
LECTURE NOTES ON FORKING

ARTEM CHERNIKOV

Part 1. Preliminaries, model-theoretic notions of smallness,
preindependence relations

1. Lecture 1

1.1. Types. Most of the time we fix a complete countable first-order theory T in a
language L, and we let M be a very saturated model of it, a “monster” model. All
our sets and models are subsets and elementary submodels of M. A set is called
small if it is cardinality is smaller than the saturation of M. For a set A, we let
Def (A) be the boolean algebra of A-definable subsets of M, i.e. sets of the form
{x ∈M : M |= φ (x, a)} for φ (x, y) ∈ L and a a tuple of elements from A. The
space of types in the variable x over A, Sx (A), is the Stone dual of Def (A). It is
the space of ultrafilters on Def (A), a compact Hausdorff totally-disconnected space
with the clopen basis given by 〈φ (x, a)〉 = {p ∈ S (A) : φ (x, a) ∈ p}. Elements of
S (M) are called global types. We will write a ≡C b if tp (a/C) = tp (b/C). Then
a ≡C b if and only if there is an automorphism σ of M fixing C and such that
σ (a) = b.

1.2. Indiscernible sequences.

Definition 1. Let O be a linear order. A sequence (ai)i∈O of tuples is called
indiscernible over a set B if for any i0 < . . . < in ∈ O and j0 < . . . < jn ∈ O we
have ai0 . . . ain ≡B aj0 . . . ajn .

Example 2. (1) A constant sequence is indiscernible over any set.
(2) In the theory of equality, any sequence is indiscernible.
(3) Any increasing (or decreasing) sequence of singletons in a linear order is

indiscernible.
(4) Any basis in a vector space is an indiscernible sequence (and in fact is an

indiscernible set, i.e. for any i0 6= . . . 6= in ∈ O and j0 6= . . . 6= jn ∈ O we
have ai0 . . . ain ≡B aj0 . . . ajn).

The following is a standard method of finding indiscernible sequences in an ar-
bitrary theory.

Fact 3. Let (ai)i∈λ be a sequence of tuples with |ai| < κ and a set B be given. If
λ ≥ i(2κ+|B|+|T |)

+ there is a B-indiscernible sequence (a′i)i∈ω such that for every

n ∈ ω there are i0 < . . . < in ∈ κ such that a′0 . . . a′n ≡B ai0 . . . ain .

Proof. Using the Erdős-Rado theorem, see e.g. [BY03, Lemma 1.2]. �

Remark 4. In general, it is not always possible to find an infinite indiscernible
subsequence, no matter how long the sequence we start with (unless it is a compact
cardinal). This phenomena can occur even in NIP theories, (but not in strongly
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dependent theories, see [KS10]). In stable theories, if a sequence is sufficiently long,
then one can actually find an infinite indiscernible subsequence (of the same length
as the original sequence).

2. Notions of smallness for definable sets

2.1. Keisler measures.

Definition 5. (1) A Keisler measure is a finitely-additive probability measure
on Def (M).

(2) A Keisler measure µ is invariant over A if a ≡A b implies µ (φ (x, a)) =
µ (φ (x, b)).

From now onwards by a measure we always mean a Keisler measure.

Example 6. Random graph, a natural measure given by saying that for any two
points, the edge between them occurs with probability 1

2 .

Remark 7. Every Keisler measure can be extended in a unique way to a Borel
measure on the σ-algebra generated by Def (M) by Caratheodory’s theorem (given
B =

⋃
i∈ω Bi with Bi, B ∈ Def (M), by compactness we have that B =

⋃
Bi<n for

some n ∈ ω).

2.2. Invariant types. In the special case of a 0− 1 invariant Keisler measure we
get the familiar notion of an invariant type.

Definition 8. A global type p (x) ∈ S (M) is called invariant over C if it is invariant
under all automorphisms of M fixing C. That is, for every a ≡C b and φ (x, y) ∈ L,
φ (x, a) ∈ p ⇔ φ (x, b) ∈ p.

Fact 9. Let p (x) be a global type invariant over C. For i ∈ ω, let ai |= p|Ca<i .
Then ā = (ai)i∈ω is an C-indiscernible sequence. Besides, for any other sequence
b̄ = (bi)i∈ω such that bi |= p|Cb<i , we have ā ≡C b̄.

How does one find invariant types in an arbitrary theory?

Fact 10. (1) Let p be a partial type (over M) finitely satisfiable in A (i.e. for
every φ (x, a) ∈ p there is some b ∈ A such that |= φ (b, a)). Then there is
p′ ∈ S (M) finitely satisfiable in A and such that p ⊆ p′.

(2) If M is a model, then every type p ∈ S (M) is finitely satisfiable in M .
(3) Every global type finitely satisfiable in A is invariant over A.
(4) Combining, every type over a model has a global M -invariant extension.

Remark 11. Note that the space of A-invariant global types is a closed subset of
S (M) (as it equals

⋂
φ∈L,a≡Ab∈M 〈φ (x, a)↔ φ (x, b)〉), thus compact. Similarly,

the space of type types finitely satisfiable in A is a closed subset of A — it equals⋂
φ(x,a)∈L(M),φ(A,a)=∅ 〈¬φ (x, a)〉. It can also be described as the closure of the set

of types realized in A, i.e. of {tp (a/M) : a ∈ A}.

3. Lecture 2

3.1. Generically prime ideals.

Definition 12. Recall that a set I ⊆ Def (M) is an ideal if:
(1) ∅ ∈ I,
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(2) φ (x, a) ` ψ (x, b) and ψ (x, b) ∈ I implies φ (x, a) ∈ I,
(3) φ (x, a) ∈ I and ψ (x, b) ∈ I implies φ (x, a) ∨ ψ (x, b) ∈ I.
An ideal I is invariant over A if φ (x, a) ∈ I and a ≡A b implies φ (x, b) ∈ I.
As usual, an ideal I in Def (M) is prime if whenever φ (x, a) ∧ ψ (x, b) ∈ I,

then either φ (x, a) ∈ I or ψ (x, b) ∈ I. However in a boolean algebra prime ideals
correspond to complete types in Sx (M) (as for any φ (x, b), φ (x, b) ∧ ¬φ (x, b) ∈ I,
so either φ (x, b) or ¬φ (x, b) has to belong to I). We introduce a weaker notion.

