
Journal of Computational Physics 274 (2014) 140–157
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Multilevel Monte Carlo simulation of Coulomb collisions

M.S. Rosin a,b,∗, L.F. Ricketson a, A.M. Dimits c, R.E. Caflisch a,d, B.I. Cohen c

a Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036, USA
b Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205, USA
c Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, CA 94511-0808, USA
d Institute for Pure and Applied Mathematics, University of California at Los Angeles, Los Angeles, CA 90095, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2013
Received in revised form 20 May 2014
Accepted 22 May 2014
Available online 29 May 2014

Keywords:
Coulomb collisions
Plasma
Monte Carlo
Multilevel Monte Carlo
Particle in cell

We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical 
method for simulating Coulomb collisions. The method separates and optimally minimizes 
the finite-timestep and finite-sampling errors inherent in the Langevin representation of 
the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the 
underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, 
the computational cost of the method is O(ε−2) or O(ε−2(lnε)2), depending on the 
underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted 
with a cost of O(ε−3) for direct simulation Monte Carlo or binary collision methods. 
We successfully demonstrate the method with a classic beam diffusion test case in 2D, 
making use of the Lévy area approximation for the correlated Milstein cross terms, and 
generating a computational saving of a factor of 100 for ε = 10−5. We discuss the 
importance of the method for problems in which collisions constitute the computational 
rate limiting step, and its limitations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In many regimes of practical importance, Coulomb collisions are an integral part of any accurate plasma description. 
For highly collisional systems, they are essential for closing the moment hierarchy of the kinetic equation and deriving 
microphysical expressions for the fluid transport coefficients. For marginally collisional systems with order one Knudsen 
numbers, they play an important role in the dynamics, for example in tokamak edge plasmas [1,2], inertial confinement fu-
sion [3], and astrophysics [4]. For weakly collisional, or ‘collisionless’ systems, they regulate nonlinear phase space cascades 
of generalized energy and entropy [5,6], and can be used to understand and control grid errors in numerical simula-
tions.

This paper presents a new (for plasma physics applications) accurate and efficient multi-(time-)level computational 
method for collisional kinetic problems in multiple dimensions. It is especially useful for systems in the low Knudsen num-
ber, i.e. highly collisional, regime. The method leverages a stochastic differential equation (SDE), or Langevin, approach to 
solving the kinetic equation particle-wise. It then combines the solutions using the multilevel Monte Carlo (MLMC) scheme, 
initially developed for financial mathematics [7] and now used in a wide variety of disparate areas, as reviewed in [8].
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The MLMC method generates computational savings by separating and independently minimizing the finite-timestep 
and finite-sampling errors inherent in any numerical SDE solver. Analogous to deterministic multigrid methods [9], and 
building on earlier multilevel approaches to integration problems [10,11], the method builds a solution calculated from 
a weighted sum, over different ‘levels’ l, of successively refined building-block solutions obtained by direct methods like, 
for example, the Euler–Maruyama or Milstein discretizations. The so called ‘strong convergence’ properties of these direct 
schemes determine the efficiency of the MLMC scheme in terms of a global error bound ε in expectation, over all particles, 
of the time-integrated solution of the underlying SDE.

The solutions returned by the MLMC method are accurate approximations of the mean, with respect to the particle 
distribution function f , of any Lipschitz ‘payoff’ function P of the generalized phase space coordinates. This can include 
the physically important macroscopic velocity moments of f , such as the density, fluid velocity, and temperature, that 
are governed by the moments of the underlying kinetic equation. For example, in the case of a homogeneous, force-free, 
collisional plasma, the fluid velocity is governed by the first moment equation

n
∂ui

∂t
= Ri,

where n = ∫
f d3 v , ui = ∫

f vid3 v and Ri = ∫
(∂ f /∂t)coll vid3 v are the macroscopic density, fluid velocity and mean colli-

sional transfer of momentum, respectively. Here t is time, v is the particle velocity with components vi , and (∂ f /∂t)coll
is the Landau–Fokker–Planck collision operator [12]. Unlike other approaches based on solving derived fluid equations, the 
MLMC method does not rely on collisional closures or ad hoc truncation schemes. The macroscopic solutions accurately 
reflect the underlying microscopic dynamics because the kinetic equation is solved directly. In a simplified (one dimen-
sional) energy scattering model, the method has been recently applied to plasma physics problems in an independent 
study [13].

The advantages of the MLMC method should be considered within the broader context of numerical collision methods 
for kinetic problems: particle-based and continuum (grid-based) methods. Each has its own merits. In terms of accuracy, 
it is instructive to estimate the errors in the two methods as a function of the most basic measure of their computational 
complexity (cost) at each timestep – the number of particles for particle methods and number of grid points for continuum 
methods.

The cost of the two methods at each timestep is of the same order, if the number of simulation particles N equals the 
number of continuum grid points. In this case, the deterministic error in an order-p finite-difference collision scheme, with 
a grid spacing in d dimensions N−1/d , is O(N−p/d). This is to be contrasted with the associated stochastic error for a particle 
scheme, which scales as O(N−1/2). Comparing these two results, as in for example, Caflisch [14], we find that if

d

p
< 2,

then the error in the grid based scheme will be less than that of the particle method, for the same computational cost, i.e. 
it will be more efficient. This implies that even for relatively simple schemes, say a second order scheme in three velocity 
dimensions, continuum methods are the most efficient choice.

Nevertheless, there are many reasons a why particle Monte Carlo methods (pure particle and particle-based hybrid 
methods) may be preferable to continuum methods [14,15]. For example, pure particle based methods are simple, direct 
and converge at a rate independent of the number of dimensions, while particle-based hybrid methods are versatile and 
efficient, especially so for partially thermalized systems [16]. On the other hand, continuum methods have poor scaling 
with increased total (velocity plus spatial) dimension and lack the robustness of particle methods. They must also respect 
stability and CFL-like constraints on their discretization – even in the absence of mean fields. For these reasons, and others 
given in [15], the development of efficient collision algorithms for Monte Carlo methods is of great importance.

For current Monte Carlo simulations, binary collisions, for example the methods of Takizuke and Abe, and Nanbu, are 
a popular option [17,18]. These collision methods fall into a class of quasi-Maxwellian Boltzmann equations that have 
been shown to be no less accurate than O(�t1/2) in terms of their global truncation error [19]. Related analytic and 
numerical studies confirm this lower bound, and these schemes have been argued to be as fast as O(�t) in the best case 
scenario [20–22]. The sampling error of the methods, governed by the Central Limit Theorem, scales as O(N−1/2). The 
Langevin-based or SDE description presents an alternative.

Existing computational Langevin collision models have largely focused on the lowest order ‘Euler–Maruyama’ approxi-
mation to the underlying Langevin equation. Starting with Ivanov and Shvets [23,24] various collision models have been 
developed that evolve some subset of the particle’s energy, pitch angle and azimuthal angle [25–31]. In their most basic 
forms, the ‘weak’ convergence errors associated with these schemes are, like optimal binary methods, O(�t). Some of the 
models also include advanced numerical techniques like grid-based schemes or schemes that use the Euler–Maruyama dis-
cretization as a building block in, for example, predictor–corrector schemes. Further extensions include self-consistent field 
models [32], gyrokinetic applications [33], and laser-plasma applications [34,35].

