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Time-Step Considerations in Particle Simulation
Algorithms for Coulomb Collisions in Plasmas

Bruce I. Cohen, Andris M. Dimits, Alex Friedman, and Russel E. Caflisch

Abstract—The accuracy of first-order Euler and higher-order
time-integration algorithms for grid-based Langevin equations
collision models in a specific relaxation test problem is assessed.
We show that statistical noise errors can overshadow time-step
errors and argue that statistical noise errors can be conflated
with time-step effects. Using a higher-order integration scheme
may not achieve any benefit in accuracy for examples of prac-
tical interest. We also investigate the collisional relaxation of an
initial electron-ion relative drift and the collisional relaxation to a
resistive steady-state in which a quasi-steady current is driven by
a constant applied electric field, as functions of the time step used
to resolve the collision processes using binary and grid-based, test-
particle Langevin equations models. We compare results from two
grid-based Langevin equations collision algorithms to results from
a binary collision algorithm for modeling electron-ion collisions.
Some guidance is provided on how large a time step can be used
compared to the inverse of the characteristic collision frequency
for specific relaxation processes.

Index Terms—Algorithms, collision processes, computer appli-
cations, numerical analysis, particle collisions, plasmas.

I. INTRODUCTION

THERE are two popular types of algorithms for Coulomb
collisions in particle simulations of plasmas using finite-

sized particles and deposition of charge and current densities
onto a grid (particle-in-cell simulation, i.e., PIC simulation).
In the binary algorithm, particles in a subdomain, e.g., a cell,
are grouped into discrete pairs of interacting particles such
that the relative velocity is scattered through an angle whose
statistical variance is dictated by the theory of Coulomb colli-
sions in a plasma in the Fokker–Planck limit [1], [2]. The post-
collision velocities of the interacting pair conserve momentum
and energy relative to the pre-collision velocities. In the second
type of algorithm, the collisions are modeled by defining test
and field particles. The test-particle velocity is subject to drag
and diffusion in three velocity dimensions using Langevin
equations whose drag and diffusion coefficients depend jointly
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on the velocity of the test particle and the moments of the field-
particle velocity distribution deposited on the configuration-
space mesh [3]–[7]. The grid-based Langevin equations model
conserves the particle number trivially and conserves energy
and momentum approximately in a statistical sense after aver-
aging over many collisions and over the velocity distribution
functions, although energy and momentum conservation can
be repaired by scaling and shifting velocities after the Monte
Carlo collisions occur on each time step. The drag and diffusion
coefficients are derived from the classical theory of screened
Coulomb collisions in the Fokker–Planck limit [4], [8]–[10].
It is of practical interest to assess the accuracy of the time
integration of the collisional evolution of the plasma velocity
distribution using these algorithms.

We investigate the accuracy issues for first-order Euler and
higher-order time-integration algorithms for two grid-based
Langevin equations collision models for a specific relaxation
test problem. In an example of practical interest using nu-
merical parameters that are typical for plasma simulations, we
find that statistical noise errors can dominate systematic time-
step errors. We then argue that statistical noise errors can be
conflated with time-step effects. Moreover, we find that using
a higher-order integration scheme may achieve no benefit in
accuracy. We also find that when a higher-order Milstein cor-
rection [11], [12] to the Langevin equations model is included,
there is no significant change in the results of the collisional
relaxation process for the specific example considered. Results
using the binary collision algorithm for the same collisional
relaxation test problem have been reported by Wang et al. [13].
In the Wang et al. study, it was found that the mixing of
statistical errors with time-step effects made it difficult to obtain
unambiguous and clear scalings of the errors with respect to the
time step used. Here, we do not undertake a detailed conver-
gence analysis of the grid-based Langevin-equation collision
algorithm with respect to the time step and the particle number.
Instead, we limit ourselves to the examination of the influence
of changing the time step on the results of simulations using
two variants of the grid-based Langevin equations collision
algorithm for numbers of particles that are typical of those used
in well-resolved plasma physics studies.