Definition 13. An ideal I in Def (M) is generically prime if there is a cardinal κ
such that for any {φi (x, ai)}i∈κ with φi (x, ai) /∈ I, there are some i < j ∈ κ with
φi (x, ai) ∧ φj (x, aj) /∈ I.

So a prime ideal is generically prime with κ = 2. Generically prime ideals are
called “S1-ideals” in [Hru12].

Proposition 14. An A-invariant ideal I is generically prime if and only if it satis-
fies the following property: given an A-indiscernible sequence (ai)i∈ω, if φ (x, a0) ∧
φ (x, a1) ∈ I then φ (x, a0) ∈ I.
Proof. Assume that we have anA-indiscernible sequence (ai)i∈ω such that φ (x, a0)∧
φ (x, a1) ∈ I but φ (x, a0) /∈ I. By compactness, indiscernibility and invariance of
I, for any κ we can find a sequence (ai)i∈κ such that φ (x, ai) /∈ I and φ (x, ai) ∧
φ (x, aj) ∈ I for all i 6= j ∈ κ, thus I is not generically prime.

Conversely, assume that I is not generically prime. Then for any κ we can
find (φi (x, ai))i∈κ with φi (x, ai) /∈ I and φi (x, ai) ∧ φj (x, aj) ∈ I. Taking κ large
enough and applying Fact 3 we find an A-indiscernible sequence starting with ai, aj
for some i 6= j and such that φi = φj . �

In fact a refinement of this proof shows that if an ideal I is generically prime
and invariant over A, then one can always take κ =

(
2|A|+|T |

)+
in the definition.

Proposition 15. For any A-invariant measure µ, its 0-ideal is generically prime.

Proof. Let (ai) be A-indiscernible and assume that µ (ϕ (x, a)) > 1
k for some k ∈

ω but µ (ϕ (x, a0) ∧ ϕ (x, a1)) = 0. By A-invariance and the inclusion-exclusion
formula we see that µ

(∨
i<k+1 ϕ (x, ai)

)
> 1, a contradiction. �

3.2. Dividing and forking.

Definition 16. (1) A formula φ (x, a) divides over B if there is a sequence
(ai)i∈ω and k ∈ ω such that ai ≡B a and {φ (x, ai)}i∈ω is k-inconsistent.
Equivalently, if there is an B-indiscernible sequence (ai)i∈ω starting with a
and such that {φ (x, ai)}i∈ω is inconsistent (by compactness and Fact 3).

(2) A formula φ (x, a) forks over B if it belongs to the ideal generated by the
formulas dividing over B, i.e. if there are ψi (x, ci) dividing over B for i < n
and such that

φ (x, a) `
∨
i<n

ψi (x, ci) .

(3) We denote by F (B) the ideal of formulas forking over B. It is invariant
over B.

Example 17. In general there are formulas which fork, but do not divide. Consider
the unit circle around the origin on the plane, and a ternary relation R (x, y, z) on
it which holds if and only if y is between x and z, ordered clock-wise. Check:
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(1) This theory eliminates quantifiers.
(2) There is a unique 2-type p (x, y) over ∅ consistent with “x 6= y”.
(3) R (a, y, c) divides over ∅ for any a, c.
(4) The formula “x = x” forks over ∅ (but it does not divide, of course — no

formula can divide over its own parameters).

Definition 18. A (partial) type does not divide (fork) over B if it does not imply
any formula which divides (resp. forks) over B.

Remark 19. Let p (x) is a partial type. It does not fork over B if and only if it is
contained in a global type which does not fork over B. This is because every ideal
in a boolean algebra extends to a prime (equivalently maximal) ideal.

Proposition 20. F (B) is contained in every generically prime ideal invariant over
B.

Proof. It is enough to show that if ϕ (x, a) divides over B and I is a generically
prime ideal, then ϕ (x, a) ∈ I. We use the equivalence from Proposition 14. Let
(ai)i∈ω be indiscernible over B with a0 = a and {ϕ (x, ai)}i∈ω inconsistent. If
ϕ (x, a0) /∈ I, then by induction using that I is generically prime (and that if
(ai)i∈ω is indiscernible over B, then (a2ia2i+1)i∈ω is indiscernible over B), we see
that

∧
i<k ϕ (x, ai) /∈ I for all k ∈ ω. But as ∅ ∈ I this would imply that {ϕ (x, ai)}

is consistent, a contradiction. �

Corollary 21. In particular if p (x) ∈ S (M) is invariant over B, then it does not
fork over B.

3.3. Three fundamental ideals. Notice that any intersection of B-invariant gp
ideals is still B-invariant and gp. And the same for 0-ideals of B-invariant Keisler
measures. Thus the following objects exist.

Definition 22. (1) Let GP (A) be the smallest generically prime ideal invari-
ant over A.

(2) Let 0 (A) be the ideal of formulas which have measure 0 with respect to
every A-invariant Keisler measure.

Summing up the previous observations, we have the following picture:

Proposition 23. In any theory and for any set A, F (A) ⊆ GP (A) ⊆ 0 (A).

Example 24. There are theories with F (A) ( GP (A), equivalently theories in
which the forking ideal is not generically prime. Look at the triangle-free random
graph (i.e. the model completion of the theory of graphs saying that there are no
triangles — it exists and eliminates quantifiers, an important property for us is that
it embeds any finite graph without triangles). Then we have:

(1) R (x, a) does not divide for any a (as any indiscernible sequence of singletons
has to be an anti-clique).

(2) R (x, a)∧R (x, b) divides for any a 6= b (witnessed by a sequence (aibi) such
that R (ai, bj)⇔ i 6= j).

(3) Thus for any infinite indiscernible sequence of singletons (ai), R (x, a0) does
not divide while R (x, a0) ∧R (x, a1) does.

Problem 25. Hrushovski had suggested an example of a (simple) theory in which
F (∅) = GP (∅) ( 0 (∅). I don’t think there are known examples of F (A) (
GP (A) ( 0 (A) and of F (A) ( GP (A) = 0 (A). In NIP theories and in many
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natural simple theories, for example in pseudo-finite fields, we have that F (A) =
0 (A).

In the following lectures our aim will be to prove that F (A) = GP (A) in the
class of NTP2 theories (over an extension base).

