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This article describes a general formalism for obtaining spatially
localized (“sparse”) solutions to a class of problems in mathemat-
ical physics, which can be recast as variational optimization prob-
lems, such as the important case of Schrödinger’s equation in
quantum mechanics. Sparsity is achieved by adding an L1 regula-
rization term to the variational principle, which is shown to yield
solutions with compact support (“compressed modes”). Linear
combinations of these modes approximate the eigenvalue spec-
trum and eigenfunctions in a systematically improvable manner,
and the localization properties of compressed modes make them
an attractive choice for use with efficient numerical algorithms
that scale linearly with the problem size.

Significant progress has been recently achieved in a variety of
fields of information science using ideas centered around

sparsity. Examples include compressed sensing (1, 2), matrix rank
minimization (3), phase retrieval (4), and robust principal com-
ponent analysis (5), as well as many others. A key step in these
examples is use of a variational formulation with a constraint or
penalty term that is an ℓ1 or related norm. A limited set of
extensions of sparsity techniques to physical sciences and partial
differential equations (PDEs) have also appeared recently, in-
cluding numerical solution of PDEs with multiscale oscillatory
solutions (6) and efficient materials models derived from quan-
tum mechanics calculations (7). In all of these examples, sparsity
is for the coefficients (i.e., only a small set of coefficients are
nonzero) in a well-chosen set of modes (e.g., a basis or dictionary)
for representation of the corresponding vectors or functions. In
this article, we propose a use of sparsity-promoting techniques to
produce “compressed modes” (CMs)—modes that are sparse and
localized in space—for efficient solution of constrained varia-
tional problems in mathematics and physics.
Our idea is motivated by the localized Wannier functions de-

veloped in solid state physics and quantum chemistry. We begin
by reviewing the basic ideas for obtaining spatially localized sol-
utions of the independent-particle Schrödinger’s equation. For
simplicity, we consider a finite system with N electrons and ne-
glect the electron spin. The ground state energy is given by
E0 =

PN
j=1λj, where λj are the eigenvalues of the Hamiltonian,

Ĥ = − 1
2Δ+V ðxÞ, arranged in increasing order and satisfying

Ĥϕj = λjϕj, with ϕj being the corresponding eigenfunctions. This can
be recast as a variational problem requiring the minimization of the
total energy subject to orthonormality conditions for wave functions:

E0 = min
ΦN

XN
j= 1

D
ϕj; Ĥϕj

E
 s:t:  

�
ϕj;ϕk

�
= δjk: [1]

Here, ΦN = fϕjgNj=1 and hϕj;ϕki=
R
Ωϕ

p
j ðxÞϕkðxÞ dxðΩ⊂RdÞ:

In most cases, the eigenfunctions ϕj are spatially extended and
have infinite support—that is, they are “dense.” This presents
challenges for computational efficiency [as the wave function or-
thogonalization requires OðN3Þ operations, dominating the com-
putational effort for N ≈ 103 electrons and above] and is contrary to
physical intuition, which suggests that the screened correlations in
condensed matter are usually short-ranged (8). It is well understood

that the freedom to choose a particular unitary transformation
(“subspace rotation”) of the wave functions ϕj can be used to define
a set of functions that span the eigenspace of Ĥ, but are spatially
localized or sparse. Methods for obtaining such functions have been
developed in solid state physics and quantum chemistry, where they
are known as Wannier functions (9).
Mathematically, the Wannier functions are obtained as a lin-

ear combination of the eigenfunctions:

WjðxÞ=
X
k

UjkϕkðxÞ; [2]

where the subspace rotation matrix U is unitary, U†U = I. Cur-
rently, the most widely used approach to finding WjðxÞ is the one
proposed in ref. 10 for calculating maximally localized Wannier
functions (MLWFs). This approach starts with the precalculated
eigenfunctions ϕj and determines Wj by minimizing the second
moment:

D
Δx2j

E
=
D
Wj;