Beyond the Euler–Maruyama scheme, the next approximation in the hierarchy of higher order schemes is the ‘Milstein’ 
scheme. Its basic weak convergence error is also, like the Euler–Maruyama scheme, O(�t), but its strong convergence 
properties are improved. In one dimension, the Milstein terms are easy to implement [30,31]. In higher dimensions, two or 
more, the complex statistics and statistical correlations in orthogonal Milstein terms prevent a simple description. Because 
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collisions are a fundamentally multi-dimensional process in velocity space, even in reduced frameworks like gyrokinetics, 
this has been a major impediment for the application of higher-order Langevin methods in plasma physics. However, recent 
work provides a simple, efficient approximation to the statistically correlated component of the orthogonal Milstein terms 
and a proof of concept demonstration of their use for Coulomb collisions [36].

Existing SDE collision models and, in the best case, binary collision models have the same order of accuracy O(�t). 
Both methods also have the same computational cost ∼ O(ε−3), which comes from the product of a factor ε−1 from the 
timestepping cost and a factor ε−2 from the sampling cost (a result we derive in Section 3.1). This is to be contrasted with 
the cost of the MLMC method, which uses discretized SDEs as building blocks.

The Euler–Maruyama MLMC scheme is O((lnε)2/ε) faster than both SDE and binary methods, for the same level of 
accuracy (again, as shown in Section 3.1). The Milstein MLMC method is even faster, offering a relative saving of O(1/ε)

which is the optimal general scaling achievable by MLMC [37], and indeed, by any random Monte Carlo method [38]. This 
paper provides a proof and demonstration of these results.

The layout of this paper is as follows. In Section 2 we introduce the Langevin representation of the Landau–Fokker–Planck 
collision operator, and its basic numerical representation. In Section 3 we review the MLMC method of Giles that uses, as its 
building block, the basic numerical representation of the collision operator. In Section 4 we present the results of the MLMC 
method as applied to a collisional relaxation problem. In Section 5 we describe some limitations of the method and sketch 
some potential avenues for extending it. Finally, in Section 6 we summarize and conclude.

2. Coulomb–Langevin equations

2.1. Formulation

The starting point for most plasma collision models is the Landau–Fokker–Planck operator [12]. This describes the effect 
of many small-angle collisions on the evolution of the phase-space test-particle distributions function fa ≡ fa(t, v) of the 
charged plasma species a

∂ fa

∂t
= ∂ fa

∂t

∣∣∣∣
coll

≡ − ∂

∂vi

((
∂h

∂vi

)
fa

)
+ 1

2

∂2

∂vi∂v j

(
∂2 g

∂vi∂v j
fa

)
, (1)

where t is time, v is velocity with components vi and repeated indices are summed over. The Rosenbluth potentials h, 
g [39] are given by(

∂2/∂vk∂vk
)
h = −4π

∑
b

Γ (1 + ma/mb) fb, (2)

(
∂4/∂vk∂vm∂vk∂vm

)
g = −8π

∑
b

Γ fb, (3)

where Γ = 4πq2
aq2

bΛ/m2
a , the sum is over the index b of the plasma field–particle species fb , mass is m, charge is q, and Λ

is the Coulomb logarithm.
An alternative representation of the integro-differential Coulomb collision operator (1)–(3) is a drag–diffusion SDE for 

the random variable v , describing the same stochastic memoryless (Markov) process. Under the assumption of white-noise 
forcing, the SDE description can be shown to be equivalent to the Fokker–Planck or forward Kolmogorov representation 
(Chapter 9.3, [40]).

Recasting the distribution function fa as a sum of delta-function particles, indexed by k (henceforth repressed)

fa(t, v) =
∑

k

δ
(

v − vk(t)
)
, (4)

the particle velocities are governed by Newton’s Second Law, which in the special case of (1), corresponds to the SDE [24,40]

dvi = Fidt + DijdW j. (5)

Here the total force is the sum of a deterministic drag force with coefficient Fi and a stochastic diffusion force with coeffi-
cient Dij and Wiener, or Brownian, process W i(t) with a normal probability density and variance

E
[[

W i(t2) − W i(t1)
]2] = |t2 − t1|,

where E is the expectation. The Brownian motions are independent for each particle and component of the velocity. See 
Table 1 for a summary of notation.

In Cartesian coordinates, and adopting an ‘Ito interpretation’ [41], Fi and Dij are related to (1) by

Fi = (∂/∂vi)h,

Dij = [(
∂2/∂vi∂v j

)
g
]1/2

,
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Table 1
Commonly used notation.

v , vi Velocity vector, components
vk , vk

i k-th realization of v , vi

vl v calculated with �tl

v , μ, φ Spherical components of v
v̂ , v̂l E[v], E[vl]
P , Pl P (v), P (vl)

P̂ , P̂ l E[P (v)], E[P (vl)]
Vl Var[Pl − Pl−1]

Roman sub- and superscripts, with the exception of l, Nl , L, NL , are 
vector components and random variable realizations respectively.

and when fa is in equilibrium, i.e. a Maxwellian with the same temperature and flow velocity as fb , Fi and Dij are also 
related to each other by the Einstein1 relations [42]:

Fi fa + ∂

∂v j
(Dij fa) = 0. (6)

In curvilinear coordinate systems or for other stochastic calculuses, e.g. the ‘Stratonovich interpretation’, Fi and Dij can 
appear as mixed coefficients of the drag and diffusion terms in (5) [41].

Without loss of generality, macroscopic forcing – electromagnetism, gravity, model terms – can be included in this 
formulation. Either directly in the coefficient of the deterministic drag term, or via an operator splitting procedure. Once 
it has been numerically discretized, (5) presents a simple method for including collisions or other stochastic processes in 
particle-in-cell codes. The method can also be applied to classes of stochastic kinetic systems more general than plasmas.

2.2. Numerical discretization

In general, solutions to (5) at time T , v(T ) must be obtained numerically. Discretization can be achieved by an iterative 
(stochastic)-Taylor expansion in the finite timestep �tl = 2−l T .

The simplest integration scheme is the Euler–Maruyama scheme, Fig. 1. It is

�vi = Fi�tl + Dij�W j, (7)

where �vi = vi(t + �tl) − vi(t), �W j = W j(t + �tl) − W j(t), and under the Ito interpretation, the coefficients Fi, Dij , 
and their derivatives are to be evaluated at time t . Solutions to (5) obtained using schemes like (7) and its higher order 
extensions, are said to be obtained directly, or using single level estimates, i.e. l = constant.

The weak and strong convergence properties of a direct scheme, like (7), can be defined in terms of its weak and strong 
errors [41,36]. When solving for v(T ) these are, respectively, given by:

εW (v, T ,�t) = ∣∣E[
v(T )

] −E
[

vl(T )
]∣∣,

εS(v, T ,�t) = E
[∣∣v(T ) − vl(T )

∣∣2]1/2
,

where vl is the solution to (5) obtained using the finite timestep �tl . When solving for some Lipschitz function of v(T ), 
P [v(T )], the definition of the weak error (although not the strong error) must be generalized, so that [41]:

εW
(

P (v), T ,�t
) = ∣∣E[

P
(

v(T )
)] −E

[
P
(

vl(T )
)]∣∣, (8)

εS
(

P (v), T ,�t
) = E

[∣∣v(T ) − vl(T )
∣∣2]1/2

. (9)

For single-valued initial conditions for the random variables, the expectations are over Brownian paths W i only. For multi-
valued initial conditions, expectations are over both initial conditions and Brownian paths.

A scheme is said to converge weakly with O(�tαl ) if εW ≤ c�tαl , and strongly with O(�tβ

l ) if εS ≤ c�tβ

l as �tl → 0, 
where the c’s are (different) constants. While strong convergence is a straightforward generalization of deterministic nu-
merical convergence, historically it has rarely been of practical importance. In general, it has been the weak convergence 
properties of a numerical SDE scheme that have dictated its utility.