4. Lecture 3

Given an ideal of “small” sets, we can define a “preindependence” relation (see
e.g. [Adl05]).

4.1. Preindependence relations. We write a |̂ d
C
b, a |̂

C
b to denote that tp (a/bC)

does not divide, respectively does not fork, over C. Of course if a |̂
C
b then a |̂ d

C
b.

Lemma 26. (1) If p ∈ S (M), A ⊂M andM is |A|+-saturated, then p divides
over A if and only if p forks over A.

(2) a |̂
C
b if and only if a |̂ d

C
M for some |Cb|+-saturated model M ⊇ Cb.

Proof. (1) By definition, if p forks over A then p (x) `
∨
i≤n φi (x, ai) for some

φi (x, ai) dividing over A, ai ∈ M. By compactness there is some finite p0 ⊂ p
with parameters from a finite set B, such that still p0 (x) `

∨
i≤n φi (x, ai). By

saturation of M there are a′≤n in M such that a′≤n ≡AB a≤n. Then we still have
that p0 (x) `

∨
i≤n φi (x, a′i), so φk (x, a′k) ∈ p for some k ≤ n. As φk (x, a′k) still

divides over A, by A-invariance of F (A), we conclude that p (x) divides over A.
(2) Right to left is obvious by (1) and definition of |̂ . For left to right, let M

be an arbitrary |Cb|+-saturated model containing Cb. If tp (a/bC) does not fork
over C, then by Fact it is extends to a type p (x) ∈ S (M) non-forking over C. Let
a′ |= p; as a ≡bC a′, there is σ ∈ Aut (M /bC) with σ (a′) = a. But then we have
a |̂

C
σ (M) and σ (M) is still a sufficiently saturated model containing bC. �

Lemma 27. The following are equivalent:

(1) a |̂ d
C
b

(2) For any C-indiscernible sequence b̄ = (bi)i∈ω starting with b, we can find a
sequence b̄′ ≡Cb b̄ which is indiscernible over aC.

Proof. Standard, see e.g. [Cas07, Lemma 3.4]. �

Proposition 28. Properties of |̂ in arbitrary theories (“non-commutative forking
calculus”):

(1) Invariance under automorphisms: a |̂
C
b if and only if σ (a) |̂

σ(C)
σ (b),

for any σ ∈ Aut (M).
(2) Finite character: a 6 |̂

C
b implies that a′ 6 |̂

C
b′ for some finite a′ ⊆ a, b′ ⊆ b.

(3) Monotonicity: aa′ |̂
C
bb′ implies a |̂

C
b.

(4) Base monotonicity: a |̂
C
bb′ implies a |̂

Cb′
b.

(5) Left transitivity: a |̂
C
b and a′ |̂

aC
b implies aa′ |̂

C
b.

(6) Right extension: if a |̂
C
b, then for any d there is d′ ≡bC d such that

a |̂
C
bd′.
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Proof. (1), (2), (3) are clear from the definition of forking.
(6) By Lemma 26 there is some |Cb|+-saturated model M ⊇ Cb such that

a |̂
C
M . But then for any d we can realize tp (d/bC) by some d′ ∈ M by sat-

uration, and a |̂
C
bd′ by (3).

(5) First we check it for |̂ d: by Lemma 27 we want to show that for every
C-indiscernible sequence b̄ starting with b, we can find some b̄′ ≡Cb b̄ which is in-
discernible over aa′C. So first by Lemma 27 and the assumption find some b̄1 ≡Cb b̄
and indiscernible over aC, and then find b̄2 ≡Cab b̄1 and indiscernible over aa′C.
But as b̄2 ≡Cb b̄1 ≡Cb b̄ we are done. Now for forking. Let M1 ⊇ Cb be sat-
urated enough with a |̂

C
M1 (by Lemma 26), and let M2 ≡abC M1 such that

a′ |̂
aC
M2 — exists by (6). It then follows that a |̂

C
M2 by invariance, and to-

gether with a′ |̂
aC
M2 it implies aa′ |̂ d

C
M2. AsM2 is saturated enough it implies

that aa′ |̂
C
M2 hence aa′ |̂

C
b by (3). �

We will call any relation on small subsets of M satisfying these properties a
preindependence relation. Ideally one would like to work with such a relation ax-
iomatically. But before that we have to establish its properties by doing some
“dirty” combinatorial work.

Problem 29. Is this a complete list of axioms for forking? I.e., is it true that if
some property of forking holds in all theories, then it should be possible to deduce
it from these axioms. Of course one should formalize the question correctly first.

Exercise 30. Let a |̂ u
C
b denote that tp (a/bC) if finitely satisfiable in C. Let

a |̂ i
C
b denote that tp (a/bC) has a global extension which is Lascar-invariant over

bC. . Check that both are preindependence relations.

A preindependence relation is an independence relation if it satisfies symmetry
(a |̂

C
b ⇔ b |̂

C
a ). It does not hold in general, of course (consider dense linear

order and a < b < c, it is easy to check that ac |̂ b but b 6 |̂ ac).

Proposition 31. The following are equivalent:

(1) F (C) is generically prime.
(2) |̂ satisfies the chain condition over C: for any C-indiscernible sequence

b̄ = (bi)i∈ω starting with b and a |̂
C
b, we can find a sequence b̄′ ≡Cb b̄

which is indiscernible over aC and in addition a |̂
C
b̄.

Proof. See [BYC12, Lemma 2.2]. �

4.2. Shelah’s classification theory. Here is a (incomplete) map of the space
of complete countable first-order theories (the word “space” is not metaphorical,
because in fact first-order theories naturally form a Polish space, and then one
could study the descriptive complexity of classes of theories described here).
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• Most theories are wild of course, meaning that combinatorics of definable
sets leaves no hope for an analysis (perhaps one could even prove that a
“random” first-order theory is wild in a precise sense). For example theories
such as ZFC or Peano arithmetic are highly undecidable and encode all
mathematics, while (generalized) stability theory only deals with theories
devoid of the Gödelian phenomena.

• At the opposite end: Morley proved that if T has a unique model of some
uncountable cardinality κ (up to an isomorphism), then it has a unique
model of each uncountable cardinality. He conjectured that the function
fT (κ) = |{M |= T : |M | = κ}| is non-decreasing on uncountable cardinals.

