
IMA Journal of Applied Mathematics (2013) Page 1 of 15
doi:10.1093/imamat/hxt017

Detection of complex singularities for a function of several variables

Kamyar Malakuti

Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey
Institute of Technology, Newark, NJ 07102, USA

Russel E. Caflisch

Department of Mathematics, UCLA and Institute for Pure and Applied Mathematics, Los Angeles,
CA 90095, USA

and

Michael Siegel∗ and Alex Virodov

Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey
Institute of Technology, Newark, NJ 07102, USA

∗Corresponding author: misieg@njit.edu

[Received on 21 November 2012; revised on 3 March 2013; accepted on 19 March 2013]

A numerical method for investigating singularities in solutions to non-linear evolution equations is pre-
sented. The method is based on a complex analytical approach to singularities introduced by Sulem,
Sulem and Frisch, which uses analytic continuation of an independent variable and numerical detection
of the width of the analyticity strip, defined as the distance δ from the real domain to the nearest complex
singularity. Their method, originally formulated for functions of a single variable, is here generalized
to problems and functions of several variables. We first analyse the asymptotic behaviour of the multi-
dimensional Fourier transform of an analytic function, and use this to numerically detect the complex
singularity surface. The approach allows us to determine the parameters that characterize the singularity
surface in a neighbourhood of its closest point to the real domain.
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1. Introduction

Numerical methods are playing an increasingly important role in investigations of singularity formation
for solutions to non-linear partial differential equations. For example, numerical studies have helped to
establish the occurrence of finite time curvature singularities in the Kelvin–Helmholtz (Meiron et al.,
1982; Krasny, 1986; Shelley, 1991; Cowley et al., 1999) and Rayleigh–Taylor (Tanveer, 1992; Baker
et al., 1993) problems of inviscid interfacial fluid flow when surface tension is neglected. Numerical
methods have also been applied to examine the possibility that singularities (infinite vorticity) develop
in finite time from smooth initial data in 3D, inviscid, incompressible Euler flow (see, e.g. Kerr, 1993;
Hou & Li, 2006).

Several specialized methods have been developed to investigate singularities numerically. A method
based on Taylor’s series expansion in time was introduced for the study of critical phenomena in Gaunt
& Guttman (1974) and has been applied to problems in fluid dynamics (Morf et al., 1980; Meiron
et al., 1982). Another method introduced by Sulem et al. (1983) is based on a complex analytical
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approach to singularities and has been used extensively in interfacial flow problems (Krasny, 1986;
Shelley, 1991; Baker et al., 1993) and in incompressible Euler flow (see, e.g. Caflisch, 1993; Frisch
et al., 2003; Cichowlas & Brachet, 2005; Pauls et al., 2006). For a function of a single variable, this
approach uses analytic continuation of the independent variable and numerical detection of the width of
the analyticity strip, defined as the distance δ(t) from the real domain to the nearest complex singularity.
If a singularity reaches the real domain in a finite time T , so that δ(T) = 0, then the solution loses
analyticity and becomes singular. The width of the analyticity strip δ(t) can alternatively be bounded
away from zero, or tend to zero in infinite time, in which case the solution develops increasingly small
scales while remaining smooth.

Implementation of the method of Sulem et al. typically involves high-resolution (spectral) numer-
ical computation of a time-evolution problem, and δ(t) and other properties of the nearest complex
singularity are determined from asymptotic behaviour of the Fourier transform. The asymptotic prop-
erties of the Fourier transform for an analytic function of a single variable with isolated pole or branch
point singularities at complex locations have been derived in Carrier et al. (1966) and are summarized
in Section 2. This analysis has not been extended to functions of several variables, although there are
singularity studies of multivariable functions based on the 1D asymptotics. For example, in their studies
of axisymmetric Euler flow with swirl, Caflisch (1993) and Caflisch & Siegel (2004) detected the com-
plex singularities of a function u(z, r) of two variables using the asymptotic properties of the 1D Fourier
transform ûk(r) in the axial variable z as a function of the radial coordinate r. They obtained the width
δ(r) of the strip of analyticity in the complex-z plane as a function of the real parameter r. A similar
analysis was used to detect complex singularities of the (complex) 3D incompressible Euler equations
in Siegel & Caflisch (2009).

