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Characterizing equilibrium in epitaxial growth
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Abstract – Using a kinetic model of epitaxial growth, we describe how geometry controls kinetic
pathways through which external deposition influences the state of a vicinal surface. The state of
the surface is determined by three key, adjustable parameters: the local step angle θ, the Péclet
number P , and the single-bond detachment rate b̆. By scaling arguments in P , we find three
steady-state regimes. In one regime, detailed flux balance approximately holds, so that the system
is near equilibrium. In the other two regimes, geometric effects compete with deposition as the
system is driven progressively out of equilibrium. Our analytical results are in excellent agreement
with those of kinetic Monte Carlo simulations.
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Epitaxial growth involves a competition between certain
atomistic processes that disrupt equilibrium and others
that tend to restore it [1]. It is often unclear whether
such growth phenomena can be understood in terms of
equilibrium principles; nonetheless, concepts such as the
free energy and local chemical potential are often invoked
in descriptions of epitaxial systems [2–7].
Kinetic models that are valid in and out of equilibrium

provide an alternate perspective of surfaces. This can yield
insight into the conditions necessary for the use of thermo-
dynamic concepts. For crystal surfaces, an important ques-
tion (in the context of a kinetic model) is therefore: when
is an epitaxial system close to equilibrium, and how can
experimental parameters be used to control the state of
the system? The rates of deposition and kinetic processes
at step edges are usually seen as the key factors control-
ling growth [2–6]. Changing the local geometry at a step
edge can also favor certain kinetic processes [3], so that
the microstructure of a step should play a critical role in
determining the state of the system.
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Our goal in this letter is to provide a criterion, in
the context of a tractable model, that indicates when
an epitaxial system is near equilibrium, as opposed to
other kinetic steady states. We address two tasks. First,
we define the state of the system by means of the kink
density (number of atomic defects per unit length of a
step). Second, we show how experimentally adjustable
parameters, e.g., the local step angle θ and the Péclet
number P ∝ F/De, can control what state the system is in
(F is the external deposition rate, and De is a diffusivity
associated with atomic motion at a step). In particular,
we show how increasing θ favors a return to equilibrium
by creating additional kinks for adatoms to attach to.
Our work is motivated by the issue of how accurately

experimental surface systems can be described by near-
equilibrium theories based on the celebrated Burton-
Cabrera-Frank (BCF) model [3–6]. By starting with a
more general kinetic model, which contains information
about kinks, we aim to provide some insight into the
conditions necessary for the validity of BCF-type theories.
A broader goal of our work is to describe qualitative
features of surfaces under high-growth conditions.
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Fig. 1: Schematic of step geometry. The parameter a is
the atomic step height. The symbols φ, kr, and kl are the
densities of edge adatoms, right-facing, and left-facing kinks,
respectively. The local step angle is θ.

Our description of surface kinetics, particularly near-
equilibrium kinetics, differs from works based on the
fluctuation-dissipation theorem, e.g., ref. [8]. Here, we
use the density of point defects (kinks), as opposed to
correlations between positions of defects [8], to determine
when the system is near equilibrium.
We adopt a modified version of the mean-field, step-

edge model in [9,10], which describes surfaces in and out
of equilibrium (see also [11] for related works). Features
of our model are depicted in fig. 1, which shows two steps
separated by a terrace on a typical crystal surface [2,3].
The steps have atomic height a, and atoms are deposited
on the surface at rate F . Adsorbed atoms (adatoms)
diffuse on terraces, and may attach to and detach from
step edges [3]. For our present purposes, it suffices to study
the {001} face of a single step on a simple cubic lattice.
At a step edge, we distinguish between edge, kink, and
boundary adatoms, which have one, two and three nearest
in-plane neighbors, respectively. The densities of edge and
kink adatoms are φ and k. Kinks can be right or left facing,
with densities kr and kl (cf. fig. 1).
Morphological changes to the surface occur via step

motion, which in turn results from atomistic processes
that create and destroy kinks [2]. Specifically, to advance
a step locally, an edge adatom must either i) attach to an
existing kink, ii) form a left-right kink pair by attaching
to another edge adatom, or iii) annihilate a right-left kink
pair (cf. fig. 2) [9,10]. The reverse processes cause steps to
retreat.
We identify equilibrium as the state in which detailed
flux balance (DFB) holds for all atomistic processes caus-
ing step motion [12,13]. By detailed flux balance, we mean
that the net rate of any process (the product of a single-
particle transition rate and the density of atoms eligi-
ble to make that transition) equals the net rate of its
reverse process [9]1. The kink density plays a central role
in determining when the system is near equilibrium, since
k connects kinetic processes to the local step geometry.