For the Euler–Maruyama scheme (7), the convergence properties are

P (v) − P (vl) =
{

εW ∼ O(T �tl) – Weak Euler scaling,

εS ∼ O(
√

T �tl ) – Strong Euler scaling,
(10)

so α = 1 and β = 1/2, as shown in Fig. 2.

1 In the general sense, ‘Einstein relations’ express the balance of deterministic and diffusive fluxes in a Fokker–Planck type equation satisfied in equilib-
rium. The work of Einstein described the positional motion of particles suspended in a fluid (undergoing Brownian motion), so that the discussion there 
was of fluxes crossing notional boundaries in configuration space. In this paper, the relevant fluxes are across boundaries in velocity space.
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Fig. 1. Collisional evolution of velocity-space coordinate μ for a single particle using the Euler–Maruyama integration scheme (left) and Milstein scheme 
(right). Results are generated from (50) and (51) using successively compounded timesteps �tl = T 2−l for l = 0, 1, 2 . . .8, and the same underlying Brownian 
path. The rapid convergence of the Milstein results, with increasing l, are indicative of the scheme’s improved strong pointwise convergence properties 
relative to the Euler–Maruyama scheme. Pairs of paths with l, l − 1 are combined in the MLMC scheme to estimate E[μ].

The next scheme in the hierarchy of Taylor expansions of (5) is the first order Milstein approximation, also shown in 
Fig. 1. It is [41,43]

�vi = Fi�tl + Dij�W j + 1

2
Dmj

∂ Dij

∂vm

(
�W 2

j − �tl
) +

∑
j �=k

Dmk
∂ Dij

∂vm
Akj, (11)

where �tl arising in the third term comes from the quadratic variation of a stochastic process, and Akj is the off-diagonal 
‘area integral’ cross term given by

Akj =
t+�tl∫

t

[
W j(s) − W j(t)

]
dWk(s) =

t+�tl∫
t

dWk(s)

s∫
t

dW j(η). (12)

The area integrals Akj are non-Gaussian random numbers that are closely related to the so-called ‘Lévy areas’ Lkj =
(A jk − Akj)/2, and are correlated with the Brownian motions Wk and W j [44]. Numerically, sampling Akj in a computa-
tionally efficient manner is technically challenging [41,45,46]. However, recently Dimits et al. [36] have developed a simple 
new approximate method for sampling Akj in two dimensions. The method is simple to implement, inexpensive, accu-
rate, and relies on the joint probability density function of the area integrals only. Using the prescriptions outlined in [46]
and [47], it is expected that this two dimensional area integral can be used to generate the D(D − 1)/2 non-independent 
area integrals that arise in higher velocity-space dimensions D .

The weak and strong convergence properties of the first-order Milstein scheme (11) are

P (v) − P (vl) =
{

εW ∼ O(T �tl) – Weak Milstein scaling,

εS ∼ O(
√

T �tl) – Strong Milstein scaling,
(13)

so α = 1 and β = 1, and, therefore, (11) is superior to (7) only in its strong convergence properties, Fig. 2.
In the context of plasma physics, it is weak convergence that is typically important in simulating collisions directly using 

schemes like (7) and (11). This is because plasmas are many particle systems in which it is the summed distribution f , 
as opposed to the individual particles, that are important. In other words, particle identity, which is incorporated into the 
strong error, is unimportant in constructing and evolving the distribution function.

However, as we show in Section 3, it is the strong convergence properties of the underlying scheme that determines the 
computational efficiency of Giles’ MLMC scheme. This is an instance of strong convergence being relevant to plasma physics. 
The MLMC method is significantly more efficient than direct methods, and especially so when used in conjunction with 
an underlying scheme with higher-order strong convergence. Quantitatively, the relationship between error, efficiency and 
computational cost, can be understood as follows.

2.3. Efficiency and computational cost

The expectation of the solution to (5), E[v(T )], has two sources of error in its numerical realization. A finite-timestep 
error that depends on �tl , and a finite-sampling error that depends on the number of samples N . The same is true of any 
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Fig. 2. Weak (left) and strong (right) scaling properties of the Euler–Maruyama and Milstein schemes for the μ component of the velocity calculated from 
108 samples. While both schemes have the same order of weak convergence, O(�tl), their strong convergence properties differ, (10) and (13). The Milstein 
scheme convergence strongly as O(�tl), relative to the Euler–Maruyama scheme O(

√
�tl).

function of the solution, for example, the average kinetic energy2 K of a collection of particles:

K = 1

2

m

n

∫
f (T , v)|v|2d3 v ≡ 1

2
mE

[∣∣v(T )
∣∣2]

, (14)

where the left and right hand interpretations of v are as in (4), so f obeys (1) and v(T ) obeys (5).
Minimizing the error in the moments of f , for example (14), is a compromise between efficiency and accuracy. Let 

P = P (v(T )) be some Lipschitz scalar function of v(T ), let Pl = P (vl(T )) be its finite timestep approximation, and let 
Pk

l = P (vk
l (T )) be the k-th sample of the finite timestep approximation. For numerical schemes that employ discretizations 

like (7) or (11) directly, we define

P̂ = E[P ] with N → ∞, �tl → 0, (15)

P̂ l = E[Pl] with N → ∞, �tl = 2−l T , (16)

P̂ Nl
l = N−1

l

Nl∑
k=1

Pk
l with N = Nl, �tl = 2−l T , (17)

to be the ‘true’, finite-timestep, and finite-timestep finite-sampling approximations respectively, Table 1.
Eqs. (15)–(17) are calculated from (5) in two stages. First, applying some convergent integration scheme with �tl → 0

for v , or �tl = 2−l T a constant for v l . Second, applying P and calculating the expectation by generating multiple samples, 
and then averaging over them with N → ∞ for P̂ or P̂ l , and finite N = Nl for P̂ Nl

l .

An accurate estimate P̂ Nl
l of P̂ is then one for which the mean squared error (MSE)

MSE ≡ E
[(

P̂ − P̂ Nl
l

)2]
= ( P̂ − P̂ l)

2 +E
[(

P̂ l − P̂ Nl
l

)2]
, (18)

is small. The final equality follows from the fact that E[ P̂ l − P̂ Nl
l ] = P̂ l − P̂ Nl

l and P̂ Nl
l is an unbiased estimate of P̂ l .

The size of the two terms in (18) can be varied independently. The first depends on the weak convergence rate of 
the scheme O(�tαl ), and is independent of N . The second depends on the number of samples N = Nl , and its size is 
independent of �tl . Their associated sizes are

( P̂ − P̂ l)
2 � c2

1�t2α
l , E

[(
P̂ l − P̂ Nl

l

)2] = Var[Pk
l ]

Nl
, (19)

where

Var[P ] ≡ E
[(

P −E[P ])2]
is the variance operator on a random variable, and c1 is a constant.

