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Beyond the Child-Langmuir limit

R. E. Caflisch1,2 and M. S. Rosin1

1Department of Mathematics, UCLA, Los Angeles, California 90095, USA
2Institute for Pure and Applied Mathematics, UCLA, Los Angeles, California 90095, USA

(Received 21 July 2011; revised manuscript received 28 March 2012; published 18 May 2012)

This article presents a new formulation of the solution for fully nonlinear and unsteady planar flow of an
electron beam in a diode. Using characteristic variables (i.e., variables that follow particle paths) the solution
is expressed through an exact analytic, but implicit, formula for any choice of incoming velocity v0, electric
field E0, and current J0. For steady solutions, this approach clarifies the origin of the maximal current Jmax,
derived by Child and Langmuir for v0 = 0 and by Jaffe for v0 > 0. The implicit formulation is used to find (1)
unsteady solutions having constant incoming flux J0 > Jmax, which leads to formation of a virtual cathode, and
(2) time-periodic solutions whose average flux exceeds the adiabatic average of Jmax.
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I. INTRODUCTION

Space-charge limiting (SCL) current is a fundamental
constraint on the flow of an electron beam in a diode. For
a fixed potential difference φ1 and incoming velocity v0, the
maximal sustainable steady-state current Jmax was derived by
Child [1] and Langmuir [2] for v0 = 0 and by Jaffé [3] for
v0 > 0. The physical origin of the SCL effect is clear: the
electromotive force from electrons in the beam limits the
current in the diode. If the incoming current is maintained
above this maximum, then the electron density builds up inside
the diode and a virtual cathode develops. The basic physics and
technological applications of SCL flows and virtual cathodes
are well reviewed in Refs. [4,5]. Extensions to more general
physics and geometries have been carried out, mostly using
perturbation methods or simulations, for example, Ref. [6] for
multidimensional geometries.

The mathematical derivation of the maximal current in
Refs. [1–3] is based on equations for the steady, one-
dimensional electron flow in a diode. The authors derive
a formula relating the current and the potential jump, but
the analysis for v0 > 0 in [3] is complicated. Simplified
derivations for the maximal steady current, as well as stability
analyses for electron–ion diode flows, were performed [7–11]
through a Lagrangian formulation of the diode equations in
terms of particle paths. A Lagrangian formulation was also
used to show that formation of a virtual cathode is related
to cusp formation in the electron trajectories [12–14] and to
describe multivalued solutions [15].

This article presents a new formulation for the complete
solution of the one-dimensional diode equations. The solution
is based on a Lagrangian formulation (i.e., particle paths or
characteristics) so that it is an extension of Refs. [7–11]. Our
main result is an implicit solution that applies to both steady
and unsteady flows and to the fully nonlinear equations with
no approximations.

This implicit solution is analogous to the implicit solution
for the inviscid Burgers equation (e.g., see Ref. [16]), since
velocity v, density ρ, electric field ψ , and spatial position
x are found through simple, explicit formulas in terms of
characteristic variables s and τ . From this implicit formulation,
it is staightforward to derive the maximal current that was
first found in Refs. [1–3]. In addition, the implicit solution

formulation enables construction of unsteady solutions that
exhibit important properties, including singularity formation
corresponding to cusp formation in the characteristics and
formation of a virtual cathode, and time-periodic solutions
whose average flux exceeds the adiabatic average of Jmax.

The one-dimensional continuum equations for the flux of
electrons in a diode are

∂tρ + ∂x(ρv) = 0, (1)

∂tv + v∂xv = ∂xφ, (2)

∂2
xφ = ρ, (3)

in which x, t, v, φ, and ρ are the scaled position, time,
velocity, potential, and density given by

(x,t,v,φ,ρ) = [x ′/L,t ′/T ,v′/(L/T ),φ′/�,ρ ′/R],

� = (me/qe)(L/T )2, R = (ε0/qe)(�/L2).

The primed variables are unscaled, L and T are length and
time scales, me is the electron mass, qe is the fundamental
charge (positive), and ε0 is vacuum permittivity. The boundary
conditions at the cathode x0 = 0 and anode x1 = d are

φ = 0

v = v0

ρ = ρ0

⎫⎪⎬
⎪⎭ on x = 0,

(4)
φ = φ1 on x = d.

so that φ1 is the potential difference across the channel.

