Strong Erdős-Hajnal property in model theory

Artem Chernikov

UCLA

11th Panhellenic Logic Symposium
Delphi, Greece, Jul 2017
Joint work with Sergei Starchenko.
Strong Erdős-Hajnal property

- Let U, V be infinite sets and $E \subseteq U \times V$ a bipartite graph.

Definition
We say that E satisfies the Strong Erdős-Hajnal property, or Strong EH, if there is $\delta \in \mathbb{R}_{>0}$ such that for any finite $A \subseteq U, B \subseteq V$ there are some $A_0 \subseteq A, B_0 \subseteq B$ with $|A_0| \geq \delta |A|, |B_0| \geq \delta |B|$ such that the pair (A_0, B_0) is E-homogeneous, i.e. either $(A_0 \times B_0) \subseteq E$ or $(A_0 \times B_0) \cap E = \emptyset$.

- We will be concerned with the case where \mathcal{M} is a first-order structure, $U = M^{d_1}, V = M^{d_2}$ and $E \subseteq M^{d_1} \times M^{d_2}$ is definable in \mathcal{M}.

Fact
[Ramsey + Erdős] With no assumptions on E, one can find a homogeneous pair of subsets of logarithmic size, and it is the best possible (up to a constant) in general.

Corollary. If E satisfies strong EH, then E is NIP.
Examples with strong EH

- [Alon, Pach, Pinchasi, Radoičić, Sharir] Let $E \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ be semialgebraic. Then E satisfies strong EH.

- [Basu] Let E be a closed, definable relation in an o-minimal expansion of a field. Then E satisfies strong EH.

Theorem

[C., Starchenko] Let $E(x, y)$ be definable in a distal structure. Then E satisfies definable strong EH, i.e. there are some $\delta \in \mathbb{R}_{>0}$ and formulas $\psi_1(x, z), \psi_2(y, z)$ such that for any finite $A \subseteq M^{|x|}, B \subseteq M^{|y|}$ there is some $c \in M^{|z|}$ such that the pair $A_0 := \psi(A, c), B_0 := \psi_2(B, c)$ is E-homogeneous with $|A_0| \geq \delta |A|, |B_0| \geq \delta |B|$. Moreover, if every binary relation definable in M satisfies definable strong EH, then M is distal.

Examples of distal theories:

- [Hrushovski, Pillay, Simon], [Simon] o-minimal theories, \mathbb{Q}_p.
- [Aschenbrenner, C.] transseries, (\approx) OAG’s, some valued fields.
- [Boxall, Kestner] T is distal $\iff T^{Sh}$ is distal.
Reducts of distal theories and strong EH

- We say that a structure \mathcal{M} satisfies strong EH if every relation definable in \mathcal{M} satisfies strong EH.
- If \mathcal{M} satisfies strong EH, then any structure interpretable in \mathcal{M} also satisfies strong EH.
- E.g., ACF_0 satisfies strong EH — as $(\mathbb{C}, \times, +)$ is interpretable in a distal structure $(\mathbb{R}, \times, +)$.
- On the other hand, ACF_p doesn’t!
ACF_p doesn’t satisfy strong EH

Example

[C., Starchenko]

- Let \(\mathcal{K} \models ACF_p \).
- For a finite field \(\mathbb{F}_q \subseteq \mathcal{K} \), where \(q \) is a power of \(p \), let \(P_q \) be the set of all points in \(\mathbb{F}_q^2 \) and let \(L_q \) be the set of all lines in \(\mathbb{F}_q^2 \).
- Note \(|P_q| = |L_q| = q^2 \).
- Let \(I \subseteq P_q \times L_q \) be the incidence relation. One can check:
 - **Claim.** For any fixed \(\delta > 0 \), for all large enough \(q \), if \(L_0 \subseteq L_q \) and \(P_0 \subseteq P_q \) with \(|P_0| \geq \delta q^2 \) and \(|L_0| \geq \delta q^2 \) then \(I(P_0, L_0) \neq \emptyset \).
- As every finite field of char \(p \) can be embedded into \(\mathcal{K} \), this shows that strong EH fails for the definable incidence relation \(I \subseteq K^2 \times K^2 \).
Local distality

- The difference between char 0 and char p is well-known in incidence combinatorics, and being a reduct of a distal structure (more precisely, admitting a distal cell decomposition, see below) appears to be a model-theoretic explanation for it.
- Our initial proof of strong EH in distal structures had a global assumption on the theory and gave non-optimal bounds.
- Under a global assumption of distality of the theory, a shorter (but even less informative in terms of the bounds) proof can be given (Simon, Pillay’s talks).
- More recently, [C., Galvin, Starchenko] isolates a notion of local distality and provides a method to obtain good bounds.
Distal cell decomposition

- Let $E \subseteq U \times V$ and $\Delta \subseteq U$ be given.

- For $b \in V$, let $E(U, b) := \{ a \in U : (a, b) \in E \}$.

- For $b \in V$, we say that $E(U, b)$ crosses Δ if $E(U, b) \cap \Delta \neq \emptyset$ and $\neg E(U, b) \cap \Delta \neq \emptyset$.

