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Some history
I We consider complete first-order theories in a countable

language, M denotes a monster model.
I Shelah’s philosophy of dividing lines — classify complete

first-order theories by their ability to encode certain
combinatorial configurations. He identified several very
concrete configurations (e.g. linear order in the case of
stability) such that:

I when the theory cannot encode them, the category of definable
sets and types admits a coherent theory (forking, ranks,
weight, analyzability, etc leading to a classification of models);

I when it can, one can prove a non-structure result (many
models in the case of stability).

I In algebraic situations such as groups or fields, these
model-theoretic properties turn out to be closely related to
algebraic properties of the structure.

I Later work of Zilber, Hrushovski and others on geometric
stability theory produced deep aplications to purely algebraic
questions.



Some history

I Unfortunately, most structures studied in mathematics are not
stable.

I Simple theories: developed by Shelah, Hrushovski, Kim, Pillay,
Chatzidakis, Wagner and others. Applications in algebraic
dynamics, etc.

I Various minimality settings: o-minimality, c-minimality,
p-minimality, etc — concentrated on definable sets rather than
types, not quite in the spirit of stability theory.

I Common context to treat these settings — NIP: Pillay’s
conjecture on groups in o-minimal theories, work of Haskell,
Hrushovski and Macpherson on algebraically closed valued
fields and stable domination.



Shelah’s classification theory and generalizations of stability



NTP2

Definition
[Shelah]
1. A formula φ (x , y), where x and y are tuples of variables, has

TP2 (Tree Property of the 2nd kind) if there is an array
(ai ,j)i ,j∈ω of tuples from M and k ∈ ω such that:

I {φ (x , ai,j)}j∈ω is k-inconsistent for every i ∈ ω.
I
{
φ
(
x , ai,f (i)

)}
i∈ω is consistent for every f : ω → ω.

2. A theory is NTP2 if it implies that no formula has TP2.

Fact
[Ch.] Enough to check formulas with |x | = 1.

Fact
Every simple or NIP theory is NTP2.



NTP2

I In [Ch., Kaplan] and later [Ben Yaacov, Ch.] a reasonable
theory of forking over extension bases in NTP2 theories was
developed:

I encorporates the theory of forking in simple theories due to
Kim, Pillay, Hrushovski and others as a special case;

I provides answers to some questions of Pillay and Adler around
forking and dividing in the case of NIP.

I Guiding principle (rather naive) — NTP2 is a combination of
simple and NIP (e.g. densely ordered random graph, the
model companion of the theory of ordered graphs, is neither
simple nor NIP; but it is NTP2).



Examples of NTP2 fields: ultraproducts of p-adics

I For every prime p, the valued field (Qp,+,×, 0, 1) is NIP.
I However, consider the valued field K =

∏
p primeQp/U

(where U is a non-principal ultrafilter on the set of prime
numbers) — a central object in the model theoretic
applications to valued fields after the work of Ax and Kochen.

I The theory of K is not simple: because the value group is
linearly ordered.

I The theory of K is not NIP: the residue field is pseudofinite,
thus has the independence property by a result of Duret.

I Both even in the pure ring language: as the valuation ring is
definable uniformly in p (Ax).

I Canonical models: Hahn fields of the form k
((
tZ
))
, where k

is a pseudofinite field.



Ax-Kochen principle for NTP2

Fact
[Delon + Gurevich, Schmitt] Let K = (K , Γ, k, v , ac) be a henselian
valued field of equicharacteristic 0, in the Denef-Pas language.
Assume that k is NIP. Then K is NIP.

Theorem
[Ch.] Let K = (K , Γ, k , v , ac) be a henselian valued field of
equicharacteristic 0, in the Denef-Pas language. Assume that k is
NTP2. Then K is NTP2.

Corollary
K =

∏
p primeQp/U is NTP2 because the residue field is

pseudofinite, so simple, so NTP2.
Problem: Show an analogue for positive characteristic (Belair for
NIP).



Valued difference fields

I (K , Γ, k , v , σ) is a valued difference field if (K , Γ, k, v , ac) is a
valued field and σ is a field automorphism preserving the
valuation ring.

I Note that σ induces natural automorphisms on k and on Γ.
I Because of the order on the value group, it follows by

[Kikyo,Shelah] the there is no model companion of the theory
of valued difference fields.