2 While K is locally Lipschitz, globally it violates the Lipschitz condition as |v| → ∞. However, for the applications in this work, K can be regarded as 
being artificially attenuated at large values to ensure Lipschitz continuity on the grounds that any finite energy collection of particles is responsible for a 
necessarily vanishing contribution to its moments from particles at large |v|.
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It follows that P̂ Nl
l is accurate to within ε of P̂ if

ε2 ≥ MSE ∼ c2
1�t2α

l + Var[Pk
l ]

Nl
. (20)

The challenge in enforcing this bound is to do so as efficiently as possible.
For direct integration, the computational cost K of obtaining P̂ Nl

l is the product of the number of timesteps T /�tl = 2l

and the number of samples N = Nl . It provides a simple measure of efficiency and is defined as

K = Nl
T

�tl
. (21)

In practice, K measures the number of times the collision integration routine must be called in a numerical simulation.
To make the scheme as efficient as possible, we wish to minimize K subject to (20). To do so, we will ensure both terms 

in (18) are individually bounded, so their sum ≤ ε2. Applying the method of Lagrange multipliers in case of equality in (20)
yields expressions for the optimal �tl and Nl:

�tl � ε1/α
[
c2

1(2α + 1)
]−1/2α

,

Nl � ε−2
(

1 + 1

2α

)
Var

[
Pk

l

]
.

Direct substitution into (21) then reveals the optimal computational cost is

Kopt � c2

ε(2+1/α)

1

2α

(
1 + 1

2α

)1+1/2α

Var
[

Pk
l

]
, (22)

where c2 is a constant.
It is important to note that for both the Euler–Maruyama and the first order Milstein schemes, (7) and (11), α = 1. 

It follows that Kopt ∼ O(ε−3). It is only by including higher order terms that the weak error scaling, and therefore the 
optimal computational cost, can be improved.

While the direct approach has the advantage of being conceptually simple, it is asymptotically inefficient. Minimizing the 
error using direct methods requires both a large sample size and a small step size, which tends to over-resolve the problem. 
It is this inefficiency that is improved upon by the MLMC method.

3. Multilevel Monte Carlo method

3.1. Background

The computational cost of direct methods scales with their timestep resolution and expectation sample size. The im-
proved efficiency of the MLMC method, relative to the methods in Section 2.2, comes from judiciously expending computa-
tional resources only when necessary. The improved efficiency of the method is achieved by building an estimate of P̂ from 
multiple solutions with varying timesteps �tl = 2−l T , i.e. values of l, and expectations with varying sample sizes Nl . For the 
coarsest level l = 0, the Langevin equation is integrated with a single timestep, while for the finest level l = L, 2L timesteps 
are required. The theoretical analysis presented in the remainder of this section is intended only to briefly outline the more 
complete and rigorous proof of the error estimates for the MLMC scheme. This proof was given initially by Giles in [7], and 
its extensions are reviewed and referenced in [8].

The basic mechanism behind the method’s improved efficiency can be understood as follows. For small values of l, 
estimates are inexpensive to compute accurately, because only a few timesteps are required for each realization of the 
numerical solution. In turn, for large values of l, where each integration is relatively expensive, only a few realizations are 
needed because the finite-sampling error converges to zero as the strong error, assuming β is positive.

From the linearity of the expectation operator, we have the following identity

P̂ L ≡ E[P L] = E[P0] +
L∑

l=1

E[Pl − Pl−1]

≡ P̂0 +
L∑

l=1

δ P̂ l (23)

where P̂0 = E[P (v0)] is estimated using a single timestep and δ P̂ l ≡ E[Pl − Pl−1]. Eq. (23) describes a telescoping sum, 
where the contribution of each term decreases with increasing l, as shown in Fig. 3.
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Fig. 3. Mean (left) and variance (right) of the difference between levels for the Euler and Milstein schemes. The mean of the difference at level l appears 
explicitly in (24). The variance in differences at l is significantly less than that of a single level, which allows term in P̂ NL

L to be calculated efficiently using 
MLMC methods. Data is taken from the beam diffusion test case in Section 4 with payoff P = μ, (delta-function) initial conditions v∗ = 0.5, μ∗ = 0.8, and 
final time T = 0.02. All quantities calculated in this figure are taken using 105 samples.

The finite sampling analogue of (23) can be obtained by generating N0, Nl samples of P̂0, δ P̂ l and combining them so

P̂ NL
L = P̂ N0

0 +
L∑

l=1

δ P̂ Nl
l (24)

where

P N0
0 = 1

N0

N0∑
k=1

Pk
0, (25)

δ P̂ Nl
l = 1

Nl

Nl∑
k=1

(
Pk

l − Pk
l−1

)
, (26)

are unbiased estimates of P̂0, δ P̂ l respectively.
In calculating each pair Pk

l and Pk
l−1 that contributes to the sum in δ P̂ Nl

l , it is essential that the payoffs are constructed 
from the same underlying stochastic path and initial conditions. That is, for each contributing realization to δ P̂ Nl

l , Pk
l−1 must 

be constructed by suitably coarsening P k
l , or conversely, Pk

l must be calculated by suitably refining P k
l−1. One coarsening 

method, including a prescription for the multi-dimensional Lévy areas, is provided in Section 4.3 of Dimits et al. [36]. 
Paths and initial conditions for different realizations that contribute to δ P̂ Nl

l , and indeed different δ P̂ Nl
l ’s and P̂ N0

0 , can be 
calculated independently.

Eq. (24) returns a good estimate of P̂ , P̂ NL
L , if, for a reasonable computational cost, the total error is small. Like the direct 

methods of Section 2.3, the finite-timestep contribution to the total error is governed by the weak convergence properties of 
the underlying scheme. However, unlike direct methods and crucially for the MLMC method, the finite-sampling, or variance, 
contribution

Var
[

P̂ NL
L

] = Var
[

P̂ N0
0

] +
L∑

l=1

Var
[
δ P̂ Nl

l

]
,

is determined by the strong convergence properties of the underlying scheme.
As in (18), the mean square error is given by

MSE = ( P̂ − P̂ L)
2 +E

[(
P̂ L − P̂ NL

L

)2]
, (27)

which we wish to bound so that ε2 ≥ MSE. Analogous to (19), the two terms are of size

( P̂ − P̂ L)
2 � c2

1�t2α
l , E

[(
P̂ L − P̂ NL

L

)2] = V 0

N0
+

L∑
l=1

Vl

Nl
, (28)

where Vl ≡ Var[Pk
l − Pk

l−1] and V 0 = Var[V k
0] are the variances of a single sample. The variances of these samples are 

related to those of the random variable δ P̂ Nl
l by Var[δ P̂ Nl

l ] � Vl/Nl and Var[ P̂ N0
0 ] � V 0/N0. For l > 0, Vl follows the strong 

convergence order of the underlying scheme (9):
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Fig. 4. Samples Nl at each level l for the MLMC scheme with Euler (left) and Milstein (right) discretizations, (34). The scaling for levels l ≥ 1 is determined 
by the strong convergence properties of the underlying scheme, Nl ∼ 2−lβ . The computational cost at each level Kl = Nl2l is approximately constant for the 
Euler method, but decreases rapidly in the telescoping Milstein sum. Parameters are the same as those used in Fig. 3.

Vl � c3�t2β

l , (29)

where c3 is a constant. We demonstrate this result numerically in Fig. 3, and note that (29) dictates that the finite-sampling 
error in δ P̂ Nl

l can be bounded using fewer and fewer samples Nl , as l increases (�tl decreases).

