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This paper describes an L1 regularized variational framework for de-
veloping a spatially localized basis, compressed plane waves, that
spans the eigenspace of a differential operator, for instance, the Lap-
lace operator. Our approach generalizes the concept of plane waves
to an orthogonal real-space basis with multiresolution capabilities.

Generality, conceptual simplicity, and development of efficient
numerical algorithms based on the fast Fourier transform

(FFT) have facilitated the adoption of plane waves as canonical
basis functions for countless applications in engineering, science,
and mathematics (1, 2). Since the plane waves are continuously
differentiable eigenfunctions of the Laplace operator, they are well
suited for representing solutions to partial differential equations
(PDEs) of mathematical physics, such as those arising in quantum
mechanics and electrodynamics. One of the most attractive features
of plane waves is the ability to systematically increase spatial (or
temporal) resolution by including higher kinetic energy (or fre-
quency) components. However, since the plane waves are global
functions, resolution is increased uniformly throughout the entire
space, while, in practice, high resolution may be required only in
a small fraction of the problem domain. The need for functions that
can represent multiple length scales has spurred the development of
wavelets (3), which are localized basis functions with multiresolution
capabilities. Wavelets have been tremendously successful in fields
such as signal processing, image science, and data science, but
adoption of wavelets as the basis for solving PDEs has been difficult
because it is numerically complicated to evaluate the derivative of
a wavelet in a wavelet expansion. Furthermore, canonical wavelet
functions usually can only be defined on regular domains in Rd by
tensor products of wavelets in one dimension (1D), which makes
them difficult to generalize to irregular domains.
In this paper, we extend our earlier work in ref. 4 and propose

a method for generating a localized orthonormal basis that is
adapted to a given differential operator, in particular, the Laplace
operator. In ref. 4, we showed that L1 regularization of the vari-
ational formulation of the Schrödinger equation of quantum
mechanics can be used to create compressed modes, a set of
spatially localized functions fψ igNi=1 in Rd with compact support:
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where Ĥ = − 1
2Δ+V ðxÞ is the Hamilton operator corresponding

to potential V ðxÞ, ΨN = fψ jgNj=1 are variational single-particle
orbitals, and L1 norm is defined as

��ψ j

��
1 =

R
Ω

��ψ j

��dx. This L1

regularized variational approach describes a general formalism for
obtaining localized (in fact, compactly supported) solutions to a class
of mathematical physics PDEs, which can be recast as variational
optimization problems.One of themain advantages of this variational
approach is that one parameter μ controls both the physical accuracy
and the spatial extent of the resulting solutions: The wave functionsψ j
are nonzero only where required to achieve a given accuracy for
the total energy and are zero everywhere else. Another advan-
tage of our L1 regularized variational method is its natural
adaptability to irregular domains in Rd, manifolds, and graphs.
As a major contribution of this paper, we develop a variational

framework for generating a set of compactly supported orthonormal

basis functions by applying the L1 regularized variational method
of Eq. 1 to the free particle case when Ĥ is given by the Laplace
operator. This basis has multiresolution capabilities and is
expected to be generally useful for representing functions with
localized sharp features, especially for solutions to PDEs with the
Laplace operator. Orthogonality is imposed in the manner of ref.
5 for shift-orthogonal wavelets, which, in the context of our ap-
proach, means that the basis functions are orthogonal to their
translations by all vectors belonging to a given lattice (Eq. 2). In
addition to shift orthogonality, we introduce a hierarchy of
compressed waves obtained from the variational formula, which
provides different scales of multiresolution analysis. This is ac-
complished by enforcing additional orthogonality constraints on
ψðxÞ in the variational model Eq. 1, expressed below by the
variational formulas Eqs. 3 and 4. As discussed in ref. 4, the
properties of L1 regularization ensure that the resulting func-
tions have compact support in real space. These functions are
referred to as basic compressed plane waves (BCPWs). A com-
plete basis set of orthonormal compressed plane waves (CPWs)
can be generated from the BCPWs by translations on a d-di-
mensional lattice. In contrast to approaches for generating lo-
calized basis in high dimension using tensor products of 1D basis
functions, our variational method provides a direct method to
create a localized basis in high-dimensional space. Moreover,
this framework can also be naturally extended to more general
elliptic operators. A numerical algorithm is designed to effi-
ciently solve the nonconvex optimization problem for con-
structing BCPWs, and a fast CPW transform and fast inverse
CPW transform are developed for transforming between fre-
quency space and real space. Numerical experiments demon-
strate that CPWs can efficiently represent spatially localized
functions, suggesting advantages over canonical bases of ex-
tended functions such as plane waves.
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Compressed Plane Waves
We consider an elliptic Hamilton operator Ĥ0 =−Δ=2 defined in
Rd, which describes the movement of free electrons. Let w=
ðw1;⋯;wdÞ∈Rd