• Historically stability theory started with Shelah’s approach to Morley’s
conjecture: he decided to describe all possible functions fT (κ) for all T ’s.

• The approach was to isolate “dividing lines”: usually a combinatorial prop-
erty of a first-order theory, formulated in terms of ability to encode certain
combinatorial configuration (linear order, tree, random graph, etc) such
that for theories satisfying it one can prove a non-structure theorem (e.g.
that fT (κ) = 2κ, that is maximal) while for theories not satisfying it one
can develop some structure theory (better understanding of types, definable
sets and models, e.g. restricting possible values of fT (κ)).
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• This programme culminated successfully: after isolating sufficiently many
refining dividing lines Shelah proved Morley’s conjecture [She90], and later
all possible fT ’s were described [HHL00]. For this work it was enough to
consider stable theories, and a lot of tools were developed: forking calculus
and ranks, multiplicity theory, weight, etc).

• However, most theories are not stable, so people started generalizing tech-
niques from stability theory to larger contexts (simple theories [Wag00],
NIP [Adl08], and now also NTP2 [Che12]).

• Power of these dividing lines comes from the fact that they are somehow
“canonical”, for example admit equivalent characterizations by internal com-
binatorial properties, like not being able to encode certain graphs, as well
as by “geometric” properties (properties of |̂ , behavior of indiscernible
sequences or interaction between models).

• For example, specifically for forking, later in the course we will see the
following characterizations:
– T is NTP2 if and only if every strictly invariant sequence witnesses

dividing.
– T is simple if and only if |̂ is symmetric, if and only if |̂ has local

character (i.e. for any a and B there is some B0 ⊆ B, |B0| ≤ |T | with
a |̂

B0
B), if and only if it is NTP2 and |̂ satisfies the independence

theorem (3-amalgamation).
– T is NIP if and only if |̂ is exponentially bounded (for a set A, there

are at most 2|A| global types non-forking over A) if and only if it is
NTP2 and |̂ is bounded (i.e. every type has only boundedly many
global non-forking extensions).

Part 2. Forking in NTP2 theories

5. Lecture 4

5.1. NTP2 theories.

Definition 32. (1) A formula φ (x, y) has TP2 (the tree property of the second
kind) if there are (ai,j)i,j∈ω and k ∈ ω such that:
(a) {φ (x, ai,j)}j∈ω is k-inconsistent for every i ∈ ω,
(b)

{
φ
(
x, ai,f(i)

)}
i∈ω is consistent for every f : ω → ω.

(2) A formula is NTP2 if it is not TP2. A theory is NTP2 if it implies that
every formula is NTP2.

Definition 33. Assume that we are given sequences (āi)i∈κ with āi = (ai,j)j∈ω.
We say that (āi)i∈κ are mutually-indiscernible over A if for every i ∈ κ, āi is
indiscernible over Aā6=i.

There is a natural generalization of Fact 3.

Fact 34. Assume that we are given sequences (āi)i≤n for n ∈ ω with āi = (ai,j)j∈λ
and a set A. if λ is sufficiently large with respect to |A| + |ai,j | then we can find
(ā′i)i≤n which are mutually indiscernible over A and such that:

• for anym there are (ji,k)i≤n,k≤m in λ such that a0,0 . . . a0,m . . . an,0 . . . an,m ≡A
a0,j0,0 . . . a0,j0,m . . . an,0 . . . an,jn,m .
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Proof. By a repeated use of Fact 3, taking λ so that we can iterate it n times. �

Remark 35. In fact if T has TP2, then there is a formula and an array as in
the definition with x singleton, k = 2 and (āi)i∈ω mutually indiscernible, see
[Che12, Section 1]. This is very useful when we want to show that some particular
structure is NTP2. Also if φ1 (x, y1) and φ2 (x, y2) are NTP2 then φ (x, y1y2) =
φ1 (x, y1)∨φ2 (x, y2) is NTP2. This is the only boolean operation preserving NTP2

(see Example 37 ).

Example 36. The following theories are NTP2 (and don’t fit into any smaller class
in the picture):

(1) Let U be an ultrafilter on the set of prime numbers. LetK =
∏
p primeQp/U ,

then Th (K) is NTP2 (in your favorite language for valued fields) , see[Che12,
Section 6].

(2) Certain σ-Henselian valued difference fields of characteristic 0 with contrac-
tive automorphisms, see [CH12].

Example 37. On the other hand, the triangle free random graph has TP2. We
can find (ai,jbi,j)i,j<ω such that R(ai,j , bi,k) for every i and j 6= k, and this are
the only edges around. But then {xRai,j ∧ xRbi,j}j<ω is 2-inconsistent for every
i as otherwise it would have created a triangle, while

{
xRai,f(i) ∧ xRbi,f(i)

}
i<ω

is consistent for any f : ω → ω. Note that the formula xRy is NTP2, thus
demonstrating that a conjunction of two NTP2 formulas need not be NTP2 (and
so for the negation).

5.2. Towards forking=dividing over models in NTP2. All the material in this
section is from [CK12].

Definition of dividing says “exists an indiscernible sequence such that...”, but it
is not true that all indiscernible sequences give the same answer.

Exercise 38. Find an example of φ (x, a) dividing over B and a B-indiscernible
sequence (ai)i∈ω starting with a but such that {φ (x, ai)}i∈ω is consistent.

We are going to show that certain kind of indiscernible sequences in a “sufficiently
free” position always give the right answer (i.e. witness dividing in case the formula
divides).

Definition 39. A global type p (x) ∈ S (M) is strictly invariant over a small set
A if:

• it is invariant over A,
• for B ⊇ A, if a |= p|B then B |̂

A
a.

Lemma 40. If p (x) ∈ S (M) is invariant over A, ā = (ai) is an A-indiscernible
sequence and b |= p|Aā then ā is indiscernible over bA.