From (27) and (28), it follows that P̂ NL
L is a good estimate of P̂ if

ε2 ≥ MSE ∼ c2
1�t2α

l + V 0

N0
+

L∑
l=1

Vl

Nl
, (30)

which has an associated computational cost of

K =
L∑

l=0

Kl ≡
L∑

l=0

Nl
T

�tl
. (31)

The most efficient method for calculating P̂ NL
L is, again, the one that minimizes K subject to (30). Unlike direct methods, 

there are now two new degrees of freedom over which to optimize: the total number of levels L, and the number of samples 
used for the expectation at each level Nl . As in the previous section, the minimal K will clearly occur when MSE = ε2 and 
so we approach the problem by separately bounding the two terms in (27) as follows:

( P̂ − P̂ L)
2 = 1

2
ε2, E

[(
P̂ L − P̂ NL

L

)2] = 1

2
ε2. (32)

The first condition, along with (30) gives

L = 1

α

ln[c1T α
√

2ε−1]
ln 2

. (33)

Considering this L fixed, a Lagrange multiplier argument reveals the optimal efficiency is obtained when Nl ∼
√

Vl T 2−l . 
Using this and the second condition in (32), the optimal number of samples at level l is given by

Nl =
√

Vl2−(l+2)

ε2

L∑
l=0

√
Vl2l, (34)

where (29) ensures that Nl is a strictly decreasing function of l as shown in Fig. 4.
Now, combining (29), (31), (33) and (34), the optimal computational cost of the MLMC scheme is given by

Kopt � 2c4T (2β−1)/2

ε2

(
L∑

l=0

2−l (2β−1)/2

)2

, (35)

where L = L(ε) is given by (33). In the case of β = 1/2, the sum in (35) scales as L ∼ lnε, whereas for β > 1/2, the sum 
can be uniformly bounded. From this, the asymptotic cost of the MLMC method is O(ε−2(lnε)2) for the Euler–Maruyama 
method and O(ε−2) for the Milstein method.
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Fig. 5. Computational cost K (left) and normalized K (right) versus user-prescribed error bound ε for the beam diffusion test case in Section 4. The 
parameters are as in Fig. 3. Both the Euler and Milstein MLMC schemes are more efficient than direct integration, Milstein by a factor of approximately 100 
for the case ε = 10−5, and the scaling costs predicted by (36) are recovered.

These costs are to be contrasted with the total cost of direct and binary methods, for which K is given by (21). As de-
scribed in Section 2.3, the computational cost of these methods can be easily calculated by writing the requisite (so that the 
MSE ≤ ε2) timestep �tl and sample size N in terms of ε and substituting directly into (21). For direct methods, the result 
of doing so is given by (22) so K ∼ O(ε−(2+1/α)) for a general weak order-α scheme, and K ∼ O(ε−3) for the widely used 
α = 1 direct Euler–Maruyama integration scheme. For binary methods, the analysis is identical.3 The finite-timestep error is, 
at best, O(�tl) and the finite-sampling error is O(N−1/2), so the requisite scalings of these two terms are �tl ∼ O(ε) and 
N ∼O(ε−2) respectively. It follows that for the binary method, at best, K ∼O(ε−3) and, at worst, when the finite-timestep 
error is O(�t1/2

l ), the cost is K ∼O(ε−4).
The relative theoretically optimal costs of the various methods are therefore:

Kopt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(ε−3) – Binary collisions,

O(ε−(2+1/α)) – General order-α direct SDE,

O(ε−2(lnε)2) – MLMC with β = 1/2,

O(ε−2) – MLMC with β > 1/2.

(36)

In Fig. 5 we consider the specific test case of the collisional relaxation of a monoenergetic, low-density beam, as de-
scribed in Section 4. The figure confirms that the cost scaling in (36) are accurate for the α = 1 direct Euler method, and 
the Euler and Milstein multilevel schemes. It also shows that the computational cost of the MLMC method is substantially 
less than that of the direct method.

3.2. Numerical implementation

Eqs. (24)–(26), (33) and (34) provide a prescription for approximating P̂ by P̂ NL
L , such that its MSE ≤ ε2. There are two 

degrees of freedom in the MLMC scheme, L and Nl , each influencing an associated finite-timestep and finite-sampling error. 
The constants that determine L and Nl , such that (32) is enforced, are c1 and V L respectively.

In the asymptotic limit of small timestep (large l), c1 is the constant of proportionality between P̂ − P̂ l and �tl , as defined 
in the weak error (8). It can be calculated using Richardson extrapolation

|c1| � |c1|(N) ≡ | P̂ N
l − P̂ N

l−1|
T α2−lα|1 − 2α| , (37)

where P N
l , P N

l−1 are determined empirically by direct integration with the relevant discretization (Euler–Muruyama, first-

order Milstein) and the integer N � 1 is large enough that the sampling error in P̂ N
l is small relative to the timestep error 

i.e. P̂ N
l � P̂ l . This semi-equality can be checked, ex post facto, by ensuring that

1 � |c1|(nN) − |c1|(N)

|c1|(nN)

,

for n > 1, also an integer.

3 Note that binary collision algorithms pair particles into N/2 sets when performing collisions. This offers a relative saving of up to a factor of a half, 
compared to Langevin treatments [48], although the constant factor does not affect the scaling properties of the algorithm.
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As for c1, V L , which influences the finite sampling error in the MLMC scheme, must be determined empirically. It can 
be estimated by taking N samples of P L − P L−1, and setting

V L � V N
L ≡ 1

N

N∑
k=1

(
Pk

L − Pk
L−1

)2 − 1

N2

(
N∑

k=1

(
Pk

L − Pk
L−1

))2

, (38)

where each value of P in the pair is generated from the same Brownian path and initial condition using the relevant 
discretization, and N should be large enough to ensure good statistics. It is important to note that, unlike (37), this quantity 
depends on the strong convergence properties of the underlying integration scheme (9). In this case, P L and P L−1 must be 
calculated using different timesteps, but the same underlying stochastic path in which the path at the coarser level L − 1 is 
suitably compounded from those used at the finer level L. Using V L , the number of samples at each level Nl can then be 
computed according to (34) and by noting Vl = V L22β(L−l) .

The l = 0 level is an exception and, analogous to (38), it is given by

V 0 � V N
0 ≡ 1

N

N∑
j=1

(
Pk

0

)2 − 1

N2

(
N∑

k=1

Pk
0

)2

, (39)

where, again, N should be sufficiently large.
Careful calculation of the constants in this section is essential to obtaining an accurate estimate of P̂ NL

L using the MLMC 
method.4 (Although it should be noted that even for direct methods, c1 must still be calculated to ensure MSE ≤ ε2.) The 
method can be implemented, step by step, as follows, where special note should be taken at step 6 where it is essential that 
each pair of realization be calculated consistently from the same underlying path. A prescription for doing so is provided 
in [36].

The steps are:

1. Choose a payoff function P , end time T , and an acceptable error bound ε.
2. Choose a method of direct integration for the MLMC method.
3. Use (37) to calculate c1, and combine with (33) to get L.
4. Use L, (38) and (39) to calculate V L and V 0.
5. Use V L , V 0 and (34) to calculate Nl and N0.
6. Calculate Nl pairs of Pk

l , P
k
l−1, each with the same underlying stochastic path.

7. Use Nl pairs of Pk
l , P

k
l−1 to calculate δ P̂ Nl

l for each l = 1 to L.

8. Use N0 to calculate P N0
0 .

9. Use P N0
0 and δ P̂ Nl

l from l = 1 to L to calculate P̂ NL
L according to (24).

These steps are implemented in Section 4 for a test case describing the collisional diffusion of a beam of a particles 
interacting with a Maxwellian background.

4. Beam diffusion test case

The average pitch-angle evolution of a spatially homogeneous, gyrotropic beam of particles a constitutes a simple and 
robust test case for the MLMC method. The beam is injected into a Maxwellian background distribution of particles b with 
equal mass, ma = mb . In the absence of forcing, the action of collisions isotropizes fa in this classical relaxation problem.