I The automorphism σ is contractive if for all x ∈ K with
v (x) > 0 we have v (σ (x)) > nv (x) for all n ∈ ω.

I Example: Let (Fp, Γ, k , v , σ) be an algebraically closed valued
field of char p with σ interpreted as the Frobenius
automorphism. Then

∏
p prime Fp/U is a contractive valued

difference field.



Valued difference fields

[Hrushovski], [Durhan] Ax-Kochen principle for σ-henselian
contractive valued difference fields (K , Γ, k , v , σ, ac):

I Elimination of the field quantifier;
I (K , Γ, k , v , σ) ≡ (K ′, Γ′, k ′, v , σ) iff (k , σ) ≡ (k ′, σ) and

(Γ, <, σ) ≡ (Γ′, <, σ);
I There is a model companion VFA0 and it is axiomatized by

requiring that (k , σ) |= ACFA0 and that (Γ,+, <, σ) is a
divisible ordered abelian group with an ω-increasing
automorphism.

I Nonstandard Frobenius is a model of VFA0.
I The reduct to the field language is a model of ACFA0, hence

simple but not NIP. On the other hand this theory is not
simple as the valuation group is definable.



Valued difference fields and NTP2

Theorem
[Ch.-Hils] Let K̄ = (K , Γ, k , v , ac, σ) be a σ-Henselian contractive
valued difference field of equicharacteristic 0. Assume that both
(K , σ) and (Γ, σ), with the induced automorphisms, are NTP2.
Then K̄ is NTP2.

Corollary
VFA0 is NTP2 (as ACFA0 is simple and (Γ,+, <, σ) is NIP).

I Conjecture: One can ommit the requirement on the value
group.

I Besides, our argument also covers the case of σ-henselian
valued difference fields with a value-preserving automorphism
of [Belair, Macintyre, Scanlon] and the multiplicative
generalizations of Kushik.



Some conjectural examples
I A field is pseudo algebraically closed (PAC) if every absolutely

irreducible variety defined over it has a point in it.
I It is well-known that the theory of a PAC field is simple if and

only if it is bounded (i.e. for any integer n it has only finitely
many Galois extensions of degree n). Moreover, if a PAC field
is unbounded, then it has TP2 [Chatzidakis].

I On the other hand, the following fields were studied
extensively:
1. Pseudo real closed (or PRC) fields: a field F is PRC if every

absolutely irreducible variety defined over F that has a rational
point in every real closure of F , has an F -rational point.

2. Pseudo p-adically closed (or PpC) fields: a field F is PpC if
every absolutely irreducible variety defined over F that has a
rational point in every p-adic closure of F , has an F -rational
point.

I Conjecture: A PRC field is NTP2 if and only if it is bounded.
Similarly, a PpC field is NTP2 if and only if it is bounded.



Algebraic properties from tameness assumptions

I [Macintyre] Every ω-stable field is algebraically closed.
I [Cherlin-Shelah] Every superstable field is algebraically closed.
I Conjecture: Every stable field is separably closed.
I Many further results: every o-minimal field is real-closed, every

C -minimal valued field is algebraically closed, etc...



Algebraic properties beyond stability

I Recall that given a field K of characteristic p > 0, an
extension L/K is Artin-Schreier if L = K (α) for some
α ∈ L \ K such that αp − α ∈ K .

I [Kaplan, Scanlon, Wagner]:

1. Let K be an NIP field. Then it is Artin-Schreier closed.
2. Let K be a (type-definable) simple field. Then it has only

finitely many Artin-Schreier extensions.

I Remember our guiding principle: NTP2 ∼ NIP + simple.



NTP2 fields have finitely many Artin-Schreier extensions

Theorem
[Ch., Kaplan, Simon] Let K be a field definable in an NTP2
structure. Then it has only finitely many Artin-Schreier extensions.

I Type-definable case is open even for NIP theories.



Ingredients of the proof

1. [Kaplan-Scanlon-Wagner] For a perfect field K of
characteristic p, given a tuple of algebraically independent
elements ā = (a1, . . . , an) from K and some large algebraically
closed extension K, the group Gā ={

(t, x1, . . . , xn) ∈ Kn+1 : t = ai
(
xpi − xi

)
for 1 ≤ i ≤ n

}
is

algebraically isomorphic over K to (K,+).
2. Chain condition for uniformly definable normal subgroups: Let

G be NTP2 and {ϕ (x , a) : a ∈ C} be a family of normal
subgroups of G . Then there is some k ∈ ω (depending only on
ϕ) such that for every finite C ′ ⊆ C there is some C0 ⊆ C ′

with |C0| ≤ k and such that ⋂
a∈C0

ϕ (x , a) :
⋂
a∈C ′

ϕ (x , a)

 <∞.

