Fields with NTP₂

Artem Chernikov

Hebrew University of Jerusalem

Model theory seminar Konstanz, 6 May 2013

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Shelah's classification theory and NTP_2

Examples of fields with NTP₂

Implications of NTP₂ for properties of definable groups and fields

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Quantitative refinements of NTP_2 — burden, strongness, inp-minimality

Some history

- ► We consider complete first-order theories in a countable language, M denotes a monster model.
- Shelah's philosophy of dividing lines classify complete first-order theories by their ability to encode certain combinatorial configurations. He identified several very concrete configurations (e.g. linear order in the case of stability) such that:
 - when the theory cannot encode them, the category of definable sets and types admits a coherent theory (forking, ranks, weight, analyzability, etc leading to a classification of models);
 - when it can, one can prove a non-structure result (many models in the case of stability).
- In algebraic situations such as groups or fields, these model-theoretic properties turn out to be closely related to algebraic properties of the structure.
- Later work of Zilber, Hrushovski and others on geometric stability theory produced deep aplications to purely algebraic questions.

Some history

- Unfortunately, most structures studied in mathematics are not stable.
- Simple theories: developed by Shelah, Hrushovski, Kim, Pillay, Chatzidakis, Wagner and others. Applications in algebraic dynamics, etc.
- Various minimality settings: o-minimality, c-minimality, p-minimality, etc — concentrated on definable sets rather than types, not quite in the spirit of stability theory.
- Common context to treat these settings NIP: Pillay's conjecture on groups in o-minimal theories, work of Haskell, Hrushovski and Macpherson on algebraically closed valued fields and stable domination.

Shelah's classification theory and generalizations of stability

		PA, ZFC
Simple theories Random graph Pseudofinite fields ACFA	NTP ₂	
Stable theories ACF Free groups Planar graphs	NIP theories linear orders trees ordered abelian groups o-minimal theories ACVF Q _p	

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

NTP_2

Definition [Shelah]

- 1. A formula $\phi(x, y)$, where x and y are tuples of variables, has TP₂ (*Tree Property of the 2nd kind*) if there is an array $(a_{i,j})_{i,j\in\omega}$ of tuples from \mathbb{M} and $k \in \omega$ such that:
 - ► $\{\phi(x, a_{i,j})\}_{j \in \omega}$ is *k*-inconsistent for every $i \in \omega$.
 - ► $\{\phi(x, a_{i,f(i)})\}_{i \in \omega}$ is consistent for every $f : \omega \to \omega$.

2. A theory is NTP₂ if it implies that no formula has TP₂.

Fact

[Ch.] Enough to check formulas with |x| = 1.

Fact

Every simple or NIP theory is NTP₂.

NTP_2

- In [Ch., Kaplan] and later [Ben Yaacov, Ch.] a reasonable theory of forking over extension bases in NTP₂ theories was developed:
 - encorporates the theory of forking in simple theories due to Kim, Pillay, Hrushovski and others as a special case;
 - provides answers to some questions of Pillay and Adler around forking and dividing in the case of NIP.

Guiding principle (rather naive) — NTP₂ is a combination of simple and NIP (e.g. densely ordered random graph, the model companion of the theory of ordered graphs, is neither simple nor NIP; but it is NTP₂).

Examples of NTP₂ fields: ultraproducts of *p*-adics

- ▶ For every prime *p*, the valued field $(\mathbb{Q}_p, +, \times, 0, 1)$ is NIP.
- ► However, consider the valued field K = ∏_p prime Q_p/U (where U is a non-principal ultrafilter on the set of prime numbers) — a central object in the model theoretic applications to valued fields after the work of Ax and Kochen.
- ► The theory of K is not simple: because the value group is linearly ordered.
- ► The theory of K is not NIP: the residue field is pseudofinite, thus has the independence property by a result of Duret.
- Both even in the pure ring language: as the valuation ring is definable uniformly in p (Ax).
- ► Canonical models: Hahn fields of the form k ((t^Z)), where k is a pseudofinite field.