We also investigate the collisional relaxation of an initial
electron-ion relative drift and the relaxation to a resistive
steady-state in which a quasi-steady current is driven by a
constant applied electric field, as functions of the time step
used to resolve the collision processes. We show that one of
the two grid-based Langevin equations models investigated has
an unfavorable mass-ratio scaling such that modeling electron-
ion collisions can require a much smaller time step than that
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required using either the binary collision algorithm or a second
Langevin equations algorithm that employs spherical polar
velocity coordinates [6] in the example studied.

This paper is organized as follows. In Section II we pro-
vide brief overviews of the binary and test-particle, Langevin-
equations Coulomb collision algorithms used in particle codes.
We also provide some pertinent discussions of their properties.
In Section III, we present results from simulations using the
test-particle Langevin equations and the grid-based Coulomb
collision algorithms in which we have employed either a first-
order Euler integration, a higher-order predictor-corrector time
integration, or a first-order Euler integration including the
Milstein correction. In Section IV, we show simulation results
using the binary collision algorithm to study the collisional re-
laxation of a relative drift between electron and ion species. We
also present results for the collisional relaxation to a resistive
steady state given a constant electric field using both binary and
test-particle Langevin-equations Coulomb collision algorithms.
A brief summary is presented in Section V. The findings here
are intended to be of practical value to computational plasma
physicists undertaking kinetic simulations in which Coulomb
collisions are included. The findings here also intend to give
insight into the behavior of the collision algorithms consi-
dered here.

II. COLLISION ALGORITHMS IN PARTICLE CODES

The use of grid-based Langevin equations to model Coulomb
collisions is well established [3]–[7], [10]. The algorithms
are based on the classic theory describing screened Coulomb
collisions in the Fokker–Planck limit [8], [9], [14], which
yields the ensemble-averaged drag and diffusion coefficients
〈Δv/Δt〉 and 〈ΔvΔv/Δt〉. The algorithm for a velocity-
dependent Langevin equations collision operator in an isotropic
Maxwellian background plasma can be represented in a con-
venient approximation [7] as follows for a test particle with
velocity v in the local mean drift frame of the background field
particles:

Δvz = FdΔt + g(v)Δt1/2N1

g(v) =

[
AD G

(
v√

2vth,f

)
/v

]1/2

Fd = −(mf/2Tf )AD(1 + mt/mf )G

AD = 8πnfq2
t q2

f ln Λ/m2
t G(u)/u ≈ 1

2
1

u3 + 3
√

π
4

u = vt/
√

2vth,f , vth,f = (Tf/mf )1/2

Δv⊥1,2 = [AD(Φ − G)/v]1/2 Δt1/2N2,3, Φ = erf(u)

N1,2,3 ≡Gaussian random nos.

〈Ni〉 = 0,
〈
N2

i

〉
= 1 (1)

where ln Λ is the Coulomb logarithm, erf is the error function,
and the subscripts t and f are the test and field particles,
respectively. The z-axis is aligned with the velocity of the
test particle before the collision. Equation (1) describes the

velocity increments Δvz and Δv⊥1,2 (in the z-direction and the
two binormal directions) acquired by the test particles due to
collisions with the field particles in the drift frame of the field
particles. The z-axis in (1) coincides with the velocity vector
of the test particle in the local mean drift frame of the field
particles before the test particle is collisionally scattered. The
scattered velocity vector is transformed back to the laboratory
Cartesian frame with the rotation matrix given in [1] or [6], and
the local mean drift of the field particles is added. Equation (1)
is a discretized solution of the Fokker–Planck equation for the
probability density of velocities f(v)

∂

∂t
f(v) = − ∂

∂v
· [Fd(v)f(v)] +

1
2

∂2

∂v∂v
· [D(v)f(v)]

Fd = 〈Δv/Δt〉, D = 〈ΔvΔv/Δt〉. (2)

In (1), we have corrected a minor typographical error that
appeared in the approximation to G, which was introduced by
Sherlock in (16)–(18) in his publication. [7] In the general cir-
cumstance in which the background field particle’s velocity dis-
tribution function is not an isotropic Maxwellian, Rosenbluth
potentials must be constructed; consequently, the collision op-
erator acquires more structure. [4], [14] In the simulations, the
field particles are composed of all of the particles of a specific
species, with the density, mean drift, and temperature moments
of the particle velocity distribution deposited on the configura-
tion space grid using an interpolation scheme (linear interpo-
lation in our simulations). The collision operator (1) conserves
total momentum and energy approximately if we average over
all of the particles and over an ideal distribution of random
numbers for all species present. In (19) of Manheimer et al.,
[4] a finite Δt correction to the drag Fd is introduced to improve
energy conservation. Energy and momentum conservation can
be repaired by scaling and shifting velocities after the Monte
Carlo collisions occur on each time step [4], [6].