II. CHARACTERISTIC FORMULATION

Consider characteristic (particle-path) variables in which
x(s,τ ) is the position at time t = s + τ for a particle that
entered the domain at time τ . The defining equations for s and
τ are

∂sx = v, (5)

x(0,τ ) = 0, t = s + τ. (6)

Derivatives in (x,t) and in (s,τ ) are related by

∂s = ∂t + v∂x, ∂τ = ∂t + (∂τ x)∂x. (7)
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Denote (scaled) negative electric field by ψ = ∂xφ (since
the electric field is E = −∂xφ). Since ∂xψ = ρ, then ψ(x,t)
is the total mass between 0 and x, plus some boundary terms,
which implies

∂tψ + v∂xψ = f ′′′′(t) (8)

for some function f ′′′′ (the four derivatives are for notational
convenience below). Combine Eq. (8) with Eqs. (2) and (5),
using Eq. (7), to get the following system:

∂sψ = f ′′′′(s + τ ), ∂sv = ψ, ∂sx = v. (9)

The general solution for this system, using Eq. (6), is

ψ(s,τ ) = θ (τ ) + f ′′′(s + τ ),

v(s,τ ) = w(τ ) + θ (τ )s + f ′′(s + τ ), (10)

x(s,τ ) = w(τ )s + 1

2
θ (τ )s2 + f ′(s + τ ) − f ′(τ ).

For notational convenience below, we also set

f ′′′(s + τ ) = g′′′(s + τ ) + (s + τ )a0,

θ (τ ) = γ (τ ) − a0τ + γ0, (11)

in which a0 and γ0 are constants. The system (10) provides
a new general method for solving the unsteady diode
Eqs. (1)–(3).

In Eq. (10) f , θ , and w are related to boundary data by

f ′′′′ = ∂τψ0 + J0, θ = ψ0 − f ′′′, w = v0 − f ′′,

in which J0 = ρ0v0 and ψ0 = ψ(x = 0) are incoming flux and
negative electric field. Specification of boundary data on x = d

requires identification of the crossing time s = T (τ ) at which
characteristics (particle paths) hit x = d; that is,

x(T (τ ),τ ) = d. (12)

The density, flux, and potential satisfy (using ∂x = (v −
∂τ x)−1(∂s − ∂τ ) and ∂τ x = 0 at x = 0)

ρ = (v − ∂τ x)−1(∂s − ∂τ )ψ, (13)

J = v(v − ∂τ x)−1(∂s − ∂τ )ψ,

J0 = (∂s − ∂τ )ψ(0,τ ),

(∂s − ∂τ )φ = (v − ∂τ x)ψ. (14)

Equation (14) can be integrated (using φ(0,τ ) = 0) to get

φ(s,τ ) =
∫ s

0
(v − ∂τ x)ψ(s ′,τ + s − s ′)ds ′. (15)

III. STEADY SOLUTIONS

Next we consider steady solutions, which cannot depend on
τ , so that f ′′′′ = J0 is a constant, and the resulting solutions of
system (9), using the variables of (11) with γ0 = ψ0, a0 = J0,
and γ = g = 0, are

ψ(s) = ψ0 + J0s,

v(s) = v0 + ψ0s + J0s
2/2,

x(s) = v0s + ψ0s
2/2 + J0s

3/6, (16)

φ(s) = 1
2

[
v(s)2 − v2

0

]
.

In particular, the value φ1 of the potential at x = d is

φ1 = 1
2

[
v(T )2 − v2

0

]= 1
2

(
v0 + ψ0T + 1

2J0T
2
)2 − 1

2v2
0 . (17)

This is equivalent to formulas derived in Refs. [1–3,7,11].
They showed that there is maximal value Jmax of the current
for a given value of the potential difference φ1 or, equivalently,
that there is a minimal value φmin of the potential difference
φ1 for a given value of the incoming current J0.

The characteristic solution Eq. (16) shows that there is
a solution of the diode equations for any choice of the
mathematically natural boundary data v0, J0, and ψ0. The
reason for the minimal potential jump φmin (or equivalently
the maximal current Jmax) is that φ1 has a minimum value as a
function of ψ0, for fixed values of velocity v0 and current J0.