Ax-Kochen principle for NTP_2

Fact

[Delon + Gurevich, Schmitt] Let $\mathcal{K} = (K, \Gamma, k, v, ac)$ be a henselian valued field of equicharacteristic 0, in the Denef-Pas language. Assume that k is NIP. Then \mathcal{K} is NIP.

Theorem

[Ch.] Let $\mathcal{K} = (K, \Gamma, k, v, ac)$ be a henselian valued field of equicharacteristic 0, in the Denef-Pas language. Assume that k is NTP₂. Then \mathcal{K} is NTP₂.

Corollary

 $\mathcal{K} = \prod_{p \text{ prime}} \mathbb{Q}_p / \mathcal{U}$ is NTP₂ because the residue field is pseudofinite, so simple, so NTP₂.

Problem: Show an analogue for positive characteristic (Belair for NIP).

Valued difference fields

- (K, Γ, k, v, σ) is a valued difference field if (K, Γ, k, v, ac) is a valued field and σ is a field automorphism preserving the valuation ring.
- Note that σ induces natural automorphisms on k and on Γ .
- Because of the order on the value group, it follows by [Kikyo,Shelah] the there is no model companion of the theory of valued difference fields.
- ► The automorphism σ is *contractive* if for all $x \in K$ with v(x) > 0 we have $v(\sigma(x)) > nv(x)$ for all $n \in \omega$.
- Example: Let (F_p, Γ, k, v, σ) be an algebraically closed valued field of char p with σ interpreted as the Frobenius automorphism. Then Π_p prime F_p/U is a contractive valued difference field.

Valued difference fields

[Hrushovski], [Durhan] Ax-Kochen principle for σ -henselian contractive valued difference fields (K, Γ , k, v, σ , ac):

- Elimination of the field quantifier;
- $(K, \Gamma, k, v, \sigma) \equiv (K', \Gamma', k', v, \sigma)$ iff $(k, \sigma) \equiv (k', \sigma)$ and $(\Gamma, <, \sigma) \equiv (\Gamma', <, \sigma)$;
- There is a model companion VFA₀ and it is axiomatized by requiring that (k, σ) ⊨ ACFA₀ and that (Γ, +, <, σ) is a divisible ordered abelian group with an ω-increasing automorphism.</p>
- Nonstandard Frobenius is a model of VFA₀.
- The reduct to the field language is a model of ACFA₀, hence simple but not NIP. On the other hand this theory is not simple as the valuation group is definable.

Valued difference fields and NTP₂

Theorem

[Ch.-Hils] Let $\bar{K} = (K, \Gamma, k, v, ac, \sigma)$ be a σ -Henselian contractive valued difference field of equicharacteristic 0. Assume that both (K, σ) and (Γ, σ) , with the induced automorphisms, are NTP₂. Then \bar{K} is NTP₂.

Corollary

VFA₀ is NTP₂ (as ACFA₀ is simple and $(\Gamma, +, <, \sigma)$ is NIP).

- Conjecture: One can ommit the requirement on the value group.
- Besides, our argument also covers the case of σ-henselian valued difference fields with a value-preserving automorphism of [Belair, Macintyre, Scanlon] and the multiplicative generalizations of Kushik.

Some conjectural examples

- ► A field is pseudo algebraically closed (PAC) if every absolutely irreducible variety defined over it has a point in it.
- It is well-known that the theory of a PAC field is simple if and only if it is bounded (i.e. for any integer n it has only finitely many Galois extensions of degree n). Moreover, if a PAC field is unbounded, then it has TP₂ [Chatzidakis].
- On the other hand, the following fields were studied extensively:
 - 1. Pseudo real closed (or PRC) fields: a field F is PRC if every absolutely irreducible variety defined over F that has a rational point in every real closure of F, has an F-rational point.
 - 2. Pseudo *p*-adically closed (or PpC) fields: a field *F* is PpC if every absolutely irreducible variety defined over *F* that has a rational point in every *p*-adic closure of *F*, has an *F*-rational point.
- Conjecture: A PRC field is NTP₂ if and only if it is bounded. Similarly, a PpC field is NTP₂ if and only if it is bounded.