+ be a basis of a d-dimensional lattice,

Γw =
�
jwdðj1w1;⋯; jdwdÞj j= ðj1;⋯; jdÞ∈Zd�: [2]

Inspired by the variational model for compressed modes (CMs)
introduced in ref. 4, we introduce a set of localized orthonormal
functions fψng∞n=1 defined by:

ψ1 = argmin
ψ

1
μ

Z
Ω

jψ jdx+
Z
Ω

ψĤ0ψdx

 s:t:
Z
Ω

ψðxÞψðx− jwÞdx= δj0; j∈Zd:

[3]

The higher modes can be recursively defined as:

ψn = argmin
ψ

1
μ

Z
Ω

jψ jdx+
Z
Ω

ψĤ0ψdx

s:t:

Z
Ω

ψðxÞψðx− jwÞdx= δj0; j∈Zd

Z
Ω

ψðxÞψ iðx− jwÞdx= 0; i= 1;⋯; n− 1:

8>>>>><
>>>>>:

[4]

Here, the parameters μ and w are given. With the help of the
localized orthonormal modes fψng∞n=1, we can construct a set of
orthonormal functions as follows.
Definition 1. We define fbnj ðxÞ = ψnðx − jwÞgn=1;2;3⋯

j∈Zd . We call

fψngn the basic compressed plane waves (BCPWs) and call fbnj gn;j
the compressed plane waves (CPWs).
Based on our numerical experiments (see Fig. 2), we expect

that the CPWs are complete and form an orthonormal basis. We
formulate the following conjecture for the completeness of
CPWs, which will be studied in future work.
Conjecture 1 (Completeness of CPWs). There exists a constant

μ0 such that the set of orthonormal functions fbnj gn; j generated
from Eqs. 3 and 4 is complete for any μ≥ μ0.
The proposed method for constructing CPWs in high dimen-

sions is essentially different from the usual way of generalizing
a 1D basis to the multidimensional case using the tensor product.
Moreover, it is also clear that the index n controls the size of the
compact support and the scale of CPWs, while j controls the
shift. These two parameters are analogous to the scale and shift
parameters in the wavelet theory, which in the future might help
in building a new method of multiresolution analysis. In addition,
the following scaling formula, which can be obtained by a simple
change of variables, indicates the relation between the parameter
μ and the lattice basis w.
Property 1. (Scaling formula) If we write ψn

fμ;wgðxÞ as the n-th
BCPW obtained from Eqs. 3 and 4 with parameters μ;w, then the
following formula holds for BCPWs ψn

fs2+ d=2μ;swgðxÞ defined on
scaled lattice sw:

ψn
fμ;wgðxÞ= sd=2ψn

fs2+d=2μ;swgðsxÞ: [5]

We would like to point out that the variational framework proposed
here can also be extended to a general Hamilton operator with
nonzero potential function V ðxÞ.

Numerical Algorithms for Constructing CPWs
To simplify our discussion, we only consider Ω= ½0;L� in 1D with
periodic boundary conditions; the algorithms for optimization
problems Eqs. 3 and 4, as well as the fast transforms discussed
below, can be straightforwardly extended to higher dimensions.
To find the proposed BCPWs, we first solve Eq. 3. By in-

troducing an auxiliary variable u=ψ , the constrained optimiza-
tion problem is equivalent to the following problem:

Fig. 1. From top to the bottom, the first six modes, ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,
obtained by Eqs. 3 and 4 using L= 100, μ= 5, and w = 5.

Fig. 2. Spectral density distribution of CPWs. (Upper) The spectral density
distribution of ψ1,ψ2,ψ3,ψ4,ψ5,ψ6. (Lower) The total spectral density distri-
bution of the first four modes.
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ψ1 = argmin
ψ ;u

1
μ

Z
jujdx+

Z
ψĤ0ψdx

s:t: u=ψ &
Z

ψðxÞψðx− jwÞdx= δj0; j∈Z;

[6]

which can be solved by an algorithm based on the Bregman it-
eration (6–8).
Algorithm 1. Initialize ψ1;0 = u0; b0 = 0.
While “not converged” do

1:  ψ1;k = argmin
ψ

Z
ψĤ0ψdx+

λ

2

Z 	
ψ − uk− 1 + bk− 1
2dx

    s:t: 
Z

ψðxÞψðx− jwÞdx= δj0; j∈Z:

2:  uk = argmin
u

1
μ

Z
jujdx+ λ

2

Z 	
ψ1;k − u+ bk− 1
2dx

     = sgn
	
ψ1;k + bk−1



max

�
0;
��ψ1;k + bk−1

��− 1
λμ

�

3:  bk = bk−1 +ψ1;k − uk:

����������������������
We solve the first problem in the above algorithm in the Fourier
space, since the kinetic energy and the constraints are diagonal.