�
x− hxji

�2Wj

E
; [3]

where hxji= hWj; xWji. More recently, a method weighted by higher
degree polynomials has been discussed in ref. 11. Although this
approach works reasonably well for simple systems, constructing
optimally localized real-valued Wannier functions is often difficult
because the minimization problem (Eq. 3) is nonconvex and
requires a good starting point to converge to the global minimum.
Another difficulty is that when the resulting MLWFs are used to
construct efficient numerical algorithms, they need to be cut off
“by hand,” which can result in significant numerical errors when
the MLWFs are calculated “on the fly” and their range is not
known in advance. It would be highly desirable to devise an ap-
proach that does not require the calculation of the eigenfunctions
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and would converge to localized functions, while simultaneously
providing a variational approximation to the total energy E0.
In this article, we propose a method to create a set of localized

functions fψ igNi=1, which we call CMs, such that
PN

j=1hψ j; Ĥψ ji
approximates E0 =

PN
j=1hϕj; Ĥϕji. Our idea is inspired by the ℓ1

regularization used in compressive sensing. As a convex re-
laxation of ℓ0 regularization, ℓ1 regularization is commonly used
for seeking sparse solutions for the underdetermined problem
Ax= b (2, 12). Motivated by advantages of the ℓ1 regularization
for the sparsity in the discrete case, we propose a modification of
the objective functional given by Eq. 1, which can immediately
obtain functions with compact support and calculate approxi-
mate total energy “in one shot,” without the need to calculate
eigenfunctions. This is accomplished by introducing an L1 reg-
ularization of the wave functions:

E= min
ΨN

XN
j= 1

�
1
μ

��ψ j

��
1
+
D
ψ j; Ĥψ j

E�
s:t:

�
ψ j;ψk

�
= δjk; [4]

where ΨN = fψ jgNj=1 and the L1 norm is defined as
��ψ j

��
1
=R

Ω

��ψ j

��dx. For simplicity, we are requiring that the wave func-
tions ψ j are real; generalization to complex-valued wave functions,
required to handle relativistic effects, is straightforward. The pa-
rameter μ controls the tradeoff between sparsity and accuracy:
larger values of μ will give solutions that better minimize the total
energy at the expense of more extended wave functions, whereas
a smaller μ will give highly localized wave functions at the expense
of larger errors in the calculated ground state energy. Due to the
properties of the L1 term, the functions that minimize Eq. 4 will
have compact support. In contrast to other approaches that use
manually imposed cutoff distances, the main advantage of our
scheme is that one parameter μ controls both the physical accuracy
and the spatial extent, while not requiring any physical intuition
about the properties of the solution. In other words, the wave
functions ψ j are nonzero only in those regions that are required
to achieve a given accuracy for the total energy and are zero every-
where else. Furthermore, due to the fact that exponentially local-
izedWannier functions are known to exist, the solution to Eq. 4will
provide a good approximation to the true total energy of the system
(in fact, it converges to E0 as μ−2).
As a major contribution in this article, we propose localized CMs

using an L1 regularized variational formula. In addition, we propose
a numerical algorithm to solve the proposed nonconvex problem.

Variational Model for Compressed Modes
Free-Electron Case. Consider a 1D free-electron case defined on
½0;L� with periodic boundary conditions. Namely, the Schrödinger
operator is Ĥ0 = − 1

2∂
2
x . It is clear that Ĥ0 has eigenfunctions

1ffiffiffi
L

p ei2πnx=L with the corresponding eigenvalues 2ðπn=LÞ2;
n= 0;± 1;± 2;⋯. With a unitary transformationUmn = 1ffiffiffi

L
p ei2πnm=L,

one can construct quasi-localized orthonormal functions as

Wm =
1
L

X
n

ei2πnðx−mÞ=ðLÞ: [5]

Fig. 1 illustrates the real part of one of the resulting quasi-
localized functions obtained from the above unitary transforma-
tion. It is evident that the resulting Wm are not even exponentially
localized, as expected for metallic systems with continuous energy
spectrum at zero temperature (8).
As an example, we can analytically check that the L1 regula-

rization introduced in Eq. 4 can localize the resulting functions.
Let’s again consider the 1D free-electron model defined on ½0;L�
with the Schrödinger operator Ĥ0 = − 1