- Δ is E-complete over $B \subseteq V$ if Δ is not crossed by any $E(U, b)$ with $b \in B$.

- A family \mathcal{F} of subsets of U is a cell decomposition for E over B if $U \subseteq \bigcup \mathcal{F}$ and every $\Delta \in \mathcal{F}$ is E-complete over B.

- A cell decomposition for E is an assignment \mathcal{T} s.t. for each finite $B \subseteq V$, $\mathcal{T}(B)$ is a cell decomposition for E over B.

- A cell decomposition \mathcal{T} is distal if for some $k \in \mathbb{N}$ there is a relation $D \subseteq U \times V^k$ s.t. all finite $B \subseteq V$, $\mathcal{T}(B) = \{ D(U; b_1, \ldots, b_k) : b_1, \ldots, b_k \in B \text{ and } D(U; b_1, \ldots, b_k) \text{ is } E\text{-complete over } B \}$.

- A relation E is distal if it admits a distal cell decomposition.
Example

1. E is distal $\implies E$ is NIP (the number of E-types over any finite set B is at most $|B|^k$)

2. Any relation definable in a reduct of a distal structure admits a distal cell decomposition (follows from the existence of strong honest definitions in distal theories [C., Simon]).

Theorem
[C., Galvin, Starchenko] Let \mathcal{M} be an o-minimal expansion of a field and let $E(x, y)$ with $|x| = 2$ be definable. Then $E(x, y)$ admits a distal cell decomposition \mathcal{T} with $|\mathcal{T}(S)| = O\left(|S|^2\right)$ for all finite sets S.

- In higher dimensions, becomes much more difficult to obtain an optimal bound, even in the semialgebraic case.
So called cutting lemmas are a very important “divide and conquer” method for counting incidences in geometric combinatorics.

Theorem

[C., Galvin, Starchenko] (Distal cutting lemma) Assume $E(x, y) \subseteq M^{|x|} \times M^{|y|}$ admits a distal cell decomposition T with $|T(S)| = O\left(|S|^d\right)$ for all finite sets $S \subseteq M^{|y|}$. Then there is a constant c s.t. for any finite $S \subseteq M^{|y|}$ of size n and any real $1 < r < n$, there is a covering X_1, \ldots, X_t of $M^{|x|}$ with $t \leq cr^d$ and each X_i crossed by at most $\frac{n}{r}$ of the sets $\{E(x, b) : b \in S\}$.
Applications of cuttings

1. Assume $E \subseteq U \times V$ satisfies the conclusion of the cutting lemma. Then it satisfies strong EH.

2. (o-minimal generalization of the Szemeredi-Trotter theorem) Let \mathcal{M} be an o-minimal expansion of a field and $E(x, y) \subseteq M^2 \times M^2$ definable. Then for any $k \in \omega$ there is some $c \in \mathbb{R}_{>0}$ satisfying the following: for any $A, B \subseteq M^2$, if $E(A, B)$ is $K_{k,k}$-free, then $|E(A, B)| \leq cn^\frac{4}{3}$. [Fox, Pach, Sheffer, Suk, Zahl] in the semialgebraic case, [Basu, Raz] under a stronger assumption.

3. An ε-version of the Elekes-Szabó theorem.

4. Etc.
1-based theories

- ACF$_p$ is the only known example of an NIP theory not satisfying strong EH (as well as the only example without a distal expansion).
- Zilber’s trichotomy principle: roughly, every strongly minimal set is either like an infinite set, or like a vector space, or interprets a field.

Definition

(“like a vector space”)

1. A formula $E(x, y)$ is weakly normal if $\exists k \in \mathbb{N}$ s.t. the intersection of any k pairwise distinct sets of the form $E(M, b), b \in M^{\lvert y \rvert}$ is empty.

2. T is 1-based if every formula is a Boolean combination of weakly normal formulas.

Note: this definition implies stability of T, and is equivalent to: for any small set A, B, $A \downarrow_{\text{acl}^\text{eq}(A) \cap \text{acl}^\text{eq}(B)} B$.
1-based theories satisfy strong EH

- Main examples: abelian groups, modules.
- In a sense, these are the only examples:
- [Hrushovski, Pillay] Let \((G, \cdot, \ldots)\) be a 1-based group. Then all definable subset of \(G^n\) are Boolean combinations of cosets of \(\emptyset\)-definable subgroups of \(G^n\).

Theorem

[C., Starchenko] Every stable 1-based theory satisfies strong EH.

- Problem reduces to showing strong EH for weakly normal formulas (using that weakly normal formulas are closed under conjunctions).
- Via some manipulations and basic linear algebra, the incidence problem for a \(k\)-weakly normal formula reduces to an incidence problem for an affine hyperplanes arrangement in \(\mathbb{R}^k\).
- Which is definable in \(\mathbb{R}\), hence has strong EH by distality.
- Somewhat curiously, we have to use RCF in a proof for a stable structure! (Again, typical in incidence combinatorics.)