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We investigate the approximate dynamics of several differential
equations when the solutions are restricted to a sparse subset of
a given basis. The restriction is enforced at every time step by simply
applying soft thresholding to the coefficients of the basis approx-
imation. By reducing or compressing the information needed to
represent the solution at every step, only the essential dynamics are
represented. Inmany cases, there are natural bases derived from the
differential equations, which promote sparsity. We find that our
method successfully reduces the dynamics of convection equations,
diffusion equations, weak shocks, and vorticity equations with
high-frequency source terms.

multiphysics | multiscale | optimization

In this work, we investigate the approximate dynamics of various
partial differential equations (PDEs) whose solutions exhibit

behaviors on multiple spatial scales. These scales may interact with
one another in a nonlinear manner as they evolve. Many physical
equations contain multiscale (as well as multiphysics) phenomena,
such as the homogenization problems from material science
and chemistry and multiscale systems in biology, computational
electrodynamics, fluid dynamics, and atmospheric and oceanic
sciences. In some cases, the physical laws used in the model can
range from molecular dynamics on the fine scale to classical
mechanics on the large scale. In other cases, the equations
themselves contain high-wavenumber oscillations that separate
into discrete scales, on top of the smooth underlying behavior
of the system.
The main source of difficulty in multiscale computation is that

accurate simulation of the system requires all phenomena to be
fully resolved. The smaller spatial scales influence the global
solutions; thus, they cannot be ignored in the numerical com-
putation. In some cases, it is possible to derive an analytical
equation for the effect of small scales on the solution (1, 2). In
practice, however, it may not be possible to derive a simple ex-
pression that represents the fine-scale behavior. Many problem-
dependent methods have been proposed in the literature,
whereas a few provide a general methodology for modeling the
macroscopic and microscopic processes that yield multiscale
models. For example, some general methods include the het-
erogeneous multiscale method (3), the equation-free method
(4), multiscale methods for elliptical problems (5), multiscale
finite element methods (6, 7), and the sparse transform method
(8). An overview of general multiscale approaches is provided in
ref. 9. A key difference between our method and other methods
(3–5) is that we are directly resolving all the significant scales in
the solution. By contrast, the other methods (3–5) directly re-
solve only the coarse scales of the solution, and they separately
“reconstruct” the fine-scale solution (as well as its effect on the
coarse scales).
From the perspective of mathematics, multiscale methods be-

gan with representation of a function using a global basis, such as
a Taylor series or Fourier series. More sophisticated bases have
appeared, for example, any one of the many wavelet bases used in
imaging and computational physics. The key to the basis ap-
proximation is that each basis element represents behavior on
a specific scale; therefore, the coefficients of the basis provide
complete information about the underlying function. This is also
the principle behind multiresolution and decomposition methods.
As the methods of multiscale and multiphysics modeling de-

veloped over the past few decades, so did corresponding methods

in imaging and information science. One of the fundamental ideas
in imaging is that of sparsity. Sparse data representation is used
throughout imaging from compression to reconstruction. Early
advances in sparse techniques (e.g., refs. 10, 11) presented
a convex minimization approach to the computationally challenging
sparse basis pursuit problem. Many models that use sparsity to
produce both more efficient numerical methods and better quality
solutions have been proposed. Some applications of sparsity to
imaging include compressive sensing, reconstruction of images from
sparse data (12, 13), and recovery of images using sparse
regularization (14, 15). The underlying principle of sparsity is
that images can be approximately represented by a small
number of terms with respect to some basis. Inducing sparsity,
creating effective bases, and developing efficient computa-
tional algorithms have been intensely active fields in in-
formation science.
For imaging and information science, one of the reasons for

the success of sparse methods is their ability to resolve drastically
different phenomena with a small amount of information. This is
also a principal goal of multiscale modeling. In this work, we
transfer sparsity methodology, which was developed for in-
formation science, to multiscale nonlinear differential equations
and show that it can be an effective tool for accurately computing
solutions using less information.
In particular, we propose solving PDEs with the constraint

that the approximate solution resides on a sparse subspace of
a basis. In this way, the complexity of the method will depend
on the number of basis terms retained and will be (nearly)
independent of the grid size. In the following sections, we will
discuss the general problem and the optimization method
used to induce sparsity in the solution. The general numerical
method will also be explained, as well as results of numerical
experiments. The method is tested on an advection equation
with oscillatory velocity, a parabolic equation with oscillatory
coefficients, a conservation law with oscillatory diffusion,
and the vorticity equations with high-frequency source terms.
We conclude with a discussion on the proposed work and
implications.