We refer to the (possibly spatially dependent) edge or boundary of the strip of analyticity as a sin-
gularity surface. In this paper, we generalize the method of Sulem et al. (1983) to numerically detect a
complex singularity surface for a function of several variables from the full multidimensional Fourier
transform. As in Sulem et al., our method is based on analytic continuation in one variable (say, x) and
detection of the complex singularity surface as a function of the real variables y and z. In this respect, it
is similar to Caflisch (1993), Caflisch & Siegel (2004), Siegel & Caflisch (2009) and a related method
introduced in Pauls et al. (2006). However, our approach based on an analysis of the asymptotic prop-
erties of the multidimensional Fourier transform (akin to a multidimensional steepest descent) allows
us to determine a greater number of parameters that characterize the singularity surface than earlier
methods. A key finding of the analysis is that the singularity parameters are determined by the decay of
the Fourier transform along or near a distinguished direction in wavenumber space k = (k, l(k), m(k))

for k � 0.
The rest of this paper is organized as follows. The large wavenumber asymptotics for a function of

a single variable is reviewed in Section 2, and the singularity surface for a function of several variables
is discussed in Section 3. We develop a large wavenumber asymptotic theory for functions of two and
three variables in Section 4, and a numerical method is presented for detecting the singularity surface.
Numerical results are presented in Section 5, and concluding remarks are given in Section 6.

2. Function of a single variable

We first summarize the large wavenumber asymptotics for a function of a single variable, and refer the
reader to Carrier et al. (1966) for details. Let u(z) be a function originally defined in R or in a periodic
domain which is analytic in the strip

|Im z| < ρ, (2.1)
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DETECTION OF COMPLEX SINGULARITIES 3 of 15

for z = x + iy ∈ C and some ρ > 0. We assume the singularities are at complex locations zj, in the
neighbourhood of which u behaves as

u(z) ∼ (z − zj)
βj , (2.2)

where βj ∈ C is not a positive integer. We define the Fourier transform of u(z) as

ûk = 1

2π

∫
Ω

u(x) e−ikx dx (2.3)

with the obvious generalization for multidimensional transforms. Here Ω = R or, for a periodic func-
tion, one period of the domain which is taken to be [0, 2π ]. The behaviour of the Fourier transform as
k tends to positive (respectively, negative) infinity is determined by the singularity in the lower (upper)
half plane that is closest to the real domain. If the closest singularity is located at zj = z± = x0 ± iδ for
δ > 0 and has an exponent β, then

ûk ∼ C|k|−(β+1) exp(−|k|δ − ix0k) as |k| −→ ∞. (2.4)

Here

C = ∓ 1

π
sin(πβ) exp

(
∓i

πβ

2

)
Γ (β + 1), (2.5)

where the negative (positive) sign in (2.5) is taken when the singularity is in the upper (lower) half plane
with branch cut in the positive (negative) imaginary direction, and Γ is the Gamma function. This result
can be extended to functions u(z) that exhibit collections of algebraic, logarithmic and pole singularities.
When multiple singularities are closest to the real domain, |ûk| can display oscillatory behaviour.

3. Function of several variables

We will generalize (2.4) for a function of several variables. Consider a function u : Ω3 → C in space
variables x, y and z. The analytic continuation of u to complex x, y and z will in general contain singular-
ities at complex locations of the space variables, and we denote the singularity surface by ζ(x, y, z) = 0
for a complex function ζ . The singularity surface is characterized by the two constraints Re ζ = 0 and
Im ζ = 0 among the six real variables (xr, xi, yr, yi, zr, zi), where subscripts r and i denote real and imag-
inary parts. Thus, the singularity surface is a codimension two subspace of R

6.
Our goal is to numerically detect the singularity surface by an analysis of the decay of the full three-

dimensional Fourier transform. To proceed, we follow Caflisch (1993) and fix the imaginary value of
two variables, say, yI = zI = 0, and analyse the singularity surface in the complex-x plane as a function
of the real variables y and z. We assume that u(x, y, z) is periodic in x (the analysis can be adapted for
non-periodic functions) and analytic for x in a strip in C given by

|Im x| < ρ for some ρ > 0.

We can write u = u+ + u− + u0 where u+ =∑k>0 ûk(y, z) eikx is a sum over the positive wavenumber
modes in x and is analytic in the upper half plane Im x > −ρ, u− =∑k<0 ûk(y, z) eikx is a sum over the
negative wavenumber modes and is analytic in the lower half plane Im x < ρ, and u0 = û0. Henceforth,
we consider the singularity analysis of u+ (and omit the subscript +), but a closely related analysis
applies to u−.
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4 of 15 K. MALAKUTI ET AL.