2∂x2 . Then the lowest
mode satisfies:

ψ1 = argmin
ψ

1
μ

Z
Ω

jψ jdx− 1
2

Z
Ω

ψ∂2xψdx

           s:t:  
Z
Ω

ψðxÞψðxÞdx= 1:
[6]

The solution of the above minimization problem will be a sparse
solution—that is, the Dirac delta function when μ→ 0 —and will
approach the first eigenfunction of Ĥ when μ→∞. Intuitively,
we expect to be able to express the solution of Eq. 6 as an ap-
proximation to a truncated diffusion of Dirac delta function via
the Schrödinger operator −1

2∂
2
x , which is a compactly supported

function. Indeed, the Euler–Lagrange equation corresponding
to Eq. 6 is:

−∂2xψ1 +
1
μ
signðψ1Þ= λψ1: [7]

If we further assume that ψ1 is symmetric around x=L=2, the
solution of Eq. 6 is:

ψ1 =

1
λμ

h
1+ cos


 ffiffiffi
λ

p
ðx−L=2Þ

�i
if jx−L=2j≤ l;

0 if l≤ jx−L=2j≤L

;

8><
>: [8]

where l= π=
ffiffiffi
λ

p
and λ= ð3πÞ2=5μ−4=5. Here ψ1 has compact sup-

port ½L=2− l;L=2+ l� if μ is small enough satisfying l= π=
ffiffiffi
λ

p
<L.

Note that ψ1 = ∂xψ1 = 0 and ∂2xψ1 has a jump of −μ−1 at the
boundary x= l of the support of ψ1, which are all consistent with
Eq. 7. From this simple 1D example, it is clear that L1 regulari-
zation can naturally truncate solutions to the variational problem
given by Eq. 6. Moreover, we also observe that the smaller μ will
provide a smaller region of compact support. Fig. 2 shows ψ1 for
different values of μ.
The 1D solution Eq. 8 can be generalized to dimension d> 1, as:

ψ1 =

1
λμ



1−U−1

0 U

 ffiffiffi

λ
p

jx− x0j
��

if  jx− x0j≤ l:

0 if  l≤ jx− x0j≤L

;

8><
>: [9]

in which x0 is the center of the cube ½0;L�d and UðyÞ=Uðr= jyjÞ
(for y∈Rd) is the solution of ΔU = −U —that is:

r2∂2r U + ðd− 1Þr∂rU + r2U = 0 [10]

and U0 =Uðr0Þ, l= r0=
ffiffiffi
λ

p
,λ= ðμU1Þ2=ðd+2Þ. Here r0 is the smallest

(nonegative) solution of ∂rUðrÞ= 0 and U1 =
R
jyj<r0ð1−U−1

0 UðjyjÞÞ2dy in which y is in Rd. For d= 2, UðrÞ= J0ðrÞ is
the 0-th Bessel function of the first kind, and for d= 3, UðrÞ=
sincðrÞ= sin ðrÞ=r.
Generalization to Nonzero Potential. The simple free-electron ex-
ample inspires us to consider L1 regularization of the wave functions

0 1 2 3 4 5 6

0

0.5

1 Real(W
5
)

Fig. 1. A quasi-localized Wannier function for 1D Laplace operator.
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proposed in Eq. 4 for a general Schrödinger operator
Ĥ = − 1

2Δ+V ðxÞ defined on Ω⊂Rd.
For definition 1, we call ΨN = fψ1;⋯;ψNg, defined in the

variational model Eq. 4, the first N CMs of the Schrödinger
operator Ĥ.
By analogy with the localized Wannier functions described in

the opening paragraphs, we expect that the CMs have compact
support and can be expressed as orthonormal combinations of
the eigenmodes of the original Schrödinger operator. In other
words, let ΦM = fϕ1;⋯;ϕMg be the first M eigenfunctions of Ĥ
satisfying:

ĤΦM =ΦMdiagðλ1;⋯; λMÞ  &  

Z
Ω

ϕjϕkdx= δij: [11]

