
φ∈LG

0
φ and G0

φ is ∅-definable.

Definition 4.28. Let p ∈ SG (M) and let φ (x, y) be a formula. We define stabiliz-
ers Stabφ (p) := {g ∈ G : ∀y (φ (x, y) ∈ p ⇐⇒ φ (g · x, y) ∈ p)} = {g ∈ G : gp|φ = p|φ}
and Stabφ (p) :=

⋂
φ∈L Stabφ (p) = {g ∈ G : gp = p}. Both are subgroups of G.

By the definability of the type p it follows that Stabφ (p) is a definable group (as
{g ∈ G : ∀y (dpφ (x, y)↔ dpφ (g · x, y))}), and so Stab (p) is type-definable.

Consider a formula φ (x; y, u) = φ′ (u · x, y). Then any translate of an instance
of φ is again an instance of φ, and any definable set is defined by an instance of
such formula.

Proposition 4.29. (1) For any formula φ, the set {p|φ : p is generic} is finite.
(2) Stabφ (p) ⊆ G0

φ and Stab (p) ⊆ G0 for any p ∈ SG (M).
(3) If p is generic then Stabφ (p) has finite index in G, and Stab (p) = G0.

Proof. (1) The type p contains the information about its coset moduloG0 (φ (ux, y)).
Let ψ (x) define G0

φ. There is some b ∈ G with ψ
(
b−1x

)
∈ p (as p has to be in some

coset of G0
φ). If g ∈ Stabφ (p) then ψ

(
b−1gx

)
∈ p. Hence b−1gb and g ∈ G0

φ.
(2) As generic types do not fork over ∅, their number is bounded by 3.59. Hence

there are only finitely many generic φ-types, as otherwise could produce unbound-
edly many by compactness.

(3) Follows from (2) as a translate of a generic is generic. �

Theorem 4.30. (“Fundamental theorem of stable group theory”)
(1) There is a unique generic in every coset of G0, G/G0 is a profinite group

acting transitively on its generics, p is generic iff Stab (p) = G0 (and gener-
ics form the unique minimal flow).

(2) The following are equivalent for a definable set φ (x):
(a) φ (x) is generic, in the sense of the definition above.
(b) no translate of φ (x) forks over ∅.
(c) φ (x) has positive measure with respect to all G-invariant Keisler mea-

sures.

Proof. Let M be a small model containing representatives of every coset of G0,
possible since there are boundedly many of them.
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Note that G0 (x) is a generic partial type (as each G0
φ is of finite index, so

finitely many translates cover G). Hence there is some generic type p in G0 — we
call it principal generic. By translation, in every coset of G0 there is a generic. By
translation, enough to show that there is only one generic in G0.

Choose realizations a and b of two generic types concentrated on G0 and inde-
pendent over M . Since Stab = G0, b and ab realize the same type over Ma, and so
over M . Similarly, a and ab have the same type over M . Hence a and b have the
same type over M . Works for any model M , so determines the complete type.

If p is generic, we already know Stab (p) = G0. Assume Stab (p) = G0. Then
this is true for every heir of p, by definability. Let a realize p and b realize the
principal generic over Ma. Then a |̂

M
b and a, b · a have the same type over Mb.

Furthermore, b · a is generic over Ma. Therefore a is generic over M . �

Remark 4.31. The theory of generics, in the sense of forking, can be generalized
to groups definable in simple theories (see e.g. [Wag00]). Similarly, there is a
generalization to the case of NIP groups, where the dynamical counterpart becomes
more subtle and which is currently an active research area [CS15a].
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