Sparsity
Problem Statement. In general, the problem can be stated as
follows. Assuming x ∈ R

n and t > 0, let u(x, t): Ω → R be the
approximate solution of

∂tu = FðuÞ [1]

subject to the constraint: uðx; tÞ=PjûjðtÞϕjðxÞ, where the number
of nonzero cj at a given time step is sparse. The operator F(·)
can be nonlinear, nonlocal, and dependent on the derivative of
u. The basis terms ϕj are assumed to exist on separate scales,
which is true of most bases (e.g., Legendre polynomials, Four-
ier wavelets). In this way, the basis terms represent different
global behaviors. The method involves two steps: Evolve the
PDE forward in time, and project the updated solution onto
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a sparse subset. We first address sparsity induction through
soft thresholding.

Sparsity via Optimization: Soft Thresholding. At a given time step,
the problem of projecting the updated solution onto a sparse
subset is equivalent to fitting a solution un with corresponding
coefficients fûnj g at the nth time step to a solution u whose
corresponding coefficients fûjg are sparse. This can be written as
a constrained least squares fit as follows:

min
u

ku−unk2L2   s:t: u=
X
j

ûjϕj & fûjg is sparse: [2]

Expanding with respect to the basis and assuming that the
basis is orthonormal, this constrained optimization problem is
related to the following unconstrained problem:

ðL0Þ û= argmin
û
  λ

��û��0 + 1
2

��û−ûn��2L2 ; [3]

where û is the vector of coefficients. The “norm” k·k0 is the
number of nonzero coefficients in Eq. 2. This makes Eq. 3 both
nonconvex and difficult to solve. By replacing the L0 norm with
the L1 norm, we get the following convex relaxation of Eq. 3:

ðL1Þ û= argmin
û
  λ

��û��1 + 1
2

��û−ûn��2L2 : [4]

Note that because û∈C, the L1 norm is kûkL1:=
P

jjûjj, where
jûjj=

ffiffiffiffiffiffiffiffiffi
ûj   ûj

q
. The solution of Eq. 4 is given by the following

equation:

ûj =Sλ

�
ûnj
�
= max

���ûnj ��− λ; 0
�
 
ûnj��ûnj ��: [5]

In general, this can be computed for a nonorthonormal basis,
which is equivalent to a basis pursuit problem with the L1 norm as
a sparse regularizer. In that case, the solution must be found by an
iterative method rather than the simple shrinkage provided here as
an example. The resulting minimizer û is a proximal solution that
lies on a sparse subset of the original coefficient domain (16). This
can be used to show that the solutions form a contractionmap in the
L2 norm.Alternatively, we can simply apply the soft thresholding on
the coefficients directly in order to induce sparsity in this way.

Numerical Method
Assuming u(x, t) is periodic in the domain Ω ⊂ R

n, one natural
basis is the Fourier basis, whose coefficients are the Fourier
transform of u(x, t). This is appropriate for the examples shown
here. For the rest of this work, we will use the Fourier basis;
however, the overall methodology presented here is independent
of the corresponding basis.
Taking the Fourier transform of the PDE from Eq. 1 and

discretizing the resulting differential equation in time yield
a multistep scheme. Because our method does not depend on the
choice of numerical updating, we can assume that the scheme
takes the following form:

v̂ = Q
�
ûn−q; . . . ; ûn

�
: [6]