We formulate the following conjecture to describe the com-
pleteness of the CMs. Given N ≥M , consider the N ×N matrix
hΨT

N ; ĤΨNi with the ðj; kÞ− th entry defined by
R
Ωψ jHψkdx and

let ðσ1;⋯; σMÞ be its first M eigenvalues; then:

lim
μ→∞

XM
j=1

�
σj − λj

�2 = 0  and   lim
N→∞

XM
j=1

�
σj − λj

�2 = 0: [12]

Numerical Algorithms
To numerically compute the proposed CMs, we consider the
system on a domain D= ½0;L�d ⊂Rd with periodic boundary
conditions and discretize the domain D with n equally spaced
nodes in each direction. Then, the variational formula (Eq. 4) for
the first N CMs can be reformulated and discretized as follows:

ΨN = min
Ψ∈Rn×N

1
μ
jΨj+Tr

�
ΨTĤΨ

�
 s:t:  ΨTΨ= I; [13]

in which jΨj is the ℓ1 norm of the matrix Ψ.
We solve this optimization problem by splitting orthogonality

constraint (SOC) using the algorithm proposed in ref. 13. By in-
troducing auxiliary variables Q=Ψ and P=Ψ, the above problem
Eq. 6 is equivalent to the following constrained problem:

min
Ψ;P;Q

1
μ
jQj+Tr

�
ΨTĤΨ

�
 s:t:  Q=Ψ;P=Ψ;PTP= I; [14]

which can be solved by the SOC algorithm based on split Bregman
iteration (14–16).
For algorithm 1, initialize Ψ0

N =P0 =Q0; b0 =B0 = 0; while “not
converged” do:

1)Ψk
N=argmin

Ψ
Tr

�
ΨTĤΨ

�
+λ
2

��Ψ−Qk−1+bk−1
��2
F+

r
2

��Ψ−Pk−1+Bk−1
��2
F

2) Qk = argmin
Q

1
μ jQj+ λ

2

��Ψk
N−Q + bk−1

��2
F

3) Pk = argmin
P

r
2

��Ψk
N−P + Bk−1

��2
F  s:t: P

TP= I

4) bk = bk−1 +Ψk
N −Qk

5) Bk =Bk−1 +Ψk
N −Pk.

Solutions to the minimization subproblems 1–3 can be ex-
pressed as follows:

�
2Ĥ + λ+ r

�
Ψk

N = r
�
Pk−1 −Bk−1�+ λ

�
Qk−1 − bk−1

�
; [15]

Qk = Shrink
�
Ψk

N + bk−1; 1=ðλμÞ�; [16]

and

Pk =
�
Ψk

N +Bk−1�UΛ−1=2ST ; [17]

where UΛST = svdððΨk+Bk− 1ÞTðΨk +Bk−1ÞÞ and the “Shrink”
(or soft-threshholding) operator is defined as Shrinkðu; δÞ=
sgnðuÞmaxð0; juj− δÞ. Because the matrix 2Ĥ + λ+ r in Eq. 15 is
sparse and positive definite, in practice a few iterations of either
Gauss–Seidel or conjugate gradient are sufficient to achieve good
convergence. Thus, Eqs. 15 and 16 can be solved very efficiently
with long operation counts linearly dependent on N. The only
time-consuming part in our algorithm is Eq. 17, which involves
a singular value decomposition (SVD) factorization and can be
straightforwardly solved with an OðN3Þ algorithm. For a moderate
size of N, the proposed algorithm can solve the problem efficiently.
For a large number of modes N, a possible approach to accel-

erating the computation is to use graphs processing unit (GPU)-
based parallel processing to perform the SVD factorization in Eq.
17. Here, we propose another method to speed up the third step of
the proposed algorithm, which takes advantage of the special
structure of the solution. We find that each of the resulting func-
tionsψ1;⋯;ψN has compact support, so that the support of eachψ i
overlaps with only a finite number of its neighbors. This allows us to
replace to the full orthogonality constraint ΨTΨ= I by a system of
banded orthogonality constraints.Z

