Model-theoretic approach to multi-dimensional de Finetti theory

Artem Chernikov

UCLA

2015 RIMS Model Theory Workshop

“Model theoretic aspects of the notion of independence and dimension”

Kyoto, Dec 14, 2015
Joint work with Itaï Ben Yaacov.
We fix a complete countable first-order theory T in a language L.

Let \mathbb{M} be a monster model of T (i.e. κ^*-saturated and κ^*-homogeneous for some sufficiently large cardinal κ^*).

Given a set $A \subseteq \mathbb{M}$, we let $S(A)$ denote the space of types over A (i.e. the Stone space of ultrafilters on the Boolean algebra of A-definable subsets of \mathbb{M}).
Definition

1. We say that T encodes a linear order if there is a formula $\phi(\bar{x}, \bar{y}) \in L$ and $(\bar{a}_i : i \in \omega)$ in M such that $M \models \phi(\bar{a}_i, \bar{a}_j) \iff i < j$.

2. A theory T is stable if it cannot encode a linear order.

3. Equivalently, for some cardinal κ we have

$$\sup \{|S(M)| : M \models T, |M| = \kappa\} = \kappa.$$

Examples of stable first-order theories: equivalence relations, modules, algebraically closed fields, separably closed fields, free groups, planar graphs.
Stability: indiscernible sequences and sets

Definition

1. \((a_i : i \in \omega)\) is an indiscernible sequence over a set of parameters \(B\) if \(\text{tp}(a_{i_0} \ldots a_{i_n}/B) = \text{tp}(a_{j_0} \ldots a_{j_n}/B)\) for any \(i_0 < \ldots < i_n\) and \(j_0 < \ldots < j_n\) from \(\omega\).
2. \((a_i : i \in \omega)\) is an indiscernible set over \(B\) if \(\text{tp}(a_{i_0} \ldots a_{i_n}/B) = \text{tp}(a_{\sigma(i_0)} \ldots a_{\sigma(i_n)}/B)\) for any \(\sigma \in S_\infty\).

Fact

The following are equivalent:

1. \(T\) is stable.
2. Every indiscernible sequence is an indiscernible set.
Stability: limit types

Fact
If T is stable and $(a_i : i \in \omega)$ is an indiscernible sequence, then for any formula $\phi(x) \in L(M)$, the set $\{ i : \models \phi(a_i) \}$ is either finite or cofinite.

Definition
For an indiscernible sequence $\bar{a} = (a_i : i \in \omega)$ and a set of parameters B, we let $\lim (\bar{a}/B)$, the limit type of \bar{a} over B, be the set $\{ \phi(x) \in L(B) : \models \phi(a_i) \text{ for all but finitely many } i \in \omega \}$. In view of the fact, this is a consistent complete type.
Stability: the independence relation

Fact

The following are equivalent:

1. T is stable.

2. There is an independence relation \perp on small subsets of \mathbb{M} (i.e. of cardinality $< \kappa^*$) satisfying certain natural axioms: Aut(\mathbb{M})-invariance, finite character, symmetry, monotonicity, base monotonicity, transitivity, extension, local character, boundedness.

- In fact, if such a relation exists, then it is unique and corresponds to Shelah’s non-forking — a canonically defined way of producing “generic” extensions of types.

- Examples: linear independence in vector spaces, algebraic independence in algebraically closed fields.
Stability: Morley sequences

Definition
A sequence \((a_i)_{i \in \omega}\) in \(M\) is a Morley sequence in a type \(p \in S(B)\) if it is a sequence of realizations of \(p\) indiscernible over \(B\) and such that moreover \(a_i \downarrow_B a_{<i}\) for all \(i \in \omega\).

Fact
In a stable theory, every type admits a Morley sequence (Erdős-Rado + compactness + properties of forking independence).

- An important technical tool in the development of stability.
- Example: an infinite basis in a vector space is a Morley sequence over \(\emptyset\).
A type $p \in S(A)$ is stationary if it admits a unique global non-forking extension.

Definition
In a stable theory, every stationary type has a canonical base — a small set such that every automorphism of M fixing it fixes the global non-forking extension of p.

- In fact, such a set is unique up to bi-definability, so we can talk about the canonical base of a type, $Cb(p)$.
- If we want every type to have a canonical base, we might have to add imaginary elements for classes of definable equivalence relations to the structure, i.e. working in M^{eq}, but this is a tame procedure.
The **definable closure** of a set $A \subseteq M$: $\text{dcl}(A) = \{b \in M : \exists \phi(x) \in L(A) \text{ s.t. } \models \phi(b) \land |\phi(x)| = 1\}$.