Proof. For any φ ∈ L (A) and i0, . . . , in we have |= φ (b, a0, . . . , an)⇔ φ (x, a0, . . . , an) ∈
p ⇔ φ (x, ai0 , . . . , ain) (by invariance of p and indiscernibility of ā over A) ⇔
φ (b, ai0 , . . . , ain). �

Lemma 41. Let p (x) ∈ S (M) be strictly invariant over A, (ai)i∈ω is a Morley
sequence in p over A. Let āi be an A-indiscernible sequence starting with ai. Then
there are (ā′i)i∈ω mutually indiscernible over A and such that ā′i ≡aiA āi (so in
particular they have the same first elements).
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Proof. Enough to show for finite (āi)i<n for all n ∈ ω, by compactness (as we
can write down a partial type P (ȳ0, ȳ1, . . .) expressing that (ȳi)i∈ω are mutually
indiscernible and ȳi ≡aiA āi, and then it’s enough to show that every finite part of it
is consistent). So assume we have already found ā′0, ..., ā′n−1, and lets choose ā′n. As
an |= p|a<nA, there are ā′′0 ...ā′′n−1 ≡Aa0...an−1 ā

′
0...ā

′
n−1 and such that an |= p|Aā′′<n

(take some a′n |= p|Aā′<n and let ā′′i be the image of ā′i under an Aa<i-automorphism
sending a′n to an). In particular ā′′<n are still mutually indiscernible over A. Then
for any i < n, as ā′′i is indiscernible over ā′′6=iA and p is still invariant over ā′′6=iA, it
follows by Lemma 40 that ā′′i is indiscernible over ā′′6=ianA. On the other hand, as
p is strictly invariant over A, we have ā′′<n |̂ A an , so in particular ā′′<n |̂

d

A
an. By

Lemma 27 there is ā′′n ≡Aan ān and indiscernible over ā′′<nA. So we have:
• for all i ≤ n: ā′′i is indiscernible over ā′′<ia>iA.

Then (e.g. by [CH12, Lemma 3.5(2)]) we find (ā′′′i )i≤n mutually indiscernible over
A and such that ā′′′i ≡Aai ā′′i ≡Aai āi . �

Theorem 42. Let T be NTP2, p (y) be a global type strictly invariant over M |= T ,
and let ā = (ai)i∈ω be a Morley sequence in p over M . Then for any φ (x, y) ∈
L (M) and a |= p|M , if φ (x, a) divides over M then {φ (x, ai)}i∈ω is inconsistent.

Proof. Assume not, that is {φ (x, ai)}i∈ω is consistent. As φ (x, a0) divides overM ,
let ā0 = (a0,j)j∈ω be anM -indiscernible sequence witnessing this, i.e. {φ (x, a0,j)}j∈ω
is k-inconsistent for some k ∈ ω. For each i ∈ ω choose some āi such that
aiāi ≡M a0ā0. By Lemma 41 we can find ā′i ≡aiM āi such that (ā′i)i∈ω are mutually
indiscernible over M . Then we have:

•
{
φ
(
x, a′i,j

)}
j∈ω is k-inconsistent for all i ∈ ω (as ā′i ≡ āi),

•
{
φ
(
x, a′i,f(i)

)}
i∈ω

is consistent for every f : ω → ω (
{
φ
(
x, a′i,0

)}
i∈ω is

consistent by the assumption as a′i,0 = ai, then use mutual indiscernibil-
ity and induction to show that a0a1a2 . . . ≡M af(0)af(1)af(2) . . ., which is
enough).

But this shows that φ (x, y) has TP2 — a contradiction. �

But do strictly invariant types always exist?

Example 43. (1) Let p be a global type invariant over A and assume that |̂
satisfies symmetry. Then p is strictly invariant.

(2) Let A ⊆ M and M is |A|+-saturated. Assume that p ∈ S (M) is invariant
over A. Then it is strictly invariant over M .

(3) In fact, for any A and p (x) invariant over A, there is some M ⊇ A with
|M | = |A|+ |T | such that p is strictly invariant over M .

Proof. (2) Of course p is still invariant over M . So let B ⊇ M and let a |= p|B .
We show that tp (B/aM) is finitely satisfiable in M (which implies B |̂

M
a as we

saw that every finitely satisfiable type is non-forking). So let φ (x, y, z) ∈ L, b ∈ B
and c ∈ M finite be given. By saturation of M we can find b′ ∈ M with b′ ≡Ac b.
Now if |= φ (a, b, c), then by invariance of p over Ac (and the fact that a |= p|B)
it follows that |= φ (a, b′, c) holds — so tp (B/aM) is indeed finitely satisfiable in
M . �
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However, we had to increase our model in order to find a strictly invariant type.
Question: Given p (x) ∈ S (M), can we always find a global type extending p

and strictly invariant over M?
The answer is no in general, but yes in NTP2!

Towards it, we begin by observing that dividing of a formula over a model is
always witnessed not just by an indiscernible sequence, but actually by a Morley
sequence of some finitely satisfiable type.

Proposition 44. Let T be NTP2, M |= T and assume that φ (x, a) divides over
M . Then there is a global type p (y) ∈ S (M) extending tp (a/M), finitely satisfiable
in M and such that for any Morley sequence ā = (ai)i∈ω in p over M (i.e. ai |=
p|Ma<i) the set {φ (x, ai)}i∈ω is inconsistent.

Proof. Let κ be a cardinal large enough compared to 2|M |. Let ā = (aj)j∈κ be an
M indiscernible sequence starting with a = a0 and witnessing that φ (x, a) divides
over M , i.e. {φ (x, aj)}j∈κ is k-inconsistent. Let N �M be |M |+-saturated of size
≤ 2|M | and such that tp (ā/N) is finitely satisfiable in M (exists by Fact 10). As
κ was large enough compared to |N |, by Fact 3 we can extract from ā a sequence
ā′ =

(
a′j
)
j∈ω which is indiscernible over N ; we still have a ≡M a′0 and {φ (x, a′i)}i∈ω

is k-inconsistent. Replace ā by ā′. Let P (x̄) = tp (ā/N), it is finitely satisfiable
in M and P |xi = P |xj = p for all i, j; p (x) ∈ S (N) is finitely satisfiable in M , of
course.

Now we choose āi inN such that āi |= P |Mā<i —possible by saturation ofN . We
still have that {φ (x, ai,j)}j∈ω is k-inconsistent for all i ∈ ω. But as φ (x, y) is NTP2,
it follows that there is some f : ω → ω such that

{
φ
(
x, ai,f(i)

)}
i∈ω is inconsistent.