To find this minimum value, first calculate ∂ψ0T and ∂ψ0φ1

by differentiating the equation v0T + ψ0T
2/2 + J0T

3/6 = d

and Eq. (17) with respect to ψ0 to get

∂ψ0T = − 1
2v(T )−1T 2 ∂ψ0φ1 = T

(
v0 + 1

2ψ0T
)
.

The minimal value of φ1 occurs when ∂ψ0φ1 = 0, which
implies

ψ0 = −2v0T
−1, d = J0T

3/6.

At this value of T , the potential difference φ1 = φmin and
current J0 = Jmax are

φmin = − 1
2v0(36d2J0)1/3 + 1

8 (36d2J0)2/3,
(18)

Jmax = 2
9d−2

(
v0 +

√
v2

0 + 2φ1
)3

,

in which Jmax is Child-Langmuir space-charge limited current
for a one-dimensional (1D), planar diode (as a function of the
incoming velocity v0 and potential jump φ1). This expression
was derived by Jaffe [3] using a nonzero value of v0 to avoid
an infinite electron density at the minimum of the potential
as found in simpler derivations of Child and Langmuir [1,2],
which used v0 = 0. Furthermore, φmin is the corresponding
minimum value of the potential jump φ1 for given values of
the incoming velocity v0 and the (incoming) current J0. Note
the φmin is just the inverse function for Jmax as a function of
φ1; that is, Jmax(v0,φmin(v0,J0)) = J0.

Finally, under the assumptions v0 > 0 and φ1 > 0, we
show that −√

2v0J0 < ψ0 is the allowable parameter set for
steady solutions. Allowable solutions are those for which the
velocity is always positive (i.e., v(s) > 0 for 0 < s < T ) since
otherwise the particle paths are crossing and the model breaks
down.

To show this, note v is quadratic in s, with minimum at s =
s∗ = −ψ0/J0 at which v(s∗) = v0 − 1

2J−1
0 ψ2

0 . The assumption
that φ1 > 0 implies that v(T ) > v0, which is equivalent to
−J0T/2 < ψ0. If ψ > 0, then s∗ < 0 and v0 = v(0) > 0
implies that v(s) > 0 for 0 � s � T . If −J0T/2 < ψ0 < 0,
then 0 < s∗ < T so that v(s) > 0 for all 0 < s < T if and
only if v(s∗) > 0, which is true if and only if ψ0 > −√

2v0J0.
It follows that the allowable set of values of ψ0 is −√

2v0J0 <

ψ0. These results are consistent with but more easily stated
than those of Refs. [3,11].
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IV. SOLUTIONS WITH CONSTANT INCOMING
VELOCITY AND FLUX

A. Simplified formulas for the implicit solution

Consider unsteady solutions having constant incoming
velocity v0 and flux J0. The implicit solution, using the
variables of Eqs. (11) with a0 = J0 and γ = 0, then has the
form

ψ(s,τ ) = γ0 + J0s + g′′′(s + τ ),

v(s,τ ) = v0 + γ0s + J0
1
2 s2 + g′′(s + τ ) − g′′(τ ),

x(s,τ ) = v0s + 1
2γ0s

2 + J0
1
6 s3 + g′(s + τ ) − g′(τ ) − g′′(τ )s.

(19)

The resulting potential φ is

φ(s,τ ) = [γ0 + g′′′(s + τ )]x(s,τ ) + p3(s) − dγ0

+ 2J0
[ − g(τ ) + g(τ + s) − sg′(τ ) − 1

2 s2g′′(τ )
]
,

in which p3 is defined by Eq. (21). At s = T (τ ), the equations
for φ1(τ ) = φ(T ,τ ) and T (τ ) become

φ1(τ ) = dg′′′
+ + p3(T ) + 2J0

( − g + g+ − T g′ − 1
2T 2g′′),

d = p1(T ) + g′
+ − g′ − g′′T , (20)

in which

p1(T ) = v0T + γ0
1
2T 2 + J0

1
6T 3,

p3(T ) = dγ0 + J0
(
v0

1
2T 2 + γ0

1
3T 3 + J0

1
8T 4

)
, (21)

g = g(τ ), g+ = g(τ + T ).