1Deposition-induced step growth violates DFB, since processes
that cause steps to advance in y (cf. fig. 1) occur at a faster net rate
than those that cause steps to retreat. When the system is sufficiently
near equilibrium (NE), DFB is approximately satisfied; see eq. (9)
for a more precise definition of the NE regime.

Fig. 2: Top-down view of the processes by which a step moves
locally. The symbols Ω+ and Ω− denote the upper and lower
terraces at a step edge, respectively. Starting from the top and
going clockwise, the coordination numbers for these processes
are c1 = c2 = c3 = 2; cf. eqs. (2) and (3).

Therefore, we begin our analysis by writing

kr + kl = k, kr − kl = a
−1 tan θ. (1)

Assuming that steps have a well defined direction, we take
θ to be spatially constant along the step edge. We also take
the edge adatom (φ) and kink (k) densities to be spatially
constant, so that they obey

∂tφ= FL+ c1(a
−2Dkk− a

−1Deφk), (2)

∂tk=
2c2
a
(Deφ

2−Dkkrkl)+
2c3
a3
(Db−a

3Deφkrkl), (3)

where L is the average terrace width, and De, Dk, and
Db are the diffusivities of edge, kink, and boundary
adatoms [9,10]. The constants c1, c2, and c3 are coordina-
tion numbers measuring the number of pathways by which
edge adatoms and kinks can be created or destroyed (cf.
fig. 2). The factors of 2 appearing in eq. (3) account for the
fact that the corresponding processes create and destroy
kink pairs.
Equations (2) and (3) are simplified versions of the

evolution equations given in [9,10]. The right-hand side
of eq. (2) states that i) all deposited adatoms move to a
step edge (via the term FL), ii) atoms detach from kink
sites with probability k at a rate Dk, and iii) edge adatoms
attach to kink sites with probability φk at a rate De. The
term c1 in eq. (2) indicates that the processes of adatom
detachment-attachment at a kink site occur by c1 different
pathways. Equation (3) and the coefficients c2 and c3 can
be interpreted similarly (cf. fig. 2).
The parent model in [9,10] (from which eqs. (2) and

(3) are taken) also includes an evolution equation for the
density ρ of adatoms on a terrace. Consequently, that
model contains terms proportional ρk and ρφ describing
processes in which terrace adatoms attach directly to kinks
or edge adatoms (as opposed to a straight step edge).
Here we assume that products of densities involving ρ
are negligible. This approximation is realized in eq. (2)
via the source term FL; all terrace adatoms become edge
adatoms. Equations (2) and (3) also disregard detachment
of atoms from a step, so that we only allow for diffusion
along a step edge.
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We assume that the diffusion coefficients2 are

Dℓ =DT exp(−Eℓ/kBT ), (4)

where DT is the diffusion coefficient for adatoms on a
terrace, ℓ= e, k, or b for edge, kink, or boundary adatoms,
and Eℓ = nℓEbond; Ebond is the energy of a single atomic
bond, and nℓ is the number of nearest in-plane neighbors
of a given adatom type [2,9]. Note that nℓ = 1, 2 or 3 for
ℓ= e, k, or b. We also define the single-bond detachment
rate b̆=Dk/De =Db/Dk = exp(−Ebond/kBT ) .
We look for steady states by setting the time derivatives

equal to zero in eqs. (2) and (3), so that

P = c1(a
2φk− ab̆k), (5)

c2a
2(b̆krkl−φ

2) = c3(b̆
2− a3φkrkl). (6)

The parameter P = aLF/(De/a
2) represents a compe-

tition between two atomistic processes; the numerator,
aLF , is the flux of deposited adatoms arriving at a step
edge, which drives the system out of equilibrium, since
it violates DFB. The denominator, De/a

2, is the rate at
which edge adatoms diffuse (i.e., hop) along a step edge.
This diffusion is the fastest process by which the system
may re-equilibrate. Hence, P should help control how close
the system is to equilibrium. In this study we assume that
P ≪ 1 and b̆≪ 1, which corresponds to a regime in which
the adatom density φ is low.
We begin by considering the case F = 0 (i.e., P = 0), so

that eqs. (5) and (6) imply φ= b̆/a and krkl = b̆/a
2. Then,

by eq. (1),

k= a−1(tan2 θ+4b̆)1/2. (7)