In other words, let’s write ψ =
P

G ψGe
iGx; uk−1 =

P
G uk−1G eiGx and

bk−1 =
P

Gb
k−1
G eiGx. Then we need to solve the following problem:

min
fψGg;γj

P
G

G2

2
ψ2
G +

λ

2

X
G

ðψG − uk−1G + bk−1G Þ2

+
P
j

γj

�P
G

cosðGjwÞψ2
G − δj0

�
;

[7]

where fγjg are Lagrangian multipliers associated with the
orthonormality constraints, which can be found from the fol-
lowing nonlinear equations:P

G
cosðGjwÞψ2

G = δj0;  j∈Z;

ψG =
λðuG − bGÞ

λ+G2 + 2
P

jcosðGjwÞγj
:

8>>><
>>>:

[8]

One can go further and define higher-order modes ψn that
satisfy Eqs. 3 and 4. The additional orthogonality constraints can
be imposed using the method of splitting orthogonality con-
straint (SOC) proposed in ref. 9 and adopted in ref. 4 for cal-
culating CMs. In Fig. 1, we illustrate the first six modes,
ψ1;ψ2;ψ3;ψ4;ψ5;ψ6, obtained from Eqs. 3 and 4 using L= 100,
μ= 5, and w= 5.
The next interesting property is the distribution of the spectral

weight
��ψ i

G

��2 and the total spectral weight
PN

i=1

��ψ i
G

��2 of the first
six BCPWs, which are shown in Fig. 2. Fig. 2 Upper shows that
each mode occupies a distinct region in the Fourier space. More-
over, the total spectral weight of the first six BCPWs forms a
smoothed step function, which is a desirable property for
obtaining convergence rates similar to the plane wave basis. In
other words, locally, the basis covers approximately the same
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Fig. 3. The potential funciton VðxÞ of the impurity Kronig-Penney model.

Fig. 4. CPW representations for the first four energy states of IKP model. (Left) Comparisons of CPW representations for the first 4 eigenfunctions of the IKP model
with their true values. (Right) Comparisons of the first 80 largest magnitude coefficients of CPW representations and classical Fourier function representations.
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Fourier space as the plane wave basis below a given kinetic
energy cutoff.

CPW Representations of Localized Functions
Localization properties of the proposed CPWs can be expected
to bring advantages in applications where objective functions
have rapidly varying fine structure in localized spatial regions.
Taking an example from quantum mechanics, we will demon-
strate the performance of CPWs for a 1D periodic potential
where one of the potential wells is deeper than the others. This is
analogous to introducing an “impurity” atom in a bulk solid,
resulting in the potential function illustrated in Fig. 3; we call this
an “impurity” Kronig-Penny (IKP) model. Using the first 120
CPWs generated by the first 6 BCPWs illustrated in Fig. 1, we
would like to demonstrate several advantages of the CPW rep-
resentation for this case, which combines both localized “impu-
rity” modes and delocalized “bulk” modes.
Choosing potential wells to be described by inverted Gaussians

V ðxÞ= −V0
P​ Nel

j=1 exp
h
−ðx− xjÞ2

2δ2

i
with V0 = 1;Nel = 9; δ= 3; xj = 10j,

and adding the central potential with −2 exp
h
− ðx− 50Þ2

2δ2

i
, the IKP

model gives several localized impurity-like eigenstates. The blue
curves in Fig. 4 Left show the wave functions of the four lowest-
energy states of the IKP model. We can successfully recover
these localized functions using the 6 BCPWs (corresponding to
120 CPWs after translations) generated in Numerical Algorithms
for Constructing CPWs. Representation results plotted by red dots in
Fig. 4 Left demonstrate the accuracy of the CPW expansion. In Fig.
4 Right, we compare the magnitude of the 80 largest CPW expan-
sion coefficients with the classical Fourier plane wave coefficients
for these wave functions. Fig. 4 clearly shows that CPWs can pro-
vide a much sparser representation of localized eigenfunctions than
the plane wave basis. Table 1 gives a detailed comparison of the
ℓ2 error of the CPW representation and plane wave representation
using the first few largest magnitude coefficients. It is promising