Working in spherical velocity-space coordinates (v, θ, φ), v is the particle speed, θ = cos−1 μ is the pitch angle with 
respect to some preferred direction μ, and φ is the azimuthal angle. Neglecting φ-dependence (i.e. a two-dimensional 
collision model), the collision operator (1) is [39]:

∂ fa

∂t

∣∣∣∣
coll

= − 1

v2

∂

∂v

[(
v2 ∂h

∂v
+ ∂ g

∂v

)
fa

]
+ 1

2v2

∂2

∂v2

(
v2 ∂2 g

∂v2
fa

)
+ 1

2v2

∂ g

∂v

∂

∂μ

[(
1 − μ2)∂ fa

∂μ

]
, (40)

and the (initial) particle distributions are

fa = naδ
(

v∗ − v
)
, (41)

fb = nb

(π v2
th,b)

3/2
exp

[−v2/v2
th,b

]
, (42)

4 An alternative approach to bounding the bias error is based on increasing L until the condition |δ P̂ NL
L | < ε/

√
2 is met [7]. In the case of a sign change 

between successive δ P̂ NL
L , modifications are required.
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where v∗ is some single valued initial velocity for the test particles and the Maxwellian field particle thermal velocity is 
v2

th,b = 2τ/mb = (2/3nb) 
∫

fb|w|2d3 v where τ is the temperature of fb and w = v − u is the random, i.e. particle minus 
flow, velocity. We set nb � na throughout so we can neglect the back reaction of the beam on the Maxwellian.

In the case that fb is Maxwellian, Trubnikov [49] gives g, h concisely by:

g(v) = 1

2
Γ nb

√
2vth,b

{
Φ(x)

[
2x + 1

x

]
+ Φ ′(x)

}
, (43)

h(v) = 2Γ nb
Φ(x)

v
, (44)

where x = v/vth,b , and Φ(x) is the standard error function.
The set of Langevin equations (5) corresponding to (40)–(44) are then given by

dv(t) = F (v)dt + √
D v(v)dW v(t), (45)

dμ(t) = −2Da(v)μdt +
√

2Da(v)
(
1 − μ2

)
dWμ(t), (46)

where D v , Da are the speed and angular diffusion coefficients, W v and Wμ are one-dimensional, independent Brownian 
motions, and we have normalized fa by 2π v2 as required to bring the derivative to the outside in (40), so in (45) and (46), 
v(t) → 2π v3(t) and μ(t) → 2πμ(t)v2(t) in un-normalized coordinates. In what follows we work in normalized coordinates, 
and regularize the discretized diffusion coefficients to ensure Lipschitz continuity (see below).

The curvilinear coordinate system requires the coefficients of the deterministic and stochastic terms to be a mixture of F , 
Da , D v , and these are given by [36]

F (v) = − AD

2v2

[
(4x + 1)G(x) − Φ(x)

]
, (47)

D v(v) = AD

2v
G(x), (48)

Da(v) = AD

4v3

(
Φ(x) − G(x)

)
, (49)

where AD = 2nbΓ = 8πnbq2
aq2

bΛ/m2
a , and G(x) = [Φ(x) − xΦ ′(x)]/2x2 is the Chandrasekhar function.

The finite-timestep discretized Langevin equations can then be obtained from (45) and (46) by an iterative stochastic 
Taylor expansion in �tl . To lowest order, retaining terms up to order O(�t1/2

l ), we obtain the Euler–Maruyama scheme, and 
to next order, retaining terms up to O(�tl), we obtain the Milstein scheme. Normalizing time t by the thermal field–particle 
collision rate νb = √

2AD/v3
th,b and velocity v by 

√
2vth,b , the dimensionless discretized Langevin equations are

�v = F�tl +
√

2D v�W v + κM D ′
v

1

2

(
�W 2

v − �tl
)
, (50)

�μ = −2Daμ�tl +
√

2Da
(
1 − μ2

)
�Wμ + κM

[
−2Daμ

1

2

(
�W 2

μ − �tl
) +

√
D v

Da

√
1 − μ2 D ′

a Avμ

]
, (51)

where κM = 0, 1 for Euler and Milstein respectively and Avμ is the v–μ correlated random variable (12) whose approximate 
characteristic function (the Fourier transform of its probability density function) is given in [36]. The coefficient functions 
are to be evaluated at the start of each timestep, as required by the Ito stochastic calculus, and the normalized drag and 
diffusion coefficients become

F (v) = 2v
(

Da(v) − D v(v)
)
, (52)

D v(v) = 1

v
G

(
v√
2

)
, (53)

Da(v) = 1

2v3

[
Φ

(
v√
2

)
− G

(
v√
2

)]
. (54)

In equilibrium, where fa and fb have the same flow velocity 
∫

fa vd3 v/na = ∫
fb vd3 v/nb and temperature, (ma/3na)×∫

fa Trace(w w)d3 v = τ , the drag and diffusion coefficients are related by the spherical coordinate form of the Einstein 
relations (6). That is, (52)–(54) must obey
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Fig. 6. Wall clock time to execute steps 1–9 of Section 3.2 versus user prescribed error bound ε for the same parameters as in Fig. 3. The numerical code 
is written in Python and Fortran 90, and executed on a 2.4 GHz Intel Core i5 MacBook. The MLMC methods are significantly faster than the direct Euler 
method for high accuracy simulations, and even faster compared to direct Milstein (not shown) where the additional work to generate the requisite Lévy 
areas produces no improvement in accuracy upon (weak) averaging. For small values of ε = 10−5, the Milstein method is approximately 40 times faster 
than the direct alternative.

2Da(v)μ − ∂

∂μ

[
Da(v)

(
1 − μ2)] = 0, (55)

F (v) − 1

v

∂

∂v

(
v2 D v(v)

) + v D v(v) = 0, (56)

which can be readily confirmed by direct substitution.5

To ensure the coefficients of the discretized Langevin equation are Lipschitz continuous, as required for the MLMC 
method, (50)–(54) must be numerically regularized upon implementation. The procedure for doing so is described in Ap-
pendix A.

Eqs. (50)–(54) constitute the building blocks for a MLMC scheme that returns the mean or moment of some payoff P
of v associated with fa as it interacts with fb . The building blocks are independent of P , the time at which its mean 
is evaluated T , and the acceptable error bound ε. These quantities are parameters of the simulation. Collectively they 
determine the preconditioning parameters of the method, c1, V L and V 0.

We choose our payoff function

P = μ,

so that the MLMC scheme approximates its mean value over all particles

P̂ (T ) � P̂ NL
L (T ) � 1

na

∫
μ fa(T )d3 v. (57)

The results of numerical implementation are shown in Figs. 5, 6 and 7 where the method successfully approximates the 
right hand side of (57), the ‘true’ value of which is itself approximated using a high-resolution many particle direct simu-
lation Monte Carlo scheme (the direct Euler scheme, with 2 · 109 particles, 28 timesteps and a solution μ = 0.766711). The 
MSE is considerably less than the user prescribed error bound ε, as required. However, the variance of the limited sample 
size used – 10 runs – is large, i.e. the noise to signal ratio is of order unity, and demands a more detailed investigation. This 
will be the subject of future works where the MLMC method is compared directly to binary collisions.

For the most accurate case ε = 10−5, both MLMC methods are considerably faster than the direct method for which the 
parameters (timestep, sample size) are chosen such that the MSE ≤ ε2. The Milstein MLMC method is approximately 100 
times faster than the direct method in terms of its computational cost, Fig. 5, and 40 times faster in terms of its wall clock 
timing, i.e. the number of seconds required to complete the computation on a computer, Fig. 6.