ψ jψkdx= δjk;  



j= 1;⋯;N

k= j; j± 1; . . . j± p
; [18]

where p is the bandwidth. Thus, the OðN3Þ algorithm for SVD fac-
torization in Eq. 17 can be replaced by N factorizations of 2p× 2p
matrices, which is an algorithm with 8p3OðNÞ long operations.
Numerical Results
We illustrate our scheme for two representative cases. The first is
the free-electron model, which approximates the behavior of
valence electrons in a metallic solid with weak atomic pseudo-
potentials; the potential function in the Schrödinger operator is
simply set to zero. Because the allowed energy spectrum of free
electrons is continuous in the limit of infinite system size, the
conventional Wannier functions decay as an inverse power law.
The second case is that of a periodic one-dimensional crystal, of
which the famous Kronig–Penney (KP) model (17) is the most
widely used example. The KP model describes the states of in-
dependent electrons in a one-dimensional crystal, where the
potential function V ðxÞ consists of a periodic array of rectangular
potential wells. For simplicity, in our experiments we replace the
rectangular wells with inverted Gaussians so that the potential
is given by V ðxÞ= −V0

PNel
j=1exp

h
− ðx− xjÞ2

2δ2

i
. We choose Nel = 5,

V0 = 1, δ= 3, and xj = 10 j in our discussion below and, despite the
different potential, continue to refer to this case as the 1D KP
model. This model exhibits two low-energy bands separated by
finite gaps from the rest of the (continuous) eigenvalue spec-
trum, and the Wannier functions corresponding to these bands
are exponentially localized.
In our experiments, we choose Ω= ½0; 50� and discretize Ω with

128 equally spaced nodes. The proposed variational model Eq. 4
is solved using algorithm 1, where parameters are chosen as
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Fig. 2. Theoretical ψ1 in the 1D free-electron model (Eq. 6) for different
values of μ.
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λ= μN=20 and r= μN=5. We report the computational results of
the first five CMs of the 1D free-electron model (the first col-
umn) and the 1D KP model (the second column) in Fig. 3, where
we use five different colors to differentiate these CMs. To
compare all results more clearly, we use the same initial input for
different values of μ in the free-electron model and the 1D KP
model. We flip the CMs if necessary such that most values of

CMs on their support are positive, as sign ambiguities do not
affect minimal values of the objective function in Eq. 4. For
comparison, Fig. 4 plots the first five eigenfunctions of the
Schrödinger operator used in the free-electron model and KP
model. It is clear that all these eigenfunctions are spatially ex-
tended without any compact support. However, as we can ob-
serve from Fig. 3, the proposed variational model does provide

Fig. 3. Computation results of CMs with different values of μ. The first column, the first five CMs of the 1D free-electron model; the second column, the first
five CMs of the 1D KP model.

Fig. 4. The first five egienfunctions of the Schrö-
dinger operator Ĥ in the free-electron model (Up-
per) and the KP model (Lower).
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a series of compactly supported functions. Furthermore, all nu-
merical results in Fig. 3 clearly show the dependence of the size of
compact support on μ, as suggested by general considerations based
on the variational formula Eq. 4. In other words, the model with
smaller μ will create CMs with smaller compact support, and the
model with larger μ will create CMs with larger compact support. In
addition, we find that the resulting CMs are not interacting for small
μ (the first row of Fig. 3). By increasing μ to a moderate value, the
modes start to interact with each other via a small amount of

overlap (the second row of Fig. 3). Significant overlap can be ob-
served using a big value of μ (the third row of Fig. 3).
We further test conjecture 1 (Eq. 12) numerically—that is, uni-

tary transformation of the derived compactly supported CMs can
represented the eigenmodes of the Schrödinger operator. We
compare the first M eigenvalues ðσ1;⋯; σMÞ of the matrix
hΨT

NHΨNi obtained by the 1D KP model and 1D free-electron
model with the firstM eigenvalues ðλ1;⋯; λMÞ of the corresponding
Schrödinger operators. Fig. 5 illustrates the comparisons with a

Fig. 5. Comparisons of the first 50 eigenvalues of the 1D free electron model (the first row) and the 1D KP model (the second row).