Algebraic properties from tameness assumptions

- [Macintyre] Every ω -stable field is algebraically closed.
- ► [Cherlin-Shelah] Every superstable field is algebraically closed.
- Conjecture: Every stable field is separably closed.
- Many further results: every o-minimal field is real-closed, every C-minimal valued field is algebraically closed, etc...

ション ふゆ く 山 マ チャット しょうくしゃ

Algebraic properties beyond stability

- Recall that given a field K of characteristic p > 0, an extension L/K is Artin-Schreier if L = K (α) for some α ∈ L \ K such that α^p − α ∈ K.
- [Kaplan, Scanlon, Wagner]:
 - 1. Let K be an NIP field. Then it is Artin-Schreier closed.
 - 2. Let K be a (type-definable) simple field. Then it has only finitely many Artin-Schreier extensions.

ション ふゆ く 山 マ ふ し マ うくの

• Remember our guiding principle: $NTP_2 \sim NIP + simple$.

NTP₂ fields have finitely many Artin-Schreier extensions

Theorem

[Ch., Kaplan, Simon] Let K be a field definable in an NTP₂ structure. Then it has only finitely many Artin-Schreier extensions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Type-definable case is open even for NIP theories.

Ingredients of the proof

- [Kaplan-Scanlon-Wagner] For a perfect field K of characteristic p, given a tuple of algebraically independent elements ā = (a₁,..., a_n) from K and some large algebraically closed extension K, the group G_ā = {(t, x₁,..., x_n) ∈ Kⁿ⁺¹ : t = a_i (x_i^p x_i) for 1 ≤ i ≤ n} is algebraically isomorphic over K to (K, +).
- Chain condition for uniformly definable normal subgroups: Let G be NTP₂ and {φ(x, a) : a ∈ C} be a family of normal subgroups of G. Then there is some k ∈ ω (depending only on φ) such that for every finite C' ⊆ C there is some C₀ ⊆ C' with |C₀| ≤ k and such that

$$\left[\bigcap_{a\in C_{0}}\varphi\left(x,a\right):\bigcap_{a\in C'}\varphi\left(x,a\right)\right]<\infty.$$

3. Combine.

Quantitative measure of NTP₂: burden

Definition

- 1. An inp-pattern of depth κ consists of $(\bar{a}_{\alpha}, \varphi_{\alpha}(x, y_{\alpha}), k_{\alpha})_{\alpha \in \kappa}$ with $\bar{a}_{\alpha} = (a_{\alpha,i})_{i \in \omega}$ and $k_{\alpha} \in \omega$ such that:
 - $\{\varphi_{\alpha}(x, a_{\alpha,i})\}_{i \in \omega}$ is k_{α} -inconsistent for every $\alpha \in \kappa$,
 - $\left\{\varphi_{\alpha}(x, a_{\alpha, f(\alpha)})\right\}_{\alpha \in \kappa}$ is consistent for every $f : \kappa \to \omega$.

ション ふゆ く 山 マ チャット しょうくしゃ

 The *burden* of *T* is the supremum of the depths of inp-patterns with *x* a singleton, computed in Card*.

Quantitative measure of NTP₂: burden

Possible values of the burden of a theory in a countable language:

- 1. $n \in \omega \setminus \{0\}$ there is no inp-pattern of depth $\geq n$;
- N₀⁻ there are patterns of arbitrary finite depth, but not of infinite depth. Theories with this burden are called *strong*;
- ℵ₀ there is an inp-pattern of infinite depth, but not of arbitrary large depth. This means that a theory is NTP₂, but not strong;
- 4. ∞ there are inp-patterns of depth κ for any cardinal κ . This is equivalent to TP₂ by compactness.