The updated solution v̂ may be sparse depending on both the
PDE and the update operator Q; however, in general, it will have
nontrivial values everywhere depending on the approximation
and implementation. The auxiliary variable v is projected onto
a sparse subspace by the shrinkage operator:

ûn+1 = Sλ

�
v̂
�
: [7]

Altogether, the update in the spatial domain is simply:

un+1 =
X
j

Sλ

�
Q
�
ûn−q; . . . ; ûn

��
ϕj: [8]

Unlike traditional projections, this is nonlinear and adaptive.
Rather than sorting the coefficients and retaining a fixed number
of large-amplitude terms or keeping terms whose wavenumbers
are below some cutoff, the shrinkage allows the number and
choice of nonzero coefficients to evolve over time. Also, this is
not the same as hard-thresholding the solution at every step (i.e.
keeping only the terms larger than a fixed value) because the
coefficients that remain have decreased their magnitude by λ.
Most importantly, the projection does not favor any particular
part of the spectrum; instead, the amplitude of the coefficient
determines if it remains. In terms of the Fourier basis, the im-
portance is placed on the amplitude rather than the wavenumber.
For general convergence, as long as λ = Cdtp for p larger than

the accuracy of the scheme used to update the variable in time,
the shrinkage operation does not change the spatial accuracy
of the original method and the method will still converge as dt→ 0.
For example, discretize using the forward Euler method, and then
expand the shrinkage operator to get

ûn+1 = ûn + dt bFðunÞ+OðλÞ: [9]

Therefore, to have convergence as dt → 0, the shrinkage
parameter must be λ = Cdt1+α. For linear PDEs, convergence
can easily be shown. In general, the shrinkage operator is
nonexpansive in each coefficient; hence, it is nonexpansive in
coefficient norms. This may help with obtaining a general
convergence result.

Numerical Results
In this section, we discuss the application of the proposed sparse
method to several equations with different numerical schemes.

Convection. The convection equation we consider is the following:

∂tu = aðxÞ∂ xu; [10]

where the coefficient a(x) is highly oscillatory.
Let k be the wavenumber, and use spectral Leap Frog as the

updating for Eq. 10 to obtain

v̂n+1 = ûn−1 +   2  dt  â p
�
  i  k  ûn

�
; [11]

in which p is the convolution operator over frequency.
The time step is O(dx) to preserve the stability condition in

Eq. 10. In Fig. 1, the coefficient is chosen as follows:

aðxÞ= 1
4
exp

 
0:6+ 0:2cos ðxÞ
1+ 0:7sin ð64xÞ

!
:

This choice of a(x) exhibits both fast and slow modes, but the
particular structure is not directly needed.
Fig. 1 illustrates the performance of the sparse solution

method on this example by comparison of the sparse solution,
the true solution produced using a standard fully resolved
method, and a “low-frequency solution” produced by solving Eq.
11 for wavenumbers k in the interval jkj ≤ K/2 in which K is the
number of modes in sparse solution. In Fig. 1 (Upper Left and
Upper Right), the sparse solution produced by our method and the
true solution at t = 1 are plotted in the spatial domain at a given
time. In Fig. 1 (Lower Left), the true and low-frequency solutions
are displayed. The low-frequency solution is unable to capture the
correct speed. In Fig. 1 (Lower Right), the sparse and true spectra
are plotted. The sparse spectrum captures the largest amplitude
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coefficients throughout the domain. In fact, of the 512 coefficients
used in the true solution, only 27 are retained in the sparse solution
(about 5.3%).

Parabolic. The parabolic equation we consider is the following:

∂tu = ∂ x
�
aðxÞ∂ xu

�
; [12]

where the diffusion coefficient a(x) is highly oscillatory. The co-
efficient is assumed to be bounded [i.e., AM ≥ a(x) ≥ Am > 0].
This is also related to the elliptical case ∂x(a(x)∂xu) = f, because
an elliptical equation can be solved by taking a parabolic scheme
to steady state. Alternatively, the corresponding parabolic
scheme can be iterated forward for a small number of time steps
in order to find a partial solution to the elliptical problem. Then,
by using the partial solution, the locations of the nonzero coef-
ficients can be extracted and the elliptical problem can be solved
by a Galerkin method on these coefficients (8).
The updated scheme we use for Eq. 12 is forward Euler

method:

v̂n+1 = ûn +   dt  i  k  â p
�
i  k  ûn

�
: [13]