By the construction we have that ai,f(i) |= p|M{aj,f(j)}j<i
and p (x) ∈ S (N) is

finitely satisfiable in M , then an arbitrary global extension of p which is finitely
satisfiable in M is as wanted (as all Morley sequences of an M -invariant type have
the same type over M by Fact 9 ). �

6. Lecture 5

Originally existence of global strictly invariant types was established in [CK12]
using the so-called Broom Lemma. The following is a simplified proof of a special
case of this lemma in NTP2 theories, due to Adler.

Lemma 45. (Weak Broom Lemma) Let p (x) be a partial type over M, invariant
over M (which as usual means that φ (x, a) ∈ p⇔ φ (x, a′) ∈ p for any a ≡M a′ and
φ). Suppose that p (x) ` ψ (x, b) ∨

∨
i<n φi (x, c), where b |̂ u

M
c and each φi (x, c)

divides over M . Then p (x) ` ψ (x, b).

Proof. We prove it by induction on n, the case n = 0 is trivial. Suppose that it
holds for n, and p (x) ` ψ (x, b) ∨

∨
i≤n φi (x, c), where b |̂ u

M
c and each φi (x, c)

divides over M . Let c̄ = (ci)i∈ω be a Morley sequence over M of some global
type finitely satisfiable in M extending tp (c/M), and such that {φn (x, ci)}i∈ω is
k-inconsistent (exists by Proposition 44). As b |̂ u

M
c = c0, we may assume that

b |̂ u
M
c̄ (by Exercise 30). Then in particular c̄ is indiscernible over bM , by Lemma
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40. Then by invariance of p over M we have

p (x) ` ψ (x, b) ∨
∧
j<k

∨
i≤n

φi (x, cj) .

By the choice of k it follows that

p (x) ` ψ (x, b) ∨
∨

i<n,j<k

φi (x, cj) .

Claim. bc>j |̂ uM cj for every j ∈ ω.

We are going to use Exercise 30 freely. By the choice of c̄ we have b |̂ u
M
c̄,

so b |̂ u
M
c≥j by monotonicity, so b |̂ u

Mc>j
cj by base monotonicity. On the other

hand we know that (ci)i∈ω is a Morley sequence, so ci |̂ uM c<i. It follows from this
(exercise) that c>j |̂ uM cj . Combining we get bc>j |̂ uM cj by left transitivity.

Applying the inductive assumption (taking b′ = b (cj)1≤j<k and ψ′ (x, b′) =

ψ (x, b) ∨
∨

1≤j<k
∨
i<n φi (x, cj), as p (x) ` ψ′ (x, b′) ∨

∨
i<n φi (x, c0) and b′ |̂ u

M
c0

by the Claim) we get:

p (x) ` ψ (x, b) ∨
∨

1≤j<k

∨
i<n

φi (x, cj)

Repeating the argument we get:

p (x) ` ψ (x, b) ∨
∨

2≤j<k

∨
i<n

φi (x, cj)

...

p (x) ` ψ (x, b) ∨
∨

k−1≤j<k

∨
i<n

φi (x, cj)

p (x) ` ψ (x, b) .
�

Remark 46. Hrushovski observed a similarity between the Broom Lemma and Neu-
mann’s lemma from group theory, see [Hod93, Lemma 4.2.1]. It would be very
curious to make this parallel more precise.

Corollary 47. If p (x) is a consistent global partial type invariant over M , then
it does not fork over M .

Proof. By Lemma 45 taking x 6= x as ψ (x, b). �

Remark 48. We knew it in the special case of complete global types by Corollary
21.

Now we are ready to show that every type over a model has a global strictly
invariant extension.

Theorem 49. Let T be NTP2 and M |= T . Then every type over M has a global
extension strictly invariant over M .
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Proof. Given p (x) ∈ S (M) let a |= p. Consider the partial type

p (x)
∪

{¬φ (x, b) : φ (a, y) forks over M, φ ∈ L (M) , a ∈M}
∪

{ψ (x, c)↔ ψ (x, c′) : c ≡M c′, ψ ∈ L (M) , c, c′ ∈M} .
It is enough to show that this type is consistent, as then any of its completions

will be a global extension of p strictly invariant overM . If not, then by compactness
(and the fact that any disjunction of forking formulas is still a forking formula) we
get:

p (x) ` φ (x, b) ∨
∨
i<n

(ψi (x, ci) 6↔ ψi (x, c′i))

where φ (a, y) forks over M and ci ≡M c′i. Since φ (a, y) forks over M , the
partial type q (y) = {φ (a′, y) : a′ ≡M a} also forks over M . As q (y) is invari-
ant over M , by Corollary 47 it is inconsistent. Then by compactness there are
a0, . . . , am−1 ≡M a such that {φ (ai, y)}i<m is inconsistent. But as M is a model,
by Fact 10 the type tp (a0 . . . am−1/M) has a global extension p∗ (x0, . . . , xm−1)
invariant over M . Each p∗|xj is invariant over M , and p∗|xj ⊃ p (xj) ` φ (xj , b) ∨∨
i<n (ψi (xj , ci) 6↔ ψi (xj , c

′
i)). It follows that p∗ (x0, . . . , xm−1) ` φ (x0, b) ∧ . . . ∧

φ (xm−1, b) — a contradiction. �

Finally we show that dividing and forking over a model are the same.

Theorem 50. Let T be NTP2 and M |= T . Then φ (x, a) divides over M if and
only if it forks over M .

Proof. Assume that φ (x, a) forks overM , i.e. φ (x, a) `
∨
i≤n φi (x, bi) and φi (x, bi)

divides overM . By Theorem 49, let p (y, z≤n) be a global type extending tp (ab0 . . . bn/M)
and strictly invariant overM . Let (ajb0,j . . . bn,j)j∈ω be a Morley sequence of p over
M . By Theorem 42 there is some k ∈ ω such that {φi (x, bi,j)}j∈ω is k-inconsistent
for each i ≤ n. As φ (x, aj) `

∨
i≤n φi (x, bi,j) for all j ∈ ω, it follows by the pigeon-

hole principle that {φ (x, aj)}j∈ω is inconsistent. As (aj)j∈ω is an M -indiscernible
sequence starting with a this shows that φ (x, a) divides over M . �

Fact 51. The following are equivalent for an arbitrary theory T :
(1) T is NTP2.
(2) For every model M |= T and φ (x, a) dividing over M , if (ai)i∈ω is a

Morley sequence of some global strictly M -invariant extension of tp (a/M)
then{φ (x, ai)}i∈ω is inconsistent.