Burden of pseudo-local valued fields

Definition

Theories of burden 1 are called inp-minimal.

Theorem

[Ch., finer version] Let $\mathcal{K} = (\mathcal{K}, \Gamma, k, v, ac)$ be a henselian valued field of equicharacteristic 0, in the Denef-Pas language. Assume that k and Γ are strong (of finite burden). Then \mathcal{K} is strong (resp. of finite burden).

But the bound is given by some Ramsey number!

Theorem

[Ch., Simon] All ultraproducts of p-adics are inp-minimal.

Fact

[Simon] Let G be inp-minimal. Then there is a definable normal abelian subgroup H such that G/H is of finite exponent.

Question: What happens in higher dimensions? Is burden subadditive, at least in this example?

Burden of VFA_0

- ▶ What is the burden of VFA₀? We know that it is bounded.
- ► Observation: [Ch.,Hils] Burden of VFA₀ is ≥ n for all n ∈ ω (as every completion of ACFA has a 1-type of weight n).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem: Is VFA₀ strong?

Algebraic implications of strength and finite burden

- Results about definable objects can be now proved about type-definable objects.
- Proposition [Ch., Kaplan, Simon], a slight generalization of the argument of [Krupinski, Pillay] for the stable case: Any infinite strong field is perfect.
- A valued field (K, v) of characteristic p > 0 is Kaplansky if it satisfies:
 - 1. The valuation group Γ is *p*-divisible.
 - 2. The residue field k is perfect, and does not admit a finite separable extension whose degree is divisible by p.

Corollary

[Ch., Kaplan, Simon] Every strongly dependent (i.e. strong and dependent) valued field is Kaplansky.

Conjecture about definable envelopes of groups

- [Shelah], [Aldama] If G is a group definable in an NIP theory and H is a subgroup which is abelian (nilpotent of class n; normal and soluble of derived length n) then there is a definable group containing H which is also abelian (resp. nilpotent of class n; normal and soluble of derived length n).
- 2. [Milliet] Let G be a group definable in a simple theory and let H be a subgroup of G.
 - 2.1 If H is nilpotent of class n, then there is a definable (with parameters from H) nilpotent group of class at most 2n finitely many translates of which cover H. If H is in addition normal, then there is a definable normal nilpotent group of class at most 3n containing H.
 - 2.2 If H is a soluble of class n, then there is a definable (with parameters from H) soluble group of derived length at most 2n finitely many translates of which cover H. If H is in addition normal, then there is a definable normal soluble group of derived length at most 3n containing H.

Conjecture about definable envelopes of groups

Conjecture: Let G be an NTP₂ group and assume that H is a subgroup. If H is nilpotent (soluble), then there is a definable nilpotent (resp. soluble) group finitely many translates of which cover H. If H is in addition normal, then there is a definable normal nilpotent (resp. soluble) group containing H.

References

- 1. Saharon Shelah, "Classification theory and the Number of Non-Isomorphic Models"
- 2. Artem Chernikov and Itay Kaplan, "Forking and dividing in NTP₂ theories", JSL
- 3. Itai Ben Yaacov and Artem Chernikov, "An independence theorem for NTP₂ theories", http://arxiv.org/abs/1207.0289
- 4. Artem Chernikov, "On theories without the tree property of the second kind", http://arxiv.org/abs/1204.0832
- 5. Artem Chernikov and Martin Hils, "Valued difference fields and NTP₂", http://arxiv.org/abs/1208.1341
- Itay Kaplan, Thomas Scanlon and Frank Wagner, "Artin-Schreier extensions in NIP and simple fields", Israel Journal of Mathematics
- Artem Chernikov, Itay Kaplan and Pierre Simon, "Groups and fields with NTP₂", accepted to the Proceedings of AMS, http://arxiv.org/abs/1212.6213