The function u = u+(x, y, z) has singularities in the lower half plane of x, and we represent the
singularity surface as xs = xs(y, z) where

xs(y, z) = δr(y, z) − iδi(y, z), (3.1)

and δi(y, z) > 0 is the distance of the surface to the real plane. The closest singularity to the real domain
is that which minimizes the distance δi(y, z), which is denoted by

δ = min
y,z

δi(y, z). (3.2)

Assume that the closest singularity to the real domain is located at (y, z) = (y0, z0) and that the sin-
gularity surface xs(y, z) is smooth in a neighbourhood of this point. Generically, δi(y, z) is paraboloidal
near (y0, z0). The previous discussion suggests that the surface in a neighbourhood of (y0, z0) can be
described as ζ = 0 with

ζ = x′ − P(Y′) + iQ(Y′), (3.3)

where

x′ = x − (x0 − iδ), Y′ = (y − y0, z − z0)
�, (3.4)

P(Y′) is a real function which is linear in Y′ at leading order, Q(Y′) is real, non-negative and quadratic
to leading order, and x0 = δr(y0, z0). In other words,

P(Y′) = A�Y′ + Y′�BY′ + P̃(Y′), (3.5)

Q(Y′) = Y′�MY′ + Q̃(Y′), (3.6)

where A = (a, b)� is a real vector, M is a real positive definite matrix, B is a real symmetric matrix
and the real functions P̃(Y′) and Q̃(Y′) are o(|Y′|2) and represent higher order terms. Equation (3.3)
says that there is a singularity at X0 = (x0 − iδ, y0, z0) and that as (y, z) varies away from (y0, z0) the
imaginary part of the singularity position grows quadratically in the negative direction. The real part of
the singularity position is given by A�Y′ and can vary linearly with y′ and z′.

The function u is assumed to be described by

u ∼ u0(Y′) + u1(Y′)ζ β (3.7)

in a neighbourhood of Y′ = (0, 0), where u0 and u1 are complex and the singularity exponent β ∈ C is
not a positive integer. The singularity parameters to be determined from a fit to the Fourier coefficients
of u are u1(0), β, X0 and the elements of A, B and M.

3.1 Example

An example of an upper analytic function of two variables with a complex singularity surface in the
lower half plane is

u = u1ζ
β with ζ = ζ(x, y) = 1 − ε1 eix + (ε2 + iε4) sin2

( y

2

)
+ iε3 sin y, (3.8)
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DETECTION OF COMPLEX SINGULARITIES 5 of 15

where ε1 through ε4 are real parameters with ε2 > 0, and y is a real variable. This function is 2π periodic
in (real) x and y. The local form of ζ near the point X0 that is closest to the real domain is

ζ(x, y) = x − (x0 − iδ) − a(y − y0) + (−b + iλ)(y − y0)
2 + o(y − y0)

2, (3.9)

where the real parameters a, b and δ > 0, λ > 0 are related to the coefficients ε1 through ε4 as shown
below. The location of the point on the singularity surface that is closest to the real domain is determined
by the real parameters (δ, x0, y0), the ‘strength’ or exponent by the complex parameter β, and the local
geometry of the surface, such as its curvature, by (a, b, λ).

An equation for the singular surface (here a curve) in the complex-x plane is obtained by substitution
of xs(y) = δr(y) − iδi(y) into ζ(x, y) = 0 which gives, after some algebra,

δr(y) = tan−1

(
ε3 sin(y) + ε4 sin2(y/2)

1 + ε2 sin2(y/2)

)
, (3.10)

δi(y) = − ln

(
ε1 cos(δr(y))

1 + ε2 sin2(y/2)

)
. (3.11)

The closest point or minimum of δi(y) occurs at y0 = 0, and Taylor’s expansion of (3.10) and (3.11)
about this point leads to

δr(y) = ε3y + ε4

4
y2 + o(y2), (3.12)

δi(y) = − ln ε1 +
(

ε2

4
+ ε2

3

2

)
y2 + o(y2). (3.13)

Comparison of (3.9) with (3.12) and (3.13) gives the singularity surface parameters

δ = − ln ε1, a = ε3, b = ε4

4
, λ = ε2

3

2
+ ε2

4
, x0 = 0. (3.14)

A method for the determination of these parameters from Fourier data for u is presented in the next
section.