The **algebraic closure** of a set $A \subseteq M$: $\text{acl}(A) = \{b \in M : \exists \phi(x) \in L(A) \text{ s.t. } \models \phi(b) \land |\phi(x)| < \infty\}$.

Fact

Every indiscernible sequence $(a_i)_{i \in \omega}$ is a Morley sequence over the canonical base of its limit type, and this canonical base is equal to $\bigcap_{n \in \omega} \text{dcl}^{eq}(a_{\geq n})$.
Let $(\Omega, \mathcal{F}, \mu)$ be a probability space.

Let $\bar{X} = (X_i)_{i \in \omega}$ be a sequence of $[0, 1]$-valued random variables on Ω (i.e. $X_i : \Omega \to [0, 1]$ is a measurable function).

The sequence \bar{X} is *exchangeable* if
\[(X_{i_0}, \ldots, X_{i_n}) \overset{d}{=} (X_0, \ldots, X_n) \text{ for any } i_0 \neq \ldots \neq i_n \text{ and } n \in \omega.\]

Example: A sequence of i.i.d. (independent, identically distributed) random variables.

Is the converse true? Yes, *up to a “mixing”*.
Classical de Finetti’s theorem

Definition
If A is a collection of random variables, let $\sigma(A) \subseteq \mathcal{F}$ denote the minimal σ-subalgebra with respect to which every $X \in A$ is measurable.

Fact
[de Finetti] A sequence of random variables $(X_i)_{i \in \omega}$ is exchangeable if and only if it is i.i.d. over its tail σ-algebra $T = \bigcap_{n \in \omega} \sigma(X_{\geq n})$.

- It is a special case of the model-theoretic result above, but in the sense of continuous logic.
Continuous logic

- Reference: Ben Yaacov, Berenstein, Henson, Usvyatsov “Model theory for metric structures”.

- Every structure M is a complete metric space of bounded diameter, with metric d.

- Signature:
 - function symbols with given moduli of uniform continuity (correspond to uniformly continuous functions from M^n to M),
 - predicate symbols with given moduli of uniform continuity (uniformly continuous functions from M to $[0, 1]$).

- Connectives: the set of all continuous functions from $[0, 1] \rightarrow [0, 1]$, or any subfamily which generates a dense subset (e.g. $\{\neg, \frac{x}{2}, \cdot\}$).

- Quantifiers: sup for \forall, inf for \exists.

- This logic admits a compactness theorem, etc.
Stability in continuous logic

- Summary: everything is essentially the same as in the classical case (Ben Yaacov, Usvyatsov “Continuous first-order logic and local stability”).

- Of course, modulo some natural changes: cardinality is replaced by the density character, in acl “finite” is replaced by “compact”, some equivalences are replaced by the ability to approximate uniformly, etc.

- Examples of stable continuous theories: (unit balls in) infinite-dimensional Hilbert space, atomless probability algebras, (atomless) random variables, Keisler randomization of an arbitrary stable theory.
The theory of random variables

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space, and let $L^1((\Omega, \mathcal{F}; \mu), [0, 1])$ be the space of $[0, 1]$-valued random variables on it.

We consider it as a continuous structure in the language $L_{RV} = \{0, \neg, \frac{x}{2}, \cdot\}$ with the natural interpretation of the connectives (e.g. $(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$) and the distance $d(X, Y) = E[|X - Y|] = \int_{\Omega} |X - Y| \, d\mu$.
The theory of random variables

Consider the following continuous theory RV in the language L_{RV}, we write 1 as an abbreviation for $\neg 0$, $E(x)$ for $d(0, x)$ and $x \land y$ for $x - \left(x - y\right)$:

- $E(x) = E\left(x - y\right) + E(y \land x)$
- $E(1) = 1$
- $d(x, y) = E\left(x - y\right) + E\left(y - x\right)$
- $\tau = 0$ for every term τ which can be deduced in the propositional continuous logic.

The theory ARV is defined by adding:

- Atomlessness: $\inf_y \left(E\left(y \land \neg y\right) \lor \left| E\left(y \land x\right) - \frac{E(x)}{2}\right| \right) = 0$.
The theory of random variables: basic properties

Fact
[Ben Yaacov, “On theories of random variables”]

1. $M \models \text{RV} \iff$ it is isomorphic to $L^1(\Omega, [0, 1])$ for some probability space $(\Omega, \mathcal{F}, \mu)$.

2. $M \models \text{ARV} \iff$ it is isomorphic $L^1(\Omega, [0, 1])$ for some atomless probability space $(\Omega, \mathcal{F}, \mu)$.