that, to achieve the same accuracy, the number of required CPWs
is significantly smaller than the number of plane waves.
CPWs can also be used to successfully approximate the low-

energy spectrum of the IKP model. In other words, we calculate

eigenvalues of the matrix fhbnj ; Ĥbmi ig
n;m=1;⋯NBCPWs

i;j=1;⋯20
(NBCPWs is the

number of BPCWs) and compare those with the “exact” eigen-
values of the Schrödinger operator Ĥ of the IKP model, calcu-
lated using a spectral method with 640 nodes. In Fig. 5 Upper, the
red dots plot the lowest 20 “exact” eigenvalues of the IKP model,
while the blue circles are approximation results using 120 CPWs.
Fig. 5 Lower reports the corresponding relative approximation
error as a function of the number of BCPWs used in the basis. It
is clear that the truncated CPW expansion provides an accurate
approximation for the low-energy eigenvalues of Ĥ, i.e., the
original eigenvalue problem can be reduced to an eigenvalue
problem of a significantly smaller matrix.
The conclusion is that CPWs become attractive if one needs to

represent a function that varies slowly (or is zero) through most of
the space, except for a few regions; plane waves would need to
increase the spatial resolution uniformly in the whole domain,
while one can add CPWs locally in the regions of interest. More-
over, in Fast CPW Transforms, we show that CPW expansions can
be efficiently processed using FFT-based CPW transforms.

Fast CPW Transforms
Given a function f ∈L2ð½0;L�Þ, we propose an algorithm to
perform the transformation from f in real space to the basis
coefficients ff nj g in frequency space. Recall that:

f nj =
Z

f ðxÞbnj ðxÞdx=
X
G

ðbnGÞ*e−iðGjwÞ
Z

f ðxÞe−iGxdx; [9]

where fbnGg are the coefficients of bn0 =ψn in the CPW expan-
sion. In other words, we write bn0 =

P
Gb

n
Ge

iGx, and we have

bnj =
X
G

bnGe
iGxeiðGjwÞ: [10]

The computation of this transform can be performed efficiently
in three steps as follows.
Algorithm 2 (Fast CPW Transform). 1. Fourier Transform.

fG =
R
f ðxÞe−iGxdx.

2. Multiplication and summation: ζnm =
P

kðbnGm+ kN0
ÞpfGm+ kN0

,

m= 0;⋯;N0 − 1, where N0 = ½L=ω�;Gm = 2πm
L .

3. Fourier transforms of length N0 to get the basis coefficients:
f nj =

PN0−1
m=0 ζ

n
me

−iGjw.
We demonstrate the fast CPW transform for the first four lowest-

energy states of the IKP model. Fig. 6 illustrates the accuracy of the
proposed algorithm for the CPW transform: The two sets of points
are on top of each other (red dots and blue circles are obtained
from direct diagonalization and fast CPW transform, respectively).
Next, we propose an algorithm for the inverse transformation

from given CPW coefficients ff nj g in frequency space to a func-
tion f in real space. We recall that:

Table 1. Comparisons of representation error using CPWs and Fourier basis

No. of
modes

Representation error using CPWs Representation error using Fourier basis

Errorf1 Errorf2 Errorf3 Errorf4 Errorf1 Errorf2 Errorf3 Errorf4

20 0.0091 0.0170 0.0305 0.0506 1.0282 1.3586 1.4886 0.4553
30 0.0051 0.0084 0.0111 0.0204 0.5052 0.8289 0.9951 0.2004
40 0.0038 0.0065 0.0076 0.0115 0.2112 0.4332 0.5875 0.0619
50 0.0036 0.0063 0.0066 0.0075 0.0763 0.1930 0.2964 0.0228
60 0.0035 0.0063 0.0064 0.0052 0.0242 0.0651 0.1304 0.0097
70 0.0035 0.0063 0.0064 0.0043 0.0068 0.0192 0.0470 0.0048

Fig. 5. Eigenvalue approximation for the IKP model using the CPW repre-
sentation. (Upper) The first 20 approximated eigenvalues using the first 120
CPWs vs. true values. (Lower) Relative eigenvalue approximation error using
CPWs generated by the first 6 BCPWs.
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f ðxÞ=
X
n