The time step is O(dx2) to preserve the stability condition as
well as the highly oscillatory nature of the coefficient a(x) in Eq.
12. In Fig. 2, the coefficient is chosen as follows:

aðxÞ= 1
10

exp
	

0:6+ 0:2cos ðxÞ
1+ 0:7sin ð256xÞ



:

In Fig. 2 (Lower Right), the highly oscillatory diffusion coefficient
a(x) is plotted in space. In Fig. 2 (Upper Left and Upper Right), the
sparse solution produced by our method and the true solution at t =
1 are plotted in the spatial domain at a given time and are nearly
indistinguishable. The high-frequency information is near the scale
of the grid size, which can be seen in the zoomed-in plot. In Fig. 2
(Lower Left), the true and sparse spectra are displayed. The sparse
spectrum captures the largest coefficients throughout the domain

and not just the low wavenumbers. In fact, of the 2,048 coefficients
used in the true solution, only 53 are retained in the sparse solution
(about 2.6%). In time, the number of nonzero coefficients, as well
as the identities of the nonzero coefficients, will change in order to
capture various behaviors.

Viscous Burgers. To investigate the sparse dynamics of conservative
laws with diffusion, we use the viscous Burgers-type equation:

∂tu+
1
2
∂x
�
u2
�
= ∂xðaðxÞ∂xuÞ: [14]

The left-hand side (LHS) of Eq. 14 is the standard Burgers ad-
vection term, and the right-hand side (RHS) is diffusion related to
Eq. 12. The equation exhibits three separate phenomena: (1)
smooth large-scale behavior from the diffusion, (2) small-scale
oscillations induced from the high frequencies in the coefficient
a(x), and (3) nonlinear interactions between frequencies from the
advection term. The update scheme in time is the standard total
variational diminishing Runge–Kutta 2 method:

u1 = ûn +   dt  i  k
�
â p
�
i  k  ûn

�
−bFðunÞ�

vn+1 =
1
2
�
ûn + û1

�
+  

dt
2
  i  k
�
â p
�
i  k  û1

�
−bFðu1Þ�;

where FðuÞ= 1
2u

2. As before, we have the stability condition in
which dt is O(dx2).
For Fig. 3, the diffusion coefficient is chosen as:

aðxÞ= 0:075 exp

 
0:65+ 0:2cos ðxÞ
1+ 0:7sin ð128xÞ

!
:

The convolutions in the diffusion and nonlinear terms are
performed in the spectral domain rather than by other meth-
ods, such as the pseudospectral method. The various dynamics
can be seen in the spatial and spectral plots (Fig. 3). The true,
sparse, and low-frequency solutions are plotted in the space

Fig. 1. Convection with highly oscillatory coefficients. The solution is shown in x space, in the zoomed-in version in x space, and in the k space. The solutions
are shown on a 512 grid, with dt = 2e − 3, dx = 1.23e − 2, and λ = 5e − 03. (Upper Left) True (black) and sparse (blue) solutions in x space. (Upper Right) True
(black) and sparse (blue “x”) solutions in x space, zoomed in. (Lower Left) True (blue) and low-frequency (red) solutions in x space. (Lower Right) True (black)
and sparse (blue) solutions in k space.
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in Fig. 3 (Upper Left and Upper Right). The low-frequency
projection is done by thresholding any coefficients outside of a
particular range. Specifically, the number of low wavenumbers
retained is the same as in the sparse solution, although their
identities are dramatically different. The sparse solution cap-
tures the local and global behaviors of the solution more

accurately than the low-frequency projected solution. In Fig. 3
(Lower Left and Lower Right), the spectrum of the true solution
is compared with the sparse and low-frequency spectra, re-
spectively. The local peaks in the spectra are related to the wave-
numbers in the diffusion coefficient a(x) and the harmonics
induced by the nonlinear advection term. Notice that in this case,