Fig. 6. Relative eigenvalue error of the 1D free-
electron model (red dots) and 1D KP model (blue
circles). (Upper) Relation of the relative error via
different values of μ for fixed M=N= 50. (Lower)
Relation of the relative error via different values of
N for fixed μ= 10 and M= 50.
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relative small value μ= 10, when the CMs are highly localized. We
can clearly see that fσig gradually converges to fλig with increasing
number N of CMs. In addition, we also plot the relative error
E=

PM
i=1ðσi − λiÞ2=

PM
i=1ðλiÞ2 in Fig. 6. As we speculated in con-

jecture 1, the relative error will converge to zero as μ→∞ for fixed
M =N = 50, which is illustrated in the upper panel of Fig. 6. The
relative error will also converge to zero as N→∞ for fixed μ= 10
and M = 50, which is illustrated in the lower panel of Fig. 6.
Moreover, the proposed model and numerical algorithm also

work on domains in high dimensional space. As an example, Fig.
7 shows computational results of the first 25 CMs of the free-
electron case on a 2D domain ½0; 10�2 with μ= 30. All of the
above discussions of 1D model are also true for 2D cases. In
addition, our approach can also be naturally extended to irreg-
ular domains, manifolds, as well as graphs, which will be in-
vestigated in our future work.
In conclusion, the above numerical experiments validate the

conjecture that the proposed CMs provide a series of compactly
supported orthonormal functions, which approximately span the
low-energy eigenspace of the Schrödinger operator (i.e., the space
of linear combinations of its first few lowest eigenmodes).

Discussions and Conclusions
In conclusion, we have presented a method for producing CMs (i.e.,
modes that are sparse and spatially localized with a compact sup-
port) for the Laplace operator plus a potential V, using a variational
principle with an L1 penalization term that promotes sparsity. The

tradeoff between the degree of localization and the accuracy of the
variational energy is controlled by one numerical parameter, μ,
without the need for physical intuition-informed spatial cutoffs. The
SOC algorithm of ref. 13 has been used to numerically construct
these modes. Our tests indicate that the CMs can be used as an effi-
cient, systematically improvable orthonormal basis to represent the
low-energy eigenfunctions and energy spectrum of the Schrödinger
operator. Due to the fact that the CMs are compactly supported,
the computational effort of total energy calculations increases lin-
early with the number of modes N, overcoming the OðN3Þ or-
thogonalization bottleneck limiting the performance of methods
that work by finding the eigenfunctions of the Schrdinger operator.
In addition, note that the discretized variational principle in

Eq. 13 is related to sparse principal component analysis (SPCA)
(18, 19). SPCA, however, does not involve an underlying con-
tinuum variational principle, and the sparse principal compo-
nents are not localized, as the component number does not
correspond to a continuum variable.
These results are only the beginning. We expect that CM-re-

lated techniques will be useful in a variety of applications in solid
state physics, chemistry, materials science, and other fields. Fu-
ture studies could explore the following directions:

i) Use CMs to develop spatially localized basis sets that span
the eigenspace of a differential operator, for instance, the
Laplace operator, generalizing the concept of plane waves
to an orthogonal real-space basis with multiresolution capa-
bilities. More details will be discussed in ref. 20.

ii) Use the CMs to construct an accelerated [i.e.,OðNÞ] simula-
tion method for density-functional theory electronic structure
calculations.

iii) Construct CMs for a variety of potentials and develop CMs
as the modes for a Galerkin method for PDEs, such as
Maxwell’s equations.

iv) Generalize CMs for use in PDEs (such as heat type equations)
that come from the gradient descent of a variational principle.

v) Extend CMs to higher dimensions and different geometries,
including the Laplace–Beltrami equation on a manifold and
a discrete Laplacian on a network.

Finally, we plan to perform an investigation of the formal
properties of CMs to rigorously analyze their existence and
completeness, including the conjecture 1 (Eq. 12) that was hy-
pothesized and numerically tested here.
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Fig. 7. The first 25 CMs of free-electron case on a 2D domain ½0,10�2 with
μ= 30. Each CM is color-coded by its height function.
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