3. ARV is the model completion of the universal theory RV (so every probability space embeds into a model of ARV).

4. ARV eliminates quantifiers, and two tuples have the same type over a set $A \subseteq M$ if and only if they have the same joint conditional distribution as random variables over $\sigma(A)$.
Fact

[Ben Yaacov, “On theories of random variables”]

1. ARV is \(\aleph_0 \)-categorical (i.e., there is a unique separable model) and complete.

2. ARV is stable (and in fact \(\aleph_0 \)-stable).

3. ARV eliminates imaginaries.

4. If \(M \models ARV \) and \(A \subseteq M \), then
 \[\text{dcl}(A) = \text{acl}(A) = L^1(\sigma(A), [0, 1]) \subseteq M. \]

5. Model-theoretic independence coincides with probabilistic independence:
 \(A \indep_B C \iff \mathbb{P}[X|\sigma(BC)] = \mathbb{P}[X|\sigma(B)] \)
 for every \(X \in \sigma(A) \). Moreover, every type is stationary.
Back to de Finetti

- As every model of RV embeds into a model of ARV, wlog our sequence of random variables is from $\mathbb{M} \models \text{ARV}$.
- Recall: In a stable theory, every indiscernible sequence is an indiscernible set.

Corollary

[Ryll-Nardzewski] A sequence of random variables is exchangeable iff it is contractable (i.e. $X_{i_0} \ldots X_{i_n} \overset{d}{=} X_0 \ldots X_n$ for all $i_0 < \ldots < i_n$).

- Recall: In a stable theory, every indiscernible sequence is a Morley sequence over the definable tail closure.

Corollary

De Finetti’s theorem.
Multi-dimensional de Finetti

A reformulation of de Finetti’s theorem:

Fact

$(X_i)_{i \in \omega}$ is exchangeable iff there is a measurable function $f : [0, 1]^2 \rightarrow \Omega$ and some i.i.d. $[0, 1]$-random variables α and $(\xi_i)_{i \in \omega}$ such that a.s. $X_n = f(\alpha, \xi_i)$.

f is not unique here, and we might have to extend the basic probability space.
Multi-dimensional de Finetti

- So, 1-dimensional case was already folklore in stability theory.
- There is a multi-dimensional theory of exchangeable arrays in probability.

Fact

[Aldous, Hoover] An array of random variables $X = (X_{i,j})$ is exchangeable iff there exist a measurable function $f : [0, 1]^4 \to \Omega$ and some i.i.d. random variables $\alpha, \xi_i, \eta_j, \zeta_{i,j}$ such that a.s. $X_{i,j} = f(\alpha, \xi_i, \eta_j, \zeta_{i,j})$.

- [Kallenberg] for n-dimensional case.
- Can also be reformulated in terms of independence over certain “tail algebras”. We give a model-theoretic generalization for arbitrary stable theories.
Definition
A (2-dimensional) array \((a_{i,j} : i, j \in \omega)\) is indiscernible if both the sequence of rows and the sequence of columns are indiscernible. Appeared in [Hrushovski, Zilber, “Zariski geometries”] for recovering groups and fields, and in the study of forking and dividing in simple and \(NTP_2\) theories.
Theorem
Let T be stable, and let $(a_{i,j} : i,j \in \omega)$ be an indiscernible array. Let:

- $r_i = \bigcap_{n \in \omega} \text{dcl}^{\text{eq}} (a_{i,>n})$ and $c_j = \bigcap_{n \in \omega} \text{dcl}^{\text{eq}} (a_{>n,j})$ be the tail closures of the i's row and the j's column, respectively.
- Let also $r'_i = \bigcap_{n \in \omega} \text{dcl}^{\text{eq}} (a_{i,>n} a_{>n,>n})$ and $c'_j = \bigcap_{n \in \omega} \text{dcl}^{\text{eq}} (a_{>n,j} a_{>n,>n})$, i.e. we add the limit corner closure as well.

Then, for any $i,j \in \omega$ we have $a_{i,j} \downarrow_{r_i c'_j} a \neq (i,j)$, as well as $a_{i,j} \downarrow_{r'_i c_j} a \neq (i,j)$.

- Also an appropriate generalization to n-dimensional array.
Some questions remain:

- whether \(Cb (a_{i,j} / a \neq (i,j)) \in dcl^{eq} (r'_i c'_j) \) (as opposed to \(acl^{eq} \), true in probability algebras, unlikely in general),
- whether it is enough to take \(c_i r_j d \) in the base, where \(d \) is the diagonal corner closure \(\bigcap_{n \in \omega} dcl^{eq} (a_{>n,>n}) \),
- some connections to lovely pairs of lovely pairs.

Non-commutative probability theory: no longer stable, no model complete theory and no quantifier elimination, but there is an appropriate notion of independence on quantifier-free types.