Fig. 2. Parabolic diffusion with highly oscillatory coefficients. The solution is shown in x space, in the zoomed-in version in x space, and in the k space. The
solutions are shown on a 2,048 grid, with dt = 1.5e − 8, dx = 3.1e − 3, and λ = 2.5e − 06. (Upper Left) True (black) and sparse (blue) solutions in x space. They
are nearly indistinguishable. (Upper Right) True (black) and sparse (blue “x”) solutions in x space, zoomed in. (Lower Left) True (black) and sparse (blue)
solutions in k space. (Lower Right) Diffusion coefficient in x space.

Fig. 3. Viscous Burgers equation with highly oscillatory diffusion. The solution is shown in x space, in the zoomed-in version in x space, and in the k space.
The solutions are shown on a 1,024 grid, with dt = 7.6e − 6, dx = 6.1e − 3, and λ = 6.3e − 5. (Upper Left) True (black), sparse (blue), and low-frequency (red)
solutions in x space. (Upper Right) True (black), sparse (blue), and low-frequency (red) solutions in x space, zoomed in. (Lower Left) True (black) and sparse
(blue) solutions in k space. (Lower Right) True (black) and low-frequency (red) solutions in k space.
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each of the distributions in the spectral domain does not decay as
rapidly as in the parabolic case. The sparse solution contains 130
of a total 1,024 possible coefficients, which is about 12.7%.

Vorticity Equations. The vorticity equation we consider is derived
from the (2D) incompressible Navier–Stokes equation (17):

∂tu+
�
∇⊥Δ−1u

�
· ∇u= γΔu + f ; [15]

where u is the vorticity (not the velocity). Similar to Eq. 14, Eq. 15
exhibits three separate phenomena: (1) smoothness from the diffu-
sion term on the RHS, (2) small-scale oscillations induced from the
high frequencies in the source term f, and (3) nonlinear interactions
between frequencies from the advection term on the LHS. How-
ever, because the operator ∇⊥Δ−1 is smoothing (in some sense), the
advection term can be viewed as less nonlinear than the one found
in Eq. 14. In terms of the numerical method, the operator ∇⊥Δ−1

dampens the coefficients by a factor that acts as jkj−1.
For the numerical implementation, the diffusion term is dis-

cretized using the Crank–Nicolson method, whereas the advec-
tion term is lagged. Because the operators are diagonalized in
the coefficient basis, the steps can be invertible and lead to
a simple updating scheme:

v̂n+1 =
2dt

2+ γdtjkj2
�
ik⊥
�jkj−2ûn�p ikûn + f̂

�
   +

2− γdtjkj2
2+ γdtjkj2   û

n:

For Fig. 4, the forcing term is chosen to be:

f
�
x; y
�
= 0:025

sin
�
32x
�
+ sin

�
32y
�

1+ 0:25
�
cosð64x�+ cos

�
64yÞ�:

The standard stability condition is used for choosing the time
steps in order to ensure capture of all small-scale behaviors. In Fig.
4 (Upper Left and Upper Center), the true and sparse solutions are
plotted in the spatial domain. Notice that the oscillations in-
troduced by the source term interact with the two vortex patches,
and thus contribute to the global behavior of the solution. The
spectra of the true and sparse solutions are plotted in Fig. 4
(Lower Left and Lower Center), where the low wavenumbers are
located in the middle of the domain. The sparse solution retains
about 4.28% of the coefficients. In the sparse spectrum, the
coefficients are located throughout the domain, including the
highest frequency itself (seen on the boundary of the spectral
domain). In Fig. 4 (Lower Right), the L2 and L∞ errors are shown
to decrease as the resolution increases. This sparse solution, as
well as the other examples presented here, converges as the spatial
discretization goes to zero.
It was observed that as the dimension increases, the sparsity of

the solution also increases (because it is proportional to the
product of the sparsities in each dimension). Thus, the method
scales well with dimension.
It is worth noting that in a related work, wavelet hard

thresholding was used to separate coherent and incoherent
structures in turbulent flows (18).
In the examples from the previous section, the PDEs con-

tained a mixture of multiscale properties with a diffusion term.
The combination of nonlinear and oscillatory terms created
a large range of wavenumbers in the solution, whereas the dynamics
produced a range of amplitudes. This gives the necessary structure
for sparsity with respect to the Fourier basis. In general, the highest