X
j

f nj b
n
j ðxÞ=

X
n

X
j

f nj ψ
nðx− jwÞ: [11]

Therefore, one can rewrite f as

f ðxÞ=
X
n;j

f nj b
n
j ðxÞ=

X
n

X
G

bnGe
iGx

X
j

f nj e
iðGjwÞ: [12]

The above summation can be efficiently computed in the following
three steps.
Algorithm 3 (Fast Inverse CPW Transform). 1. Fourier

Transform. ~f nm =
PN0−1

j=0 f nj e
iðGmjwÞ, where N0 = ½L=ω�;Gm = 2πm

L .
2. Multiplication and summation. Note that all ~f nm are periodic

with a period N0. Hence, we calculate

ξnm = bnGm
~f nmodðm;N0Þ:

Here, we only need to go up to Fourier coefficient values m for
which the corresponding basis function bnGm

has nonzero coef-
ficients. Then we add contributions from all n: ξm =

P
n ξ

n
m.

3. Fourier transform to real space f ðxÞ= P
m ξmeiGmx.

Using the first four lowest-energy states of the IKP model
from Fig. 4 as an example, we test the inverse CPW transform
based on the above algorithm; Fig. 7 shows the results, where the
solid red line shows the “exact” results with a very fine mesh,
while blue dots are obtained using the fast transform described
above with a coarse mesh.

Furthermore, these transforms can be “windowed,” which
allows the use of different meshes in different spatial regions,
instead of having to use the same real-space mesh everywhere.
We conduct numerical tests for the IKP model wave functions in
Fig. 7, except that these transforms are carried out only over the
region where these functions are nonzero. Fig. 8 reports the
results obtained from the “windowed” inverse CPW transform,
where the solid red line shows the “exact” results, while the blue
dots are obtained using the “windowed” inverse CPW transform.
Similarly, the CPW transform can also be windowed just like the
“windowed” inverse CPW transform. These “windowed” trans-
forms will be useful when one needs higher resolution only in
certain limited regions.
Finally, the proposed model and numerical algorithms work

on domains in higher-dimensional space. As an example, Fig. 9
shows computational results for the first BCPW of the Laplace
operator on a 2D domain ½0; 100�2 with a square lattice Γw. It is
worth noting that our approach to obtaining CPWs in higher
dimensions is essentially different from the usual method of
obtaining a multidimensional basis by using a tensor product of
1D basis functions.

Discussion and Conclusions
We have presented an L1 regularized variational method for
producing CPWs, which constitute an orthonormal basis derived
from the Laplace operator. CPWs form a natural set of modes
with two parameters representing position and scale, as in
wavelets, but, unlike wavelets, CPWs have their origin in a

Fig. 6. CPW transform for the first four lowest-energy states of the IKP
model, where six levels of CPW transform are shown separately for each
energy state.

Fig. 7. Reconstruction results using inverse CPW transform for the first four
lowest-energy states of the IKP model.
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differential equation so that they may be used as a natural basis
for solving PDEs and have a natural extension to higher
dimensions. Numerical algorithms for solving the nonconvex
optimization problem defining CPWs have been proposed. Nu-
merical experiments show that CPWs can represent localized
functions more efficiently than the plane wave basis, while
maintaining similar performance as plane waves for spatially
extended functions. Finally, fast transforms for transforming be-
tween the CPW coefficients and real-space mesh have been pro-
posed. These algorithms can make use of highly efficient
implementations of the FFT and can be “windowed” to perform
FFTs only over those regions of real space where the function
expansion is nonzero.
The CPW basis set proposed here addresses the need for

multiresolution basis functions that can be defined for differen-
tial operators on general domains in Rd. In this sense, our work

extends earlier work in this area, such as the diffusion wavelet
proposed in ref. 10, which can be viewed as diffusion of delta
functions where multiresolution is obtained by choosing different
diffusion times. The method of ref. 10 is completely based on
diffusion processing without considering any sparsity-inducing
variational approach, and compact support emerges as a result of
auxiliary constraint, while in our work, finite support is a natural
consequence of a sparsity-inducing variational principle.
In the future, we expect to extend CPW techniques in a num-

ber of ways and adapt them to a variety of applications, such as:
(i) constructing CPWs for more general elliptic operators, (ii)
using CPWs as a representation for solving multiscale PDEs, and
(iii) extending CPWs to higher dimensions and irregular domains.
Finally, we plan to perform a theoretical analysis of CPWs to
rigorously study their existence and properties, including the
completeness that was hypothesized in this work.
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