4. Large wavenumber asymptotics

We generalize the 1D asymptotics in Carrier et al. (1966) to a function of several variables. Introduce the
notation X = (x, y, z)�, x0 = (x0, y0, z0)

�, k = (k, l, m)� and Y = (y, z)�. Anticipating that the leading-
order contribution to the integral will come from integration in a small neighbourhood of Y′ = 0, we
insert (3.3) into (3.7) and consider the Fourier transform

ûk = 1

(2π)d

∫
Ωd

u1(0)(x′ − P(Y′) + iQ(Y′))β exp(−ik · X) dx dY,

where d = 2 or 3 is the dimension or number of variables (vector quantities are modified in the obvious
way when d = 2). We recall the dependence of x′, Y′ on x and Y is given by (3.4). Change integration
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6 of 15 K. MALAKUTI ET AL.

variables to x′, Y′ and use (2.4) for k � 0, i.e.

1

2π

∫
Ω

(x′ − P(Y′) + iQ(Y′))β exp(−ikx′) dx′ = Ck−(β+1) exp(−ik · X0)

× exp(−ikP(Y′)) exp(−kQ(Y′)), (4.1)

to obtain

ûk ∼ Cu1(0)

(2π)d−1
exp(−δk − ik · x0)k

−(β+1)Ik, (4.2)

where

Ik =
∫

Ωd−1
exp(−ikP(Y′)) exp(−kQ(Y′)) exp(−il · Y′) dY′, (4.3)

l = (l, m)�, and we have used X0 = (x0 − iδ, y0, z0). If we substitute into Ik the leading-order linear
and quadratic terms for P and Q from (3.5), then the resulting integral can be computed analytically.
However, we cannot guarantee that this gives the dominant behaviour of Ik for k � 0 due to the rapid
phase oscillation of the integrand. We show that this phase oscillation can be avoided by restricting
wavenumbers to a neighbourhood of a path (k, l(k), m(k)), where l(k) and m(k) are to be determined.
We first consider in Section 4.1 a function of two variables and compute the integral for k � 0 by
steepest descent. The three variable case is treated in Section 4.2.

4.1 Two variable case

In the two variable or 2D case, Ik is the 1D integral

Ik =
∫

Ω

exp[−i(kp(y′) + ly′)] exp(−kq(y′)) dy′, (4.4)

where p(y′) and q(y′) > 0 are real and k = (k, l)�. By assumption, q(y′) has a global minimum at y′ = 0,
in the neighbourhood of which we assume

p(y′) = ay′ + by′2 + p̃(y′), (4.5)

q(y′) = λy′2 + q̃(y′), (4.6)

where a, b and λ > 0 are real and p̃ and q̃ are o(y′2). This integral is evaluated by steepest descent.
We deform the integration path to a contour C in the complex-y′ plane for which

Im[−ikp(y′) − ily′ − kq(y′)] = D = constant, (4.7)

in a neighbourhood of y′ = 0 as k → ∞. This ensures that there is no phase oscillation near the min-
imum of q(y′) and that the leading-order terms in the Taylor’s expansion (4.5) provide the dominant
contribution to the integral. Due to the linear term in (4.5) it is easy to see that condition (4.7) can in
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DETECTION OF COMPLEX SINGULARITIES 7 of 15

general only be satisfied if ak + l ∼ constant as k, |l| → ∞. We set the constant to zero, so that

ak + l ∼ 0, (4.8)

as k → ∞. With this condition, the leading-order integral is

Ik ∼
∫

Ω

exp[−ik(ay′ + by′2) exp(−kλy′2)] exp(−ily′) dy′ (4.9)

as k → ∞, which, by a standard calculation involving contour deformation, is evaluated as

Ik ∼
√

π√
k
√

λ + ib
exp

[
− (ak + l)2

4(λ + ib)k

]
. (4.10)

We combine (4.10) with (4.2) to obtain

ûk ∼ ck−(β+3/2) exp

[
−δk − ik · x0 − (ka + l)2

4k(λ + ib)

]
, (4.11)

where

c = Cu1(0)

2π1/2
√

λ + ib
. (4.12)

This gives the asymptotic decay of Fourier coefficients as k, |l| → ∞ in the direction l ∼ −ak. We let
c = |c| eiθc and β = βr + iβi, and define

Λr = λ/(λ2 + b2) and Λb = b/(λ2 + b2). (4.13)

The quantities to be determined through a sliding fit to the Fourier coefficients of u are (δ, βr, βi, |c|,
θc, x0, y0, Λr, Λb, a), from which the original parameters can be recovered. The fit must be performed
using wavenumbers in a neighbourhood of the path k = (k, −ak).