Fig. 4. Vorticity equations with a high-frequency source term. The solution is shown in x space, in the zoomed-in version in x space, and in the k space. The
solutions are shown on a 256 by 256 grid, with dt = 0.025, dx = 0.0245, γ = 0.001, and λ = 0.0497. (Upper Left) True solution in x space. (Upper Center) Sparse
solution in x space. (Upper Right) Low-frequency solution in x space. (Lower Left) True solution in k space. (Lower Center) Sparse solution in k space. (Lower
Right) L2 (solid) and L∞ (dashed) errors vs. grid step size.
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order derivative will determine the appropriate basis in which the
solutions could be sparse.
If the spectrum is more localized (i.e. nonzero regions in the

low-frequency regime), the proposed model can better condi-
tion the numerical method. Empirically, the shrinkage operator
acts as a nonlinear filter on the coefficients. It was observed that
for a fixed C and p, where λ = Cdtp, the numerical updates
presented here with dt larger than theoretically and numerically
possible in the original scheme will converge. In the case of the
vorticity example, dt can be taken much larger when soft
thresholding is applied than in the standard scheme. Also, the
nonlinear filter seems to reduce parasitic modes and spurious
oscillations found in spectral approximations for linear and
nonlinear slightly viscous hyperbolic equations.
One key point is that our method works by fully resolving the

solution. Its efficiency is gained by omitting modes that are in-
significant. This requires that λ be small enough so that the filter
does not annihilate essential features. For example, if the initial
data are smaller than λ for a particular unstable mode, our ap-
proximate solution will not match the true dynamics. As the grid
is refined, the mode will be captured (because λ decreases
as Δx decreases).
In terms of complexity, each iteration is dominated by the

convolution step. The convolution in the coefficient domain
(spectral domain) can be performed explicitly over the ns(t)-sparse
vectors rather than transforming back onto the spatial grid, which
is O(ns(t)

2) at each step. When ns(t)
2 � NlogN, convolving in the

spectral domain rather than transforming back and forth be-
tween domains decreases the computational cost of the algo-
rithm. Knowing a priori the maximum sparsity [i.e., ns,max =
maxt ns(t)], faster routines and transforms could be optimized
for specific problems and applications. For example, one can
optimize the transform between the spatial and coefficient
domains knowing the given sparsity at the current step and
the nontrivial coefficients’ identities. In the linear cases, as in

Eq. 13, the operation âp can be stored as a large but sparse
matrix, reducing the updates to a sparse matrix–sparse vector
operation at every iteration. Our goal in this work is to formulate
a PDE solver that promotes sparsity. In future work, we will
present a study of the computational complexity and speed.
When the dynamics are dominated by a linear term, for ex-

ample, high viscosity, the identities of the nontrivial coefficients
settle over time. This was also observed in the nonlinear cases, but
over a longer time period. This would enable creation of a sparse
basis for elliptical equations (e.g., with oscillatory coefficients). Also,
after this settling phase, the shrinkage operator can be replaced by
a projection onto the known identities of the nontrivial coefficients.
In many of the cases here, it is possible to obtain hypersparse

solutions (those with 1% or fewer coefficients) at the cost
of accuracy.

Conclusion
In this work, we have proposed a method to resolve fully the
solutions of multiscale PDEs while only retaining important
modes. The reduced dynamics created by the sparse projection
properly capture the true phenomena exhibited by the solution.
The sparse projection amounts to a shrinkage of the coefficients of
the updated solution at every time step. There exist many possi-
bilities for using the sparsity to optimize individual algorithms and
to create faster, more efficient computational routines.
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