B. Stability analysis for steady solutions

As described in Sec. III, the steady state has γ0 = ψ0, g = 0
and φ1 constant. It follows that the linearization of Eq. (20)
about a steady-state solution is

dg′′′
1+ + 2J0

(
g1+ − g1 − T0g

′
1 − 1

2T 2
0 g′′

1

) + p′
3(T0)T1 = 0,

p′
1(T0)T1 − g′′

1T0 + g′
1+ − g′

1 = 0, (22)

in which T1 and g1 are the perturbations around the steady-state
values T0 and g0 = 0, and g′

1+(τ ) = g′
1(τ + T0). Solve for T1

from the second equation in Eq. (22) and substitute it into the
first equation, using the definitions of p1 and p3 from Eq. (21),
to obtain

0 = dg′′′
1+ + 2J0

(
g1+ − g1 − 1

2T0g
′
1 − 1

2T0g
′
1+

)
. (23)

Now look for a mode of the form g1 = ĝ1e
λτ/T0 . The

resulting dispersion curve is given by

1 − d̃ = z(λ), (24)

in which

z(λ) = 12λ−3
[
1 − 1

2λ − e−λ
(
1 + 1

2λ
)] + 1,

(25)
d = 1

6J0T
3

0 d̃.

The result, Eq. (24), is equivalent to the dispersion relation
found by Lomax [17] and by Kolinsky and Schamel [11]
using a Lagrangian approach, which differs from the implicit
solution approach used here. As found numerically by Sun
and Rosin [18], Eq. (24) has exactly one solution λ for every
0 < d̃ < 1 and it is positive (i.e., nonoscillatory, unstable
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FIG. 1. (Color online) The density ρ for steady boundary data for
which J0 > Jmax. Values of ρ are presented at 11 times starting at
t = 0 and ending at t = 4 with intervals dt = 0.4. Near x = 0.2 the
value of ρ becomes singular as t increases.

mode). This corresponds to the linear instability of what is
known in the literature as the “C-overlap flow.” For d̃ > 1 all
solutions have Re(λ) < 0. In the limiting case d̃ = 0, there are
a discrete set of pure imaginary solutions λ = iκ . Although
these have no direct physical meaning for the linear problem,
they could be meaningful for nonlinear solutions. In summary,
the steady-state solution for the Child-Langmuir system is
stable if and only d̃ > 1, which is equivalent to the condition

ψ0 > −2v0/T0 (26)

found by Refs. [3,11].

C. Solutions with cusp formation

For a given function φ1, we solved the system Eq. (20)
for g(τ ) and T (τ ) as a delay-differential equation, using the
MATLAB routine ddesd, after some transformation to convert
it into standard form for which the delays are backward. This
amounts to solving for incoming electric field ψ for given
values of the potential difference φ1.

We present numerical results for a solution that starts in
the steady state F̄ with (v̄0,J̄0,φ̄1) = (0.5,1,1) on a system
with thickness d = 4/3 (and with ψ̄0 = −0.5), for t < 0. This
steady state is critical in that the potential difference is at
its minimum (i.e., φ1 = φmin) and the flux is at its maximum
(i.e., J0 = Jmax). The potential φ1 varied linearly over the time
interval 0 < t < 2 up to the value φ̃1 = φ̄1 − 0.2 and then is
held constant at this value. Since this decreases the value of
the potential jump φ1, the solution is not steady.

The resulting density ρ is presented in Fig. 1, which
shows development of a singularity. Nevertheless, the function
f ′′′ remains smooth and bounded, so that implicit solution
formulation remains valid up to the time of singularity
formation. Characteristics are shown in Fig. 2, which shows
formation of a caustic. Note that the velocity becomes negative
before the cusp singularity.
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FIG. 2. (Color online) Characteristics (i.e., particle paths) for
steady boundary data for which J0 > Jmax. The solution breaks down
when there is a cusp in the characteristics.

V. PERIODIC SOLUTIONS THAT EXCEED
THE CHILD-LANGMUIR LIMIT ON AVERAGE

As a second example, consider unsteady solutions having
constant incoming velocity v0 but periodic flux J0(τ ) and
periodic incoming electric field ψ0(τ ). The implicit form of
the solution Eq. (9), using the variables in Eq. (11), is given by

ψ(s,τ ) = γ0 + γ (τ ) + a0s + g′′′(s + τ ),

v(s,τ ) = v0 + γ0s + γ (τ )s + a0
1
2 s2 + g′′(s + τ ) − g′′(τ ),

x(s,τ ) = v0s + 1
2γ0s

2 + 1
2γ (τ )s2 + a0

1
6 s3

+ g′(s + τ ) − g′(τ ) − g′′(τ )s, (27)

in which γ and g are prescribed periodic functions.
We set

g(τ ) = g1 sin(kτ ), γ (τ ) = γ1 sin(kτ + τ1),

with period P = 2π/k. The incoming flux is

J0(τ ) = a0 − γ ′(τ ).