Although no magnetic field effects are included in the for-
mulation of the Fokker–Planck collisions presented here, the
collision formulation is applicable to magnetized plasmas in the
following sense. In the Fokker–Planck limit [8], [9], [14], many
infinitesimal small-angle collisions are assumed to occur with
individual collision events whose duration τ is arbitrarily short
so that the product of the acceleration due to electromagnetic
Newton–Lorentz forces and the time duration τ is arbitrarily
small compared to particle velocity. In this limit, the collision is
unaffected by any electromagnetic fields present, although the
overall particle trajectory is influenced by the electromagnetic
fields. From a computational perspective, this invites the use
of operator splitting to accommodate both the collisions and
the Newton–Lorentz forces due to electromagnetic fields. The
result of the collision should be insensitive to when during the
time step the collision event occurs.

A variant of the grid-based Langevin-equations Coulomb
collision operator has been introduced by Lemons et al. [6].
The methodology in [6] scatters the velocity vector of the
test particle using spherical polar coordinates (v, θ, φ). The
magnitude of the velocity is subject to both drag and diffusion,
and the polar angle is subject to diffusion. There is an advantage
in using spherical coordinates for scattering processes that are
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dominantly pitch-angle scattering at nearly constant energy of
the test particle, e.g., scattering of a light particle by a very
heavy particle. We will illustrate this in the following discussion
and example calculations. The Langevin equations in [6] are
repeated here for convenience

Δv = FvΔt + g(v)Δt1/2N1,

g(v) =

[
ADG

(
v√

2vth,f

)
/v

]1/2

Fv = −(AD/2v2)

×
[{

(1 + mt/mf )v2/v2
th,f + 1

}
G − Φ

]
,

AD = 8πnfq2
t q2

f ln Λ/m2
t

G(u)/u ≈1
2

1

u3 + 3
√

π
4

, Φ = erf(u),

u = vt/
√

2vth,f , vth,f = (Tf/mf )1/2

Δθ =
[
AD(Φ − G)/v3

]1/2 Δt1/2N2

Δφ = 2πU [0, 1]

N1,2 ≡Gaussian random nos.,

< Ni > = 0, < N2
i > = 1,

U ≡ uniform random no., 0 ≤ U ≤ 1. (3)

At low test-particle energies, Fv and Δθ diverge in (3). To
resolve the divergence, Lemons et al. [6] retain the dominant
terms in the expression for the change in the speed; thus,

they derive v(t + Δt) =
√

v(t)2 + (4/3
√

2π)ADΔt/vth,f for

v2 ≤ (4/3
√

2π)ADΔt/vth,f . However, Δθ2 ∝ 1/v2, Δv2
⊥ ∝

v2Δθ2 is not divergent.
An algorithm for binary Coulomb collisions has been in-

troduced in the classic work of Takiziuka and Abe [1]. In
the binary algorithm, equally weighted particles in a cell are
paired and then the relative velocity vector of the two particles
is scattered through a random scattering angle with variance
dictated by the theory of screened Coulomb collisions in a
plasma [8], [9]. After the relative velocity vector is scattered,
the two scattered particle velocities are reconstructed such that
particle momentum and energy are conserved algebraically.
Particle number is conserved identically. Nanbu [2] extended
the algorithm of Takizuka and Abe [1] to allow for a larger time
step by aggregating multiple collisions. In Takizuka and Abe
[1], the relative velocity of a pair is scattered through an angle
Θ with variance related to

〈δ2〉 = 2πq2
1q2

2n(1,2)< ln ΛΔt/m2
12u

3

u = |v1 − v2|, m12 = m1m2/(m1 + m2), δ ≡ tan
Θ
2

(4)

and through a random angle φ about the axis of the relative
velocity before the scattering event. The post-collision velocity
vectors of the scattered pair are constructed from the scattered
relative velocity vector. There is no separation of test and field

particles in the binary scheme, and there is no assumption that
the velocity distribution is isotropic and Maxwellian. However,
there is an implicit assumption that the value of ln Λ derived for
an abitrary velocity distribution (computed locally in a spatial
cell) deviates insignificantly from the value of ln Λ derived for
a Maxwellian. This method conserves particle number, energy,
and momentum.