We had demonstrated that (1) implies (2), and for (2) implies (1) see [Che12].

6.1. Extension bases.

Definition 52. A set A is called an extension base if every p (x) ∈ S (A) does not
fork over A. Equivalently, every type in S (A) has a global extension non-forking
over A. A theory is called extensible if every set is an extension base.

Remark 53. (1) A is an extension base if and only if acl (A) is an extension
base.
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(2) T is extensible if and only if for every set A, every 1-type p ∈ S1 (A) has a
global non-forking extension.

Proof. (1) Assume that A is not an extension base, say p (x) ∈ S (A) forks over A,
i.e p (x) `

∨
i<n φi (x, ai) where φi (x, ai) divides over A. Let p′ (x) ∈ S (acl (A)) be

an arbitrary extension of p. Then still p′ (x) `
∨
i<n φi (x, ai). Notice that each of

φi (x, ai) divides over acl (A) (exercise: ā is indiscernible over A if and only if it is
indiscernible over acl (A)), so p′ forks over acl (A).

(2) Follows from left transitivity of |̂ : if a |̂
A
A and b |̂

aA
aA then ab |̂

A
A.
�

Example 54. Some examples of extension bases:
(1) Any model in any theory is an extension base (because every type p (x) ∈

S (M) has a global extension finitely satisfiable in M by Fact 10).
(2) Any simple theory is extensible ([Wag00]).
(3) Any o-minimal theory is extensible.
(4) Any c-minimal theory is extensible (follows from the existence of generic

1-types over algebraically closed sets and Remark 53(2)).
(5) Any ordered dp-minimal theory is extensible (e.g. linear order with a dense-

codense predicate named).
(6) Any theory with definable Skolem functions is extensible (e.g. Qp in the

language of rings; follows by (1), Remark 53(1) and the fact that acl (A) ≺
M in a theory with Skolem functions).

As we saw, no type p ∈ S (A) can divide over A. Then of course, if fork-
ing=dividing over A, then A is an extension base. We show that the converse is
true in NTP2 theories.

Lemma 55. Assume that A ⊆ B and that B |̂ d
A
c. Then φ (x, c) divides over A

if and only if it divides over B.

Proof. If φ (x, c) divides over B, then it divides over any subset of B by the def-
inition. On the other hand, assume that it divides over A, then there is an A-
indiscernible sequence c̄ = (ci) such thatc = c0 and {φ (x, ci)}i∈ω is inconsistent.
By Lemma 27 we can find some c̄′ ≡Ac c̄ and such that c̄′ is indiscernible over B.
But then {φ (x, c′i)}i∈ω is inconsistent (as c̄ ≡M c̄′), and so c̄′ witnesses that φ (x, c)
divides over B. �

Theorem 56. Let T be NTP2 and A an extension base. Then φ (x, c) divides over
A if and only if it forks over A.

Proof. Assume that φ (x, a) forks overA, say φ (x, a) `
∨
i≤n ψi (x, bi) where ψi (x, bi)

divides over A. LetM ⊇ A be an arbitrary model. As A is an extension base, there
is some M ′ ≡A M such that M ′ |̂

A
ab0 . . . bn. By Lemma 55 ψi (x, bi) divides

over M ′ for each i, so φ (x, a) forks over M ′. But then φ (x, a) divides over M ′ by
Theorem 50, thus it divides over A by Lemma 55. �

7. Lecture 6

In this lecture we will finally prove that in an NTP2 theory, if A is an extension
base then F (A) is a generically prime ideal. But we have to do some more work
first.
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Problem 57. It is still open if F (A) is generically prime for any set A in an NTP2

theory.

7.1. Array dividing. The material here is from [BYC12]. For the clarity of ex-
position (and since this is all that we will need) we only deal in this section with
2-dimensional arrays. All our results generalize to n-dimensional arrays by an easy
induction (or even to λ-dimensional arrays for an arbitrary ordinal λ, by compact-
ness; see [?, Section 1]).

Definition 58. (1) We say that (aij)i,j∈κ is an indiscernible array over A if

both
(

(aij)j∈κ

)
i∈κ

and
(
(aij)i∈κ

)
j∈κ are indiscernible sequences. Equiva-

lently, all n×n sub-arrays have the same type over A, for all n < ω. Equiv-
alently, tp(ai0j0ai0j1 ...ainjn/A) depends just on the quantifier-free order
types of {i0, ..., in} and {j0, ..., jn}. Notice that, in particular,

(
aif(i)

)
i∈κ

is an A-indiscernible sequence of the same type for any strictly increasing
function f : κ→ κ.

(2) We say that an array (aij)i,j∈κ is very indiscernible over A if it is an indis-
cernible array over A, and in addition its rows are mutually indiscernible
over A, i.e. (aij)j∈κ is indiscernible over (ai′j)i′∈κ\{i},j∈κ for each i ∈ κ.

Definition 59. We say that ϕ(x, a) array-divides overA if there is anA-indiscernible
array (aij)i,j∈ω such that a00 = a and {ϕ(x, aij)}i,j∈ω is inconsistent.

Definition 60. Given an array A = (aij)i,j∈ω and k ∈ ω, we define:

(1) Ak =
(
a′ij
)
i,j∈ω with a′ij = a(ik)ja(ik+1)j . . . a(ik+k−1)j .

(2) AT = (aji)i,j∈ω, namely the transposed array.
(3) Given a formula ϕ (x, y), we let ϕk (x, y0 . . . yk−1) =

∧
i<k ϕ (x, yi).

(4) Notice that with this notation
(
Ak
)l

= Akl and
(
ϕk
)l

= ϕkl.

Lemma 61. (1) If A is a B-indiscernible array, then Ak (for any k ∈ ω) and
AT are B-indiscernible arrays.

(2) If A is a very indiscernible array over B, then Ak is a very indiscernible
array over B (for any k ∈ ω).

Lemma 62. Assume that T is NTP2 and let (aij)i,j∈ω be a very indiscernible
array. Assume that the first column {ϕ (x, ai0)}i∈ω is consistent . Then the whole
array {ϕ (x, aij)}i,j∈ω is consistent.