The difference between the computational cost and wall clock timing arises, in part, because the MLMC method actually 
performs two integrations at each level l, a coarse and a fine integration. This leads to an additional cost of 3/2 not captured 
by (31). Furthermore, the MLMC Milstein method contains additional terms that include the Lévy areas. These must be 
calculated at an additional cost relative to the direct and Euler MLMC methods. Because the method used to calculate the 
Lévy areas is an approximation [36], albeit a highly accurate one, some inaccuracy in the final solution is to be expected. 
Analytically, the extent of this inaccuracy is unknown. However, the strong results from the computational experiments are 
very promising.

5 In addition to the Einstein relations, Da and D v satisfy D v = d/dv(v3 Da) which, fundamentally, is a consequence of the fact that Coulomb interactions 
are through a central force and the Landau–Fokker–Planck treatment keeps only small-angle scattering interactions.
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Fig. 7. MSE – Mean Squared Error (27) vs user prescribed error bound ε for a range of MLMC runs with both Euler (left) and Milstein (right). The 
MLMC method accurately approximates the true payoff to within ε, as all points fall below the delimiting dashed line. Positive error bars at one standard 
deviation σ are presented. Parameters are as in Fig. 3 and the mean and standard deviation is taken from a set of 10 independent MLMC runs.

The MLMC scheme accurately (to within ε) describes the average pitch angle relaxation of a beam of particles interacting 
with an isotropic Maxwellian background. The scaling predictions given by (36) are reproduced, so that the computational 
cost (total number of operations) of the Milstein, Euler and direct methods scale as ε−2, (lnε)2ε−2, and ε−3 respectively. 
Integral to the Milstein MLMC method for P = μ is an accurate description of Avμ , (51). For other payoffs in two dimensions 
that are independent of μ, cross-terms like Avμ are not required. For example,

P = 1

2
ma v2

approximates the mean kinetic energy per particle K

P̂ (T ) � P̂ NL
L (T ) � 1

2

ma

na

∫
fa(T , v)|v|2d3 v,

where the underlying Milstein scheme includes additional terms proportional to �W 2
v and �tl only.

5. Discussion

The MLMC method constitutes a powerful new technique for solving kinetic expectation problems, the solutions to 
which can be used to reconstruct the underlying distribution function. Asymptotically, it has significantly improved scaling 
properties compared to both direct SDE and binary collision methods. However, the method is limited in several respects.

Firstly, for any given problem, the multiplicative constant associated with the scaling of the computational cost may 
make the method prohibitively expensive. Secondly, it is unclear how, for t < T , mean field quantities like electromagnetic 
fields and evolving back-reacted drag and diffusion coefficients that dictate particle trajectories, are to be computed. Thirdly, 
for strongly non-equilibrium problems, a large number of moments or binning operations may be needed to accurately 
reconstruct f . This could be expensive.

In this section we discuss techniques and extensions to the MLMC method that can be used to address these problems.

5.1. Improved efficiency

For expediency, our description of the MLMC method presented in Section 3 was basic and concise. However, several 
improvements, not described earlier, exist.

Throughout, we have set the refinement factor between levels M = �tl/�tl+1 = 2. Giles [7] has argued that while this 
choice is optimal for multilevel elliptic PDE solvers, for the MLMC method, other values may improve efficiency – specifically, 
a factor of two saving may be obtained by setting M = 7 in the MLMC Euler scheme. Less extreme values, M = 3, 4 etc., 
also lead to improvements. Similarly, multiplicative constants other than a half for the finite timestep and finite sampling 
bounds, ε2/2, in (32) may also lead to improvements.

Adaptive algorithms, and quasi-Monte Carlo sampling can also increase the efficiency of the method [50–52]. In partic-
ular, for the Milstein method, the rapid diminishing of the finite-sampling error with decreasing �tl means that the vast 
majority of the computational effort is expended at the coarsest l = 0 level – Fig. 4. Quasi-Monte Carlo methods are well 
suited to reducing this cost. Moreover, when the function P is sufficiently smooth (twice differentiable) – as would be ex-
pected in many plasma physics applications – the cost of simulating the coarsest level may be completely eliminated using 
the recently developed Ito linearization technique [53].
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For existing code bases that implement the direct Euler scheme, it is possible to obtain the optimal ε−2 scaling of the 
MLMC scheme without simulating the Lévy areas. Using antithetic techniques, the sum in (35) can be bound, even though 
the underlying integrator has β = 1/2 [43]. Generalizations of the antithetic method exist [53,54].

Finally, because sampled paths are independent, like direct simulation Monte Carlo, the method can be readily paral-
lelized. Indeed, the timescale over which the sampled paths of (5) can be integrated independently is only limited by the 
requirement that the mean fields are updated.

5.2. Mean fields

When the macroscopic dynamics of a system and its collisions occur on the same timescale, the system must be treated 
as being of the McKean–Vlasov type, namely one where the drag and diffusion coefficients depend on the solutions them-
selves [55,56]. In the context of direct simulation Monte Carlo and particle-in-cell codes, two operations must then be 
performed at each numerical timestep [32]. The first, is to advance the particles’ positions x and velocities v according 
to the discretized equations of motion, including the mean force fields and collisions. In Langevin form, including spatial 
dependence and electromagnetic forces, the equation of motion (5) generalizes to [57]:

dxi = vidt (58)

dvi =
{

e

m

[
Ei + c−1εi jk v j Bk

] + Fi

}
dt + DijdW j, (59)

where c is the speed of light, εi jk is the Levi-Civita symbol, and Ei, Bi are the mean electric and magnetic fields. To ensure 
particle trajectories are calculated accurately over an extended period, a second operation must then be performed – the 
mean fields must be updated based on the new particle positions and velocities.

The mean electromagnetic fields, Ei , Bi are functions of t , x only. They can be calculated from Maxwell’s equations, a set 
of coupled first order linear PDEs, in terms of the sum over species of the macroscopic charge density ρ = en and current 
J i = enui at each point in space.

In the Langevin framework, the macroscopic quantities can be accurately calculated on a timescale T using the MLMC 
scheme and an appropriate choice of payoff. For ρ , the payoff is

P = enΘ
(
x′), (60)

where

Θ =
{

1, x′ < x < x′ + δx,

0, x′ > x > x′ + δx,
(61)

is a binning function6 for the real-space grid cell at position x′ and of size δx, and n is the initial macroscopic density, 
as in (41). It follows that ρ(T , x′) is given by

P̂ (T ) � P̂ NL
L (T ) � e

∫
f
(
T , x′, v ′)d3 v ′ (62)

and similarly for J i with the payoff P = enΘ(x′)vi .
Along with Maxwell’s equations and the equations for F , D in Section 2.1, (58)–(62) provide a complete, efficient plasma 

description using MLMC methods. The description is, however, only efficient and accurate when it is acceptable to resolve 
the coefficients of (59), including F and D , self-consistently, on a slow timescale T . That is, if the inherent timescale on 
which the macroscopic mean fields evolve is � T , the MLMC method will fail to capture important dynamics that take 
place on this faster timescale. In its present form, the method is therefore restricted to the small Knudsen number regime 
where the collisional dynamics occur on a faster timescale than the macroscopic dynamics.7 Within this framework, the 
MLMC method could itself constitute a building block for a multiscale simulation in which the collisions and macroscopic 
dynamics are resolved on timescales of O(�tl) and O(T ) respectively.