For given values of the constants v0, γ0, a0, g1, k, γ1, and
τ1, the solution is constructed numerically: First, the crossing
time T (τ ) is found by solving Eq. (12) and the potential φ1 =
φ(T (τ ),τ ) is found by numerical computation of the integral
Eq. (15); that is,

φ1(τ ) =
∫ T (τ )

0
(v − ∂τ x)ψ(s ′,τ + T (τ ) − s ′)ds ′

for a discrete set of values of τ . Second, the mean average
incoming current J̄0, the adiabatic average of the maximal
current J̄max, and their difference Jdiff are defined as

J̄0 = P −1
∫ P

0
J0(τ )dτ = a0,

J̄max = P −1
∫ P

0
Jmax(τ )[1 + T ′(τ )]dτ,

Jdiff = J̄0 − J̄max.
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FIG. 3. (Color online) The density ρ at various times for periodic
boundary data for which J̄0 > J̄max. Values of ρ are presented at
21 times starting at t = 0 (bold curve) and at intervals of dt = 0.161.
The highest value of ρ occurs at approximately t = 0.8, the time of
bunching of characteristics in Fig. 4.

in which Jmax(τ ) is defined by Eq. (18) using φ1 = φ1(τ ).
Note that J̄0 is averaged over s = 0 (i.e., x = 0) where
dt = dτ and J̄max is averaged over s = T (τ ) (i.e., x = d)
where dt = [1 + T ′(τ )]dτ . Note that for a periodic flow,
the average current is independent of the spatial position at
which the average is performed. On the other hand, J0 is the
incoming current that is specified at x = 0 and φ1 (the variable
in Jmax) is the potential jump, which we think of as defined at
x = d.

The adiabatic average is the pseudo-steady-state average
that occurs in the asymptotic regime where P � T , so that
average flux J̄max can be achieved (at least in principle) by
slowly varying the boundary conditions. Moreover, Jmax is a
convex function, so that Jmax(v̄0,φ̄1) < J̄max, in which v̄0 and
φ̄1 are the mean averages of v0 and φ1. These are the reasons
that we compare J̄0 to J̄max

Solutions with Jdiff > 0 (i.e., that exceed the Child-
Langmuir limit on average) were found by Monte Carlo
search over the values of the parameters k, γ1, and τ1. Re-
sults are shown below for (v0, a0, γ0, g1,k, γ1, τ1) = (0.5, 1,

− 0.5, 0.1, 1.949, 0.368, 2.268) on a system with thickness
d = 4/3. In unscaled variables, the ratio of the potential
energy difference across the domain (i.e., qeφ

′
1) to the

kinetic energy of incoming particles ( 1
2mev

′2
0 ) is approx-

imately 6.5 corresponding, for example, to 100 eV elec-
trons entering into a 0.65 kV potential jump. The density
ρ and characteristics are presented in Figs. 3 and 4. The
resulting average values are J̄0 = 1 and J̄max = 0.8503, so
that Jdiff = 0.1497 and the average incoming current J̄0

exceeds the adiabatic average of the maximal current J̄max by
about 17%.

Recent work [19] presents evidence that the average flux
cannot exceed Jmax, under additional constraints that v0 = 0
and that φ1 is constant. However, there are experimental and
numerical results showing that short, and even single-electron,
current pulses can exceed the Child-Langmuir limit, and
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FIG. 4. (Color online) Characteristics (i.e., particle paths) for
periodic boundary data for which J̄0 > J̄max. Note that a cusp nearly
forms in the characteristics.

periodic oscillations in the electron density at the cathode are
a signature of a large potential difference across the domain
[20–23]. Both effects may be related to the results found here.

VI. CONCLUSIONS

The unsteady solutions constructed above suggest that the
implicit solution formulation may be useful for exploring
additional properties of the diode equations, such as solutions
that maximize the electric field strength and control methods
to prevent formation of virtual cathodes.
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