Remark The result (4.10) decays exponentially in any wavenumber direction (k, l) = (k, sk) for which
s |=−a, but only algebraically for s = −a. We also expect exponential decay in the original integral (4.4)
when s |=−a, due to phase oscillation of the integrand. Thus, condition (4.8) corresponds to the direction
of slowest decay of |ûk|. This fact is used to obtain an approximation to the direction l(k) ∼ −ak, which
is then improved by an iterative method (see Section 5). We find that the Fourier fits do not give the
correct parameter values unless condition (4.8) is satisfied.

4.1.1 2D form fit. We describe a numerical method to determine the singularity parameters from the
asymptotic behaviour of the Fourier transform. Let ûk = |ûk| exp(iθk), define the variable combinations

ã = aΛr

2
, β̃ = 3

2
+ βr, δ̃ = δ + a2Λr

4
, Λ̃r = Λr

4
, (4.14)

and introduce

H1(k, l) = − l2

k
, H2(k, l) = (ka + l)2

4k
. (4.15)
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8 of 15 K. MALAKUTI ET AL.

Then from (4.11),

log |ûk| ∼ log |c| − δ̃k − β̃ log k − ãl − Λ̃rH1(k, l), (4.16)

θk ∼ θc − x0 · k − βi log k + ΛbH2(k, l), (4.17)

as k, |l| → ∞ satisfying (4.8).
We first use a five-point sliding fit to approximate the parameters (|c|, δ̃, ã, β̃, Λ̃r). As an initial step

we approximate the path or direction in wavenumber space that satisfies condition (4.8). This is done
by a numerical search for the slope s = −a that gives the slowest decay of log |û(k, sk)| for increasing
k. We then set l(k) = sk� where ·� is the floor function, so that (k, l(k)) defines a roughly linear
path in wavenumber space which is near the path of slowest decay. An iterative improvement of this
approximation is described in Section 5.

For each (k, l(k)) the parameters (|c|, δ̃, ã, β̃, Λ̃r) are chosen to exactly fit five values of ûk at nearby
wavenumbers. The asymptotic fit is successful if the parameter fits are nearly independent of the starting
(k, l(k)). Numerical experiments suggest that the fit works best when we choose a subset of the five
wavenumbers to lie parallel to or along the direction defined by (4.8), and other wavenumbers to be
perpendicular to this direction: define parallel and perpendicular wavenumber increments

Δk‖ = (Δk‖, Δl‖), Δk⊥ = (Δk⊥, Δl⊥), (4.18)

and for each k determine p = (log |c|, δ̃, ã, β̃, Λ̃r)
� to exactly fit the five values r = (log ûk, log ûk+Δk‖ ,

log ûk−Δk‖ , log ûk+Δk⊥ , log ûk−Δk⊥)�. This gives a linear system Ap = r, where

A =

⎛
⎜⎜⎜⎜⎝

1 −k −l − log k H1(k, l)
1 −(k + Δk‖) −(l + Δl‖) − log(k + Δk‖) H1(k + Δk‖, l + Δl‖)
1 −(k − Δk‖) −(l − Δl‖) − log(k − Δk‖) H1(k − Δk‖, l − Δl‖)
1 −(k + Δk⊥) −(l + Δl⊥) − log(k + Δk⊥) H1(k + Δk⊥, l + Δl⊥)

1 −(k − Δk⊥) −(l − Δl⊥) − log(k − Δk⊥) H1(k − Δk⊥, l − Δl⊥)

⎞
⎟⎟⎟⎟⎠ . (4.19)

We next use (4.17) to determine the remaining five parameters p̃ = (θc, x0, y0, βi, Λb)
� to exactly fit

the five values r̃ = (θk, θk+Δk‖ , θk−Δk‖ , θk+Δk⊥ , θk−Δk⊥)�. This gives the linear system Ãp̃ = r̃, where Ã
is the same as the matrix A in (4.19) except H2 replaces H1 in the last column. This fit requires the value
of a (in H2), but this has already been determined from the five point fit that is implemented first. The
original parameters in (4.11) are easily determined from the redefined quantities p and p̃.