It remains an open challenge to extend the MLMC method to kinetic problems in which there is no clear scale separation 
between the collisional and macroscopic dynamics i.e. Knudsen numbers of order one and greater. However, if this challenge 
could be met, it would constitute a potential game changer for kinetic plasma simulations in general.

5.3. Distribution functions

Thermalized distributions vary smoothly on a velocity-space scale vth and can be uniquely determined from their first 
three moments. For non-equilibrium distributions, this is not the case. Two simple methods for reconstructing non-thermal 
f (T ) using the MLMC method exist.

6 Formally, the MLMC method requires P to be Lipschitz, and so simple step functions are inappropriate. Modifications to Θ to ensure Lipschitz continuity 
may be necessary, but, nevertheless, improved efficiency relative to direct methods has been shown for a variety of non-Lipschitz payoffs [58,59].

7 The method can also be applied when the Lorentz force is absent or externally imposed, and nt � n f or the collisions are between electrons and ion. 
In this case, the back reaction of the test particles can also be neglected.
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The first is by summing the moment hierarchy, where each moment is calculated using the MLMC method with an 
appropriate choice of payoff P . For a complete set of moments, the structure of f can be captured identically (Chapter 7, 
[60]). For a finite-subset, as is practically achievable, an accurate approximation can still be obtained [61]. See also [62].

The second method for determining f is through a generalized version of (60) that bins particles in both real and velocity 
space.8 In this case P = nΘ(x′, v ′) and Θ is a simple generalization of (61) to include velocity space cells v ′ of size δv . 
It follows that P̂ (T ) � P̂ NL

L (T ) � f (T , x′, v ′) returns the particle density in a phase space cell x′, v ′ at time T .
Returning multiple outputs from a single run is useful for both the methods above [8]. Statistical errors withstanding, the 

same set of paths is needed to compute both successive moments and the binned phase-space distribution. So, by storing 
and re-using paths, the computational cost of calculating multiple moments is only approximately as much as the most 
expensive moment. The same is true for phase-space binning.

So far our discussion has focused on calculating distributions at time T . While extending the method to multi-valued 
initial conditions, unlike those in Section 4, is not technically difficult, a number a comments are in order.

First, chaotic particle trajectories, real (e.g. tokamak wall) and velocity space (e.g. magnetic mirror) boundaries are ubiq-
uitous in plasma physics. Particles with nearby initial conditions, sampled from the same spatial cell, may drastically diverge 
in phase space. The consequences of this for the MLMC method are unknown.

Second, multi-valued initial conditions introduce a second source of statistical error, beyond that attributable to Brownian 
motion. When the variance in the initial data is much less than that associated with the random walk Var[v(0)] � Var[v(T )], 
the computational cost of the simulation is unchanged. However, when the converse is true, the cost may increase dramat-
ically. The ratio of the two terms is approximately

Var[v(T )]
Var[v(0)] ∼ T e4

m2
a

nb v2
th,b

na v2
th,a

,

where we have assumed that the initial conditions for v(T ) in the numerator are single-valued, i.e. given by (41), and that 
T � the macroscopic timescale.

6. Conclusion

For the first time, we have shown how the multilevel Monte Carlo integration scheme can be used to simulate multi-
dimensional Coulomb collisions in a plasma. Asymptotically, the method is up to ε−1 times faster than standard direct 
simulation Monte Carlo or binary collision methods, when used with an underlying Milstein discretization. This is illustrated 
in Fig. 5 where the total computational cost (operations count) for the direct SDE and the Euler and Milstein multilevel 
schemes are shown to scale as predicted. We have also demonstrated that the multilevel schemes are significantly faster 
than direct SDE methods in terms of both computational cost, Fig. 5, and wall clock time, Fig. 6. Our numerical results are 
for a classic beam diffusion test case in 2D and over a given range of prescribed errors.

The most important extension to this work would be an expansion of the method to arbitrary Knudsen number problems, 
where a separation of collisional and macroscopic timescales does not exist. Other valuable studies would also include a 
demonstration of the method in forced, spatially inhomogeneous and multi-physics problems, and an extension to kinetic 
collisions models other than the Coulomb case, for example neutral particle collisions.
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Appendix A. Numerical regularization

A number of numerical and modeling poles must be circumnavigated to implement the MLMC method successfully.

A.1. Diffusion to negative speeds

The Langevin equation governing the evolution of v is (50). Finite changes in �v arising from terms containing �W v

can be of any size, although large values are (exponentially) unlikely. It follows that v(t + �tl) = v(t) + �v can be such 
that v(t + �tl) ≤ 0. This is not only unphysical, but also numerically problematic as F , Da become singular at a rate v−1, 

8 This method is qualitatively similar to an inverse semi-Lagrangian process [63], and comes at an informational cost equivalent to that incurred in a 
resampling procedure.
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v−2 respectively as v → 0+ . Furthermore, the deterministic drag coefficient F is anti-symmetric in v , so if v < 0 the first 
term in (50) drives v to yet more negative values.

Our approach is to regularize the coefficient of the deterministic drag term F in (50), and the stochastic diffusion term 
Da in (51). Our method differs from that of Lemons et al. [30] who did not account for the small, but finite, probability case 
that particles diffuse to v < 0, even when the coefficients of the diffusion terms are set to zero for small v . We define the 
piecewise Lipschitz continuous functions

F(v) =
{

F (v), v > vc,

F ′(vc)
2vc

(v2 − v2
c ) + F (vc), v ≤ vc,

(A.1)

and

Da(v) =
{

Da(v), v > vc,

D ′
a(vc)

2vc
(v2 − v2

c ) + Da(vc), v ≤ vc,
(A.2)

where vc is the critical value of v at which regularization occurs, and F ′, D ′
a = dDa/dv, dF/dv .

Direct substitution of (A.1) into (50) yields a regularized equation for �v:

�v = F�tl +
√

2D v�W v + κM D ′
v

1

2

(
�W 2

v − �tl
)
. (A.3)

An analogous modification of (51) also follows, but further regularization of the imaginary diffusion coefficients is first 
required. We note that in the small region v < vc , the Einstein relation (56) is not obeyed. In the simulations conducted here 
we set vc = 0.05, which we find, empirically, to work. As of yet, we have not developed a general method for choosing vc , 
and leave this as a challenge for future work.

A.2. Imaginary coefficients

The Langevin equation governing the evolution of μ is (51). Analogous to the previous section, finite changes in �μ

driven by large values of �Wμ , Avμ can result in μ(t + �tl) = μ(t) + �μ being such that |μ| > 1. It follows that 
√

1 − μ2

can become imaginary, which is unphysical.
To constrain the discretized equations to be physical, we define the modified coefficient M to be:

M(μ) =
{ √

1 − μ2 |μ| < μc,√
1 − μ2

c exp[(μ − μc)S(μc)] |μ| ≥ μc,
(A.4)

where S(μc) = μc/(1 − μ2
c ), and μc is the critical value at which regularization occurs.

The coefficient is unaltered away from the critical poles, and regularized near them when |μ| > μc in a manner consis-
tent with the Einstein relation (55) and the condition that the coefficients are Lipschitz continuity.

Substituting (A.2) and (A.4) into (51), the regularized evolution equation for �μ is

�μ = 2Da MM′�tl +
√

2DaM�Wμ + κM

[
DaMM′(�W 2

μ − �tl
) +

√
D v

Da
MD′

a Avμ

]
, (A.5)

where M′ = dM/dμ. In the simulations conducted here we set μc = 0.95 which, again, we find to work empirically.
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