This is an equilibrium solution, since it satisfies DFB;
i.e., Dkk= aDeφk, Deφ

2 =Dkkrkl, and Db = a
3Deφkrkl

(cf. eqs. (2) and (3)).
In eq. (7), the terms in parentheses reveal two distinct

sources of kinks. The term a−2 tan2 θ= (kr − kl)
2 corre-

sponds to geometric (forced) kinks; these arise solely from
the nonzero step angle and all face the same direction
(for example, if θ > 0, then kr > kl, and geometric kinks

are right facing). The term 4b̆ is associated with ther-
mal kinks, which are created when adatoms detach from
kinks or edges and attach to each other. Thermal kinks
always come in left-right pairs and do not contribute to the
average step angle. When the single-bond energy becomes
large (b̆→ 0), detachment processes rarely occur, and the
equilibrium kink density is given by the geometric kink
density (k→ |tan θ|/a).
For nonzero P , it is convenient to rescale variables,

letting l= ak/b̆1/2, q= P/b̆3/2, and ψ= tan(θ)/b̆1/2. Alge-
braic manipulations of eqs. (5) and (6) then yield

c21 [c3+ c2] l
4+ c1c3ql

3− c21 [c3+ c2] (4+ψ
2)l2

−c1
[

c3ψ
2+8c2

]

ql− 4c2q
2 = 0. (8)

2The products a2Dℓ can be thought of as hopping rates for
adatom moves between lattice sites.

This fourth-order algebraic equation for l (i.e., for k)
can be solved exactly, but we resort to approximations
that are more useful for physical interpretation. There are
three distinct regimes in which the solution to eq. (8)
may be simplified: i) q≪ (1+ψ2)1/2; ii) (1+ψ2)1/2≪
q≪ (1+ψ2)3/2; and iii) (1+ψ2)3/2≪ q. Note that regime
ii) only exists if 1≪ |ψ|, so that it could be rewritten as
ii′) |ψ| ≪ q≪ |ψ|3. The kink density k solving eq. (8) is
found approximately in these three regimes to be

k≈ a−1(tan2 θ+4b̆)1/2, P ≪ b̆(b̆+tan2 θ)1/2, (9)

k≈ a−1| tan θ|, b̆| tan θ| ≪ P ≪ | tan θ|3, (10)

k≈ a−1[4c2P/(c1c3)]
1/3, (b̆+tan2 θ)3/2≪ P. (11)

In eq. (9), the kink density is approximately equal to
the value given by eq. (7); corrections to eq. (9) are of
size P . We call this the “near-equilibrium” (NE) regime,
since DFB is approximately satisfied; indeed the dominant
balance in eq. (5) is a2φk≈ ab̆k≫ P .
Equation (11) corresponds to a state in which informa-

tion about the step angle θ is lost; the kink density is
entirely determined by the Péclet number. Since the pres-
ence of P in eq. (11) implies that deposition determines
the kink density, we call this regime the “flux-dominated
steady state” (FDSS). Detailed flux balance is lost in this
kinetic steady state. The flux to the edge is balanced by
the flux of edge adatoms to kinks. The creation of kink
pairs from two edge adatoms is balanced by the hopping
of an edge adatom to fill in a single missing atom in the
edge (a kink pair), as illustrated in fig. 2; i.e., eqs. (5) and
(6) imply

c1a
2φk≈ P, (12)

c2φ
2 ≈ c3aφkrkl. (13)

In the intermediate regime governed by eq. (10), which
we call the “angle-dominated steady state” (ADSS), kinks
are predominantly geometric. For example, if θ > 0, then
kr≫ kl, so that kr ≈ a

−1|tan θ|. A higher-order correction
yields kl ≈ a

−1c2P/(c1c3 tan
2 θ). This correction term for

the ADSS is determined by the dominant kinetic balances,
eqs. (12) and (13) as in the FDSS.
Although the ADSS does not satisfy DFB, it may be

interpreted as an extension of the NE regime: the ADSS
amounts to an increase (relative to the NE regime) of

the range of b̆ and P values for which the kink density
is approximately independent of the deposition rate. As b̆
decreases (keeping P, θ �= 0 fixed) in the NE regime, the
system transitions continuously from NE to the ADSS
(cf. fig. 3). If instead P and b̆ are held fixed, increasing
θ can eliminate the flux dependence of k (cf. fig. 4).
The ADSS kink density is controlled by the step angle

alone (and not P or b̆) because geometric kinks inhibit
the formation of left-right kink pairs. This can be seen by
considering the length ã= a/ tan θ and time t̃= ã2/De,
which are the average length between geometric kinks and
the average time for a single edge adatom to traverse the
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Fig. 3: KMC-simulated kink densities (symbols with error bars)
vs. eqs. (9) and (10) (solid and dash-dotted lines, respectively).
The slanted dashed line indicates the approximate boundary
between the NE and ADSS regimes; it is the solution to
P = b̆|tan θ|. We fixed P = 10−6 for these simulations. The
ADSS kink density exhibits the same behavior as the NE kink
density taken in the limit b̆→ 0.