4.2 Three variable case

We now return to the large wavenumber asymptotics for Ik in (4.3) in the full 3D case. By assumption
the real function Q(Y′) has a global minimum at Y′ = 0, in the neighbourhood of which P(Y′), Q(Y′)
are described by (3.5) and (3.6). Following the two variable analysis, we anticipate that there exists
a path (k, l(k), m(k)) in wavenumber space for which the leading order contribution to the integral as
k → ∞ comes from integration in a small neighbourhood of Y′ = 0. We therefore write

Ik =
∫

Ω2
exp[−k(iA�Y′ + iY′�BY′ + Y′�MY′ + o(|Y′|2))]

× exp[−il�Y′] dy′ dz′, (4.20)
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DETECTION OF COMPLEX SINGULARITIES 9 of 15

where we recall that the real 2 × 2 matrices M and B are positive definite and symmetric, respectively.
These matrices can be simultaneously diagonalized, although not necessarily via a similarity transfor-
mation; see Horn & Johnson (1985, p. 218). The diagonalization takes the form

Z�MZ = I, Z�BZ = Λ, (4.21)

where Λ is a diagonal matrix and Z is a 2 × 2 non-singular matrix with real entries Zi,j. Introduce a new
variable U = k1/2Z−1Y′ and use (4.21) to write

Ik = |J |
∫

Ω2
exp[−ik1/2Ã�U − iU�ΛU − U�IU + O(|U|3/k1/2)]

× exp[−ik1/2 l̃�U] du dv, (4.22)

where U = (u, v)�, Ã� = A�Z, l̃� = l�Z, J = ∂(y′, z′)/∂(u, v) = k−1(Z11Z22 − Z12Z21), and we use the
notation f ∼ O(|U|3/k1/2) to indicate that f is O(|U|3) and O(k−1/2), or higher order, for |U| � 1 and
k � 0. Set

Ã =
(

ã
b̃

)
, l̃ =

(
l̃
m̃

)
, Λ =

(
λ1 0
0 λ2

)
, (4.23)

and note that (4.21) implies that

|J | = |det Z|
k

= 1

k
√

det M
. (4.24)

Due to the ik1/2 factor in the exponent of (4.22), there is rapid phase oscillation of the integrand for
k � 0. Similar to the two variable case, we avoid phase oscillation in the neighbourhood of U = 0 by
requiring that l̃ and m̃ satisfy

ãk + l̃ ∼ 0, (4.25)

b̃k + m̃ ∼ 0, (4.26)

as k → ∞. This ensures that the dominant contribution to the integral occurs from integration in a
small neighbourhood of U = 0, and as k → ∞ the O(|U|3/k1/2) terms make a negligible contribution.
A standard calculation of the leading order integral (4.22) combined with (4.24) then gives

Ik ∼ π

(det M(1 + iλ1)(1 + iλ2))1/2k
exp

[
− (ãk + l̃)2

4k(1 + iλ1)
− (b̃k + m̃)2

4k(1 + iλ2)

]
(4.27)

and from (4.2)

ûk ∼ ck−(β+2) exp(−δk − ik · x0) exp

[
− (ãk + l̃)2

4k(1 + iλ1)
− (b̃k + m̃)2

4k(1 + iλ2)

]
, (4.28)

at leading order as k, |l|, |m| → ∞ with ãk + l̃ ∼ 0 and b̃k + m̃ ∼ 0, where

c = |c| eiθc = Cu1(0)

4π(det M(1 + iλ1)(1 + iλ2))1/2
. (4.29)
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The parameters to be determined from the fit are δ, β, |c|, θc, ã, b̃, x0 and the elements of the matrices
Z and Λ; the latter two quantities then determine the matrices M and B via (4.21).

Remark The constant phase conditions (4.25) and (4.26) are equivalent to

ak + l ∼ 0, (4.30)

bk + m ∼ 0, (4.31)

which, since they are written in terms of the original wavenumbers, are easier to enforce in numerical
computations.