Proof. Let ϕ (x, y) and a very indiscernible array A = (aij)i,j∈ω be given. By
compactness, it is enough to prove that {ϕ (x, aij)}i<k,j∈ω is consistent for every
k ∈ ω. So fix some k, and let Ak = (bij)i,j∈ω — it is still a very indiscernible array
by Lemma 61. Besides

{
ϕk (x, bi0)

}
i∈ω is consistent. But then

{
ϕk (x, bij)

}
j∈ω

is consistent for some i ∈ ω (as otherwise ϕk would have TP2 by the mutual
indiscernibility of rows), thus for i = 0 (as the sequence of rows is indiscernible).
Unwinding, we conclude that {ϕ (x, aij)}i<k,j∈ω is consistent. �

Lemma 63. Let A = (aij)i,j∈ω be an indiscernible array and assume that the
diagonal {ϕ (x, aii)}i∈ω is consistent. Then for any k ∈ ω, if Ak = (bij)i,j∈ω then
the diagonal

{
ϕk (x, bii)

}
i∈ω is consistent.
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Proof. By compactness we can extend our array A to (aij)i∈ω×ω,j∈ω and let bij =

ai×ω+j,i. It then follows that (bij)i,j∈ω is a very indiscernible array and that
{ϕ (x, bi0)}i∈ω is consistent. But then {ϕ (x, bij)}i,j∈ω is consistent by Lemma 62 ,
and we can conclude by indiscernibility of A.

�

Proposition 64. Assume T is NTP2. If (aij)i,j∈ω is an indiscernible array and
the diagonal {ϕ(x, aii)}i∈ω is consistent, then the whole array {ϕ(x, aij)}i,j∈ω is
consistent. Moreover, this property characterizes NTP2.

Proof. Let κ ∈ ω be arbitrary. LetAk = (bij)i,j∈ω, then its diagonal
{
ϕk (x, bii)

}
i∈ω

is consistent by Lemma 63. As B =
(
Ak
)T has the same diagonal, using Lemma

63 again we conclude that if Bk = (cij)i,j∈ω, then its diagonal
{
ϕk

2

(x, cii)
}
i∈ω

is

consistent. In particular {ϕ (x, aij)}i,j<k is consistent. Conclude by compactness.

“Moreover” follows from the fact that if T has TP2, then there is a very indis-
cernible array witnessing this (see Remark 35). �

Corollary 65. Let T be NTP2. Then ϕ(x, a) divides over A if and only if it
array-divides over A.

Proof. If (aij)i,j∈ω is an A-indiscernible array with a00 = a, then {ϕ(x, aii)}i∈ω is
consistent since (aii)i∈ω is indiscernible over A and ϕ(x, a) does not divide over A,
apply Proposition 64. �

Exercise 66. Find an example of a formula which array-divides but does not
divide.
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7.2. Generic primality of forking ideals.

Proposition 67. Let T be NTP2 and M � T . If (āi)i∈ω is indiscernible over M
and φ (x, a0) does not divide over M , then φ (x, a0) ∧ φ (x, a1) does not divide over
M .

Proof. Assume not, let κ be very large compared to |M |, and let ā0 = (a0j)j∈κ be
indiscernible over M , ϕ(x, a00) does not divide over M , but ϕ(x, a00) ∧ ϕ(x, a01)
does. By Theorem 49, we know that tp (ā0/M) has a global extension strictly
invariant over M , let’s call it Q (ȳ) where ȳ = (yj)j∈ω. Let (āi)i∈ω be a Morley
sequence of Q (ȳ) over M . Note that:

(1) φ (x, a0j)∧ φ (x, a0j′) divides over M for any j 6= j′ ∈ κ (by indiscernibility
of ā0 over M and the assumption),

(2) qj,j′ (yj , yj′) = Q (ȳ) �yj ,yj′ is still a global type strictly invariant over M
and (ai,jai,j′)i∈ω is a Morley sequence of qj,j′ over M ,

(3) {φ (x, ai,j) ∧ φ (x, ai,j′)}i∈ω is inconsistent for any j 6= j′ ∈ κ (combining
(1), (2) and Theorem 42 ).

As κ was sufficiently large with respect to |M |+ℵ0, by Fact 3 we can extract anM -
indiscernible sequence

((
a′ij
)
i∈ω

)
j∈ω

from the sequence of columns
(
(aij)i∈ω

)
j∈κ,

such that type of every finite subsequence of it over M is already present in the
original sequence. Then also

((
a′ij
)
j∈ω

)
i∈ω

is an indiscernible sequence overM (as

(āi)i∈ω was an indiscernible sequence over M). It follows that
(
a′ij
)
i,j∈ω is an M -

indiscernible array and that
{
ϕ(x, a′ij)

}
i,j∈ω is inconsistent (by (3)), thus ϕ(x, a00)

array-divides over M , thus divides over M , by Corollary 65 — a contradiction. �

Theorem 68. If T is NTP2 and A is an extension base, then F (A) is generically
prime.

Proof. Let C be an extension base and ā = (ai)i∈ω be an A-indiscernible sequence.
As C is an extension base, we can find M ⊇ C such that M |̂

C
ā. It follows by

Lemma 55 that for any n ∈ ω,
∧
i<n ϕ(x, ai) divides over C if and only if it divides

overM . It follows from Proposition 67 that if ϕ(x, a0) does not divide over C, then
{ϕ(x, ai)}i∈ω does not divide over C.

To conclude recall that ψ (x, b) divides over A if and only if it forks over A (by
Theorem 56) and apply Proposition 14 to F (A). �

8. Further topics

(1) Forking in NIP
(a) Non-forking = invariance.
(b) Bound on the number of non-forking extensions.
(c) NIP = NTP2 + boundedness of non-forking (see the proof in ).
(d) Measures. Measurability of forking.
(e) Generically stable types.

(2) Forking in simple theories
(a) Symmetry, transitivity, local character are all equivalent to simplicity.
(b) Independence theorem, higher amalgamation.
(c) Canonicity: forking is the only independence relation satisfying the

independence theorem.
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(d) Lascar strong types, hyperimaginaries, canonical bases.
(e) Ranks, supersimplicity.

(3) Forking in stable theories
(a) Stationarity.
(b) Definable types.
(c) ...
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