Fig. 4: (Color online) Analytic (solid lines) and kMC (symbols)
kink densities as functions of P . Analytic densities were found
by numerically solving eq. (8). The kink densities collapse to
a single curve as P increases. For each θ, blue and red vertical
lines indicate the locations of the NE to ADSS and ADSS to
FDSS transitions, going left to right. We omit NE kMC data for
θ= 0; significantly larger simulations are required to suppress
fluctuations in this data. We set b̆= 10−5 and disabled island
nucleation in these simulations.

distance ã. Rewriting the ADSS condition P ≪ |tan3 θ|
(cf. eq. (10)) in the form t̃≪ (ãLF )−1 and noting that
1≪ |ψ| is equivalent to t̃≪ a2/Dk≪ a

2/Db suggests that
an edge adatom attaches to an adjacent geometric kink
long before another edge adatom is created within a
distance ã by either deposition or detachment. Thus, in
the ADSS, geometric kinks shield edge adatoms from each
other, so that left-right pairs rarely form.

In order to test our analytical results, we performed
kinetic Monte Carlo (kMC) simulations of a cubic, solid-
on-solid surface model. Details of the algorithm may be
found in [14,15]. The main idea is to move adatoms with
probabilities proportional to their diffusion rates, given
by eq. (4). We modeled the surface on a 500 a× 200 a
rectangular grid, whose sides were parallel to the x and y
axes of the crystal (cf. fig. 1). The surface was initialized
to have four steps separated by terraces 50 atomic lengths
wide. The x axis corresponded to θ= 0 (cf. fig. 1). Nonzero
step angle was incorporated by applying screw periodic
boundary conditions along lines making an angle θ with
the x-axis; realizable values of θ for this simulation were
those satisfying tan θ= j/500 for some integer j.
We compare simulated kink densities with the analytic

predictions from eqs. (9)–(11), as a function of b̆ in fig. 3
and as a function of P in fig. 4. Both figures show
excellent agreement between the model predictions and
the results from kMC simulations in all three regimes.
This is true even for kink densities k of size up to 0.4,
which is somewhat surprising, since we do not expect our
mean-field model to be valid when any density becomes
comparable to unity (i.e., adatom and kink correlations
could significantly alter the form of eqs. (2) and (3)).
Morever, fig. 3 confirms our conclusion that the ADSS
exhibits NE behavior, since it shows that the NE kink
density approaches the ADSS kink density as b̆ becomes
small. Also, fig. 4 confirms that the kink density is
approximately independent of the step angle in the FDSS
regime (i.e., to the right of the red bar on each curve).
Our model does not take into account island forma-

tion; this process will decrease the magnitude of P (via
FL), since not all of the deposited adatoms will diffuse
to a step. More generally, we ignore the effects that
terrace inhomogeneities such as islands and voids have on
a step.
We believe that our analytical results, eqs. (9)–(11),

are experimentally testable by means of molecular beam
epitaxy (MBE) and in situ scanning-tunneling microscopy
(STM). For example, certain STM designs permit atomic
resolution imaging of Si(111) surfaces during growth
[16,17]. Since diffusion rates are functions of tempera-
ture [2], and the deposition rate can be controlled during

MBE, P and b̆ correspond to experimentally adjustable
parameters. Therefore, we expect that it should be
possible to experimentally observe the active kinetic
processes implied by the dominant balances in eqs. (5)
and (6).
In conclusion, we presented a mean-field model of

epitaxial growth to demonstrate how varying the step
angle θ, the deposition rate F ∝ P , and the single-bond
detachment rate b̆, determines whether a vicinal surface
is in equilibrium or in a nonequilibrium steady state. We
showed that the system has three steady-state regimes. In
one regime, the system obeys detailed flux balance and is
near equilibrium. In the other two regimes, the behavior
of the system is determined by θ and P , respectively. Our
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analysis is in excellent agreement with kMC simulations
in all three regimes. We hope that our characterization of
active kinetic processes in surface systems can be further
explored by STM measurements during growth.
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