4.2.1 3D form fit. The three variable form fit is similar to that for two variables. We first approximate
the path or direction (k, l(k), m(k)) in wavenumber space that satisfies conditions (4.30) and (4.31),
using a similar method as for the two variable problem, and then use a sliding fit to approximate the
parameters. Let

a′ = ã√
1 + λ2

1

, b′ = b̃√
1 + λ2

2

, Z′
i,j =

Zi,j√
1 + λ2

j

, (4.32)

and introduce the variable combinations,

β ′ = βr + 2, v1 = a′2 + b′2

4
+ δ, v2 = a′Z′

11 + b′Z′
12

2
, v3 = a′Z′

21 + b′Z′
22

2
, (4.33)

v4 = Z′2
11 + Z′2

12

4
, v5 = Z′2

21 + Z′2
22

4
, v6 = Z′

11Z′
21 + Z′

12Z′
22

2
(4.34)

and

w1 = x0 − λ1a′2 + λ2b′2

4
, w2 = y0 − λ1a′Z′

11 + λ2b′Z′
12

2
, w3 = z0 − λ1a′Z′

21 + λ2b′Z′
22

2
, (4.35)

w4 = −λ1Z′2
11 + λ2Z′2

12

4
, w5 = −λ1Z′2

21 + λ2Z′2
22

4
, w6 = −λ1Z′

11Z′
21 + λ2Z′

12Z′
22

2
. (4.36)

Then from (4.28),

log |ûk| ∼ log |c| − β ′ log k − v1k − v2l − v3m − v4
l2

k
− v5

m2

k
− v6

lm

k
, (4.37)

θk ∼ θc − βi log k − w1k − w2l − w3m − w4
l2

k
− w5

m2

k
− w6

lm

k
, (4.38)

where θk = Im(log ûk).
For each (k, l(k), m(k)) the parameters in (4.37) are chosen to exactly fit eight values of log |ûk| at

nearby wavenumbers. This gives a linear system for (log |c|, β ′, v1, . . . , v6). Subsequently, the parame-
ters (θc, βi, w1, . . . , w6) are fit using values of θk at eight nearby wavenumbers. The original 16 param-
eters, namely (δ, βr + iβi, |c|, θc, a, b, x0) and the elements of the matrix Z and diagonal matrix Λ, can
be determined from the 16 redefined parameters in (4.37) and (4.38). As in the 2D case, good fits for
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Fig. 1. Amplitudes of the Fourier coefficients versus k in the direction l(k) = sk� for different s. The curves are increasing in s
for s = 1/9 to s = 4/9, then decrease to the dotted curve at s = 5/9. The slowest decay occurs for s = 4/9, which provides a good
initial guess for the direction in wavenumber space l(k) = −ak satisfying (4.8).

some of the parameters may require the use of wavenumbers parallel and perpendicular to the ‘slowest
decay’ directions defined by (4.25) and (4.26).

5. Numerical results

We demonstrate the form fit for synthetic data, using the function of two variables (3.8) with ε1 = 0.99,
ε2 = 2.0, ε3 = −0.4, ε4 = −1.0, β = −0.5 and u1(0) = 1.0. The value of ε1 is chosen near 1 so that the
minimum singularity distance to the real-x plane is small and a ‘full’ spectrum of Fourier modes is
generated. The other parameters are chosen arbitrarily. The singularity surface parameters are given in
terms of ε1 through ε4 in (3.14).

Figure 1 shows the Fourier amplitudes log10 |û(k, l(k))| versus k in the direction l(k) = sk� for
different s. A good estimate of the direction of slowest decay is obtained from the plot as l[s0](k) = s0k�
with s0 = 4/9 (in general, consideration of a greater range of s, including negative values, is needed for a
good estimate of the direction of slowest decay). We then perform the five-point fit of p in Section 4.1.1
to get an improved estimate s1 and set l[s1](k) = s1k�. Repeating this process, we obtain the iteration

sn+1 = F(l[sn](k)), (5.1)

where F is the five-point fit of p and l[sn](k) = snk�. Numerical tests show that this iteration converges
to the true value s = −a. The fits below are performed with the converged value l(k) = 0.4k�.