3. Combine.



Quantitative measure of NTP2: burden

Definition

1. An inp-pattern of depth κ consists of (āα, ϕα(x , yα), kα)α∈κ
with āα = (aα,i )i∈ω and kα ∈ ω such that:

I {ϕα(x , aα,i )}i∈ω is kα-inconsistent for every α ∈ κ,
I
{
ϕα(x , aα,f (α))

}
α∈κ is consistent for every f : κ→ ω.

2. The burden of T is the supremum of the depths of
inp-patterns with x a singleton, computed in Card∗.



Quantitative measure of NTP2: burden

Possible values of the burden of a theory in a countable language:
1. n ∈ ω \ {0} — there is no inp-pattern of depth ≥ n;
2. ℵ−0 — there are patterns of arbitrary finite depth, but not of

infinite depth. Theories with this burden are called strong;
3. ℵ0 — there is an inp-pattern of infinite depth, but not of

arbitrary large depth. This means that a theory is NTP2, but
not strong;

4. ∞ — there are inp-patterns of depth κ for any cardinal κ.
This is equivalent to TP2 by compactness.



Burden of pseudo-local valued fields
Definition
Theories of burden 1 are called inp-minimal.

Theorem
[Ch., finer version] Let K = (K , Γ, k, v , ac) be a henselian valued
field of equicharacteristic 0, in the Denef-Pas language. Assume
that k and Γ are strong (of finite burden). Then K is strong (resp.
of finite burden).

I But the bound is given by some Ramsey number!

Theorem
[Ch., Simon] All ultraproducts of p-adics are inp-minimal.

Fact
[Simon] Let G be inp-minimal. Then there is a definable normal
abelian subgroup H such that G/H is of finite exponent.

I Question: What happens in higher dimensions? Is burden
subadditive, at least in this example?



Burden of VFA0

I What is the burden of VFA0? We know that it is bounded.
I Observation: [Ch.,Hils] Burden of VFA0 is ≥ n for all n ∈ ω

(as every completion of ACFA has a 1-type of weight n).
I Problem: Is VFA0 strong?



Algebraic implications of strength and finite burden

I Results about definable objects can be now proved about
type-definable objects.

I Proposition [Ch., Kaplan, Simon], a slight generalization of
the argument of [Krupinski, Pillay] for the stable case: Any
infinite strong field is perfect.

I A valued field (K , v) of characteristic p > 0 is Kaplansky if it
satisfies:

1. The valuation group Γ is p-divisible.
2. The residue field k is perfect, and does not admit a finite

separable extension whose degree is divisible by p.

Corollary
[Ch., Kaplan, Simon] Every strongly dependent (i.e. strong and
dependent) valued field is Kaplansky.



Conjecture about definable envelopes of groups

1. [Shelah], [Aldama] If G is a group definable in an NIP theory
and H is a subgroup which is abelian (nilpotent of class n;
normal and soluble of derived length n) then there is a
definable group containing H which is also abelian (resp.
nilpotent of class n; normal and soluble of derived length n).

2. [Milliet] Let G be a group definable in a simple theory and let
H be a subgroup of G .

2.1 If H is nilpotent of class n, then there is a definable (with
parameters from H) nilpotent group of class at most 2n
finitely many translates of which cover H. If H is in addition
normal, then there is a definable normal nilpotent group of
class at most 3n containing H.

2.2 If H is a soluble of class n, then there is a definable (with
parameters from H) soluble group of derived length at most 2n
finitely many translates of which cover H. If H is in addition
normal, then there is a definable normal soluble group of
derived length at most 3n containing H.



Conjecture about definable envelopes of groups

Conjecture: Let G be an NTP2 group and assume that H is a
subgroup. If H is nilpotent (soluble), then there is a definable
nilpotent (resp. soluble) group finitely many translates of which
cover H. If H is in addition normal, then there is a definable normal
nilpotent (resp. soluble) group containing H.
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