Figure 2 shows the fits to (Λr, x0, y0, a, Λb) which are nearly independent of k for |k| � 1, indicating
a successful fit. The fits are very close to their true values, shown by ‘×’ markers on the vertical axis at
far right. Fits to (|c|, θc, δ, βi, βr) are shown in Fig. 3, together with the true parameter values; a single
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Fig. 2. Results of sliding fits of the parameters (Λr, x0, y0, a, Λb) as a function of k. The fits are judged to be successful since the
results are nearly independent of k � 0. The true values of the parameters are shown by the ×’s at the far right.
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Fig. 3. Sliding fits of the parameters (|c|, θc, δ, βi, βr) as a function of k. The true values of the parameters are shown by the ×’s
at the far right. A single × is used to mark the nearby values |c| = 0.2003 and θc = 0.2035.
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Fig. 4. Sliding fits of the parameters (Λr, x0, a, Λb) in a direction l(k) = k which does not satisfy (4.8). We choose the same
function and parameters as in Figs 2 and 3, and the true parameter values are shown as ×’s at the far right. The fit to Λr
underestimates the true value; the fits to a and Λb nearly overlap and overestimate the true values. The fit to x0 is close to the true
value.

× is used to mark the nearby quantities |c| = 0.2003 and θc = 0.2035. In all cases there is very good
agreement between fitted and theoretical values of the parameters.

Figure 4 gives an example of the fits when the path in wavenumber space l(k) = k does not satisfy
the condition (4.8). We choose the same function and parameter values as in Figs 2 and 3. The fits are
nearly independent of k for |k| � 1, but (with the exception of x0) are not close to the true values of
the parameters. The mismatch is due to the rapid phase oscillation in the integrand of (4.4) along this
wavenumber path for k � 0, so that (4.10) does not give the leading order behaviour of Ik.

An example of the sliding fit for a function of three variables is shown in Fig. 5. We consider the
function

u = ζ β for ζ(x, y, z) = 1 − ε1 eix + ε2i sin y + ε3 sin2
( y

2

)
+ ε4 sin2

( z

2

)
, (5.2)

where ε1 through ε4 are real with ε3, ε4 > 0. Comparison of (5.2) to (3.3–3.6) shows that B = 0 and
M = diag(μ1, μ2) is a diagonal matrix. This leads to a considerable simplification of the analysis, and in
particular the simultaneous diagonalization in Section 4.2 can be avoided. Redoing the analysis leading
up to (4.28), we obtain a simpler but equivalent expression for the asymptotic behaviour

ûk ∼ c exp(−δk − ik · x0)k
−(β+2) exp

[
− (ak + l)2

4kμ1
− (bk + m)2

4kμ2

]
, (5.3)

as k, |l|, |m| → ∞ with ak + l ∼ 0 and bk + m ∼ 0.
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Fig. 5. Results of sliding fits of the parameters (δ, a, b, μ1, μ2) versus k for the function of three variables (5.2). The true values
of the parameters are shown by the ×’s.

Expressions for the singularity parameters are found following the analysis in Section 3.1, i.e.

δ = − ln ε1, μ1 = ε2
2

2
+ ε3

4
, μ2 = ε4

4
, a = ε2, b = 0. (5.4)

We choose parameter values ε1 = 0.985, ε2 = −1.0, ε3 = ε4 = 4.0 and β = −0.5. Since a = −1 and
b = 0, the fits are performed along the path l(k) = k and m(k) = 0. Figure 5 shows the fits for a selection
of parameters, which show good agreement with their true values.

6. Conclusions

We have presented a numerical method for detecting the complex singularity surface of a function of
several variables, as a generalization of the single variable method introduced in Sulem et al. (1983).
The method uses the asymptotic behaviour of the multidimensional Fourier transform to determine the
parameters that characterize the singularity surface in a neighbourhood of its closest point to the real
domain. A key finding of the analysis is that the singularity parameters are determined by Fourier coef-
ficients along or near a distinguished path in wavenumber space k = (k, −ak, −bk) for k � 0, where
a and b are defined in Section 3. A simple method is given for the computation of this path. Slid-
ing fits of Fourier transform data for wavenumbers along or near the distinguished path are shown
to accurately recover the known singularity parameters, while fits along a different path or direction
give incorrect values. The latter failure is due to the rapid phase oscillation in the integrand of (4.4)
along a ‘non-distinguished’ wavenumber path for k � 0, so that (4.10) does not give the leading-order
behaviour of Ik.

In principle, the analysis and method can be generalized to treat functions of more than three vari-
ables, although most applications are for two or three variables. We expect this method to be useful
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in investigations of finite-time singularity formation for multivariable problems in fluid dynamics, for
example, in 3D interfacial flow problems and the 3D incompressible Euler equations.
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