Both the grid-based Langevin equations and binary collision
algorithms generalize to relativistic collisions. Both algorithms
are formally accurate through O(Δt1/2) and both produce drag
〈Δv/Δt〉 and diffusion coefficients 〈ΔvΔv/Δt〉 that agree
with the Spitzer-Trubnikov theory through O(Δt) assuming
perfect statistics.

The accuracy of both algorithms requires that the velocity
change and the angle scattered by a test particle in one time step
must be small. In the binary collision algorithm, we can easily
deduce the scaling of the variance with respect to the charge
state and mass for electon-electron, electron-ion, and ion-ion
scattering. We note the reduced mass in (4), mee ∼ mei/2 =
mie/2 � mii, so that for low charge-state ions and Ti ∼ Te,
the time step for accurately resolving the electron-electron
binary collisions is comparable to that required for resolving
electron-ion collisions. Further, ion-ion collisions can be re-
solved with a substantially larger time step. However, the grid-
based Langevin equations algorithms have different numerical
characteristics. From (1), one can show that the magnitudes of
the drag and diffusion coefficients are monotonically increasing
as the test-particle speed v goes to zero. In the low-velocity
limit for test partcles, one can show that the perpendicular
and parallel velocity diffusion coefficients for scattering a test
particle on a field particle in (1) have the following scalings:

D⊥,‖,ei/D∗
⊥,‖,ee ∼ Zi(Zini/ne)

× (Te/Ti)1/2(mi/me)1/2 ∝ (mi/me)1/2

D⊥,‖,ii/D∗
⊥,‖,ee ∼ Z3

i (Zini/ne)

× (Te/Ti)1/2(me/mi)3/2 ∝ (me/mi)3/2

D⊥,‖,ie/D∗
⊥,‖,ee ∼ Zi(Zini/ne)

× (me/mi)2 ∝ (me/mi)2 (5)

where the ion charge is Zie, D⊥kl = 〈Δv⊥Δv⊥/Δt〉 and
D‖kl = 〈Δv‖Δv‖/Δt〉 for species k scattering on species l. For
Ti ∼ Te, however, a thermal electron has a much larger velocity
than a thermal ion; thus, the drag and diffusion coefficients for
electron-ion scattering should be evaluated for vt � vth,f . In
the large argument limit of (1)

D‖,tf ∝
(
nfq2

t q2
f/m2

t v
3
)
v2
th,f

D⊥,tf ∝
(
nfq2

t q2
f/m2

t vv2
th,f

)
v2
th,f

Fd ∝ −
(
nfq2

t q2
f/m2

t vth,fv2
)
vth,f . (6)

The drag and diffusion coefficients go to zero at different rates
for large test-particle velocities, and D⊥,tf and the drag Fd

have no dependence on the mass of the field particles. How-
ever, D‖,tf ∝ Tf/mf , and thus the parallel velocity diffusion
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coefficient for electron-ion collisions is smaller than that for
electron-electron collisions by Zime/mi for Te ∼ Ti and de-
creases as 1/v3. We believe that the unfavorable mass-ratio
scaling for the ratio of the electron-ion collisional diffusion to
the electron-electron collisional diffusion in (5), Zi(mi/me)1/2

at low velocities leads to the required use of a significantly
smaller time step to accurately resolve the electron-ion colli-
sions for the grid-based Langevin equations collision algorithm
in (1), which is borne out in our simulation experience (illus-
trated in Section IV).

In the Lemons et al. algorithm for large test-particle
velocities,

Dv,tf ∝
(
nfq2

t q2
f/m2

t v
3
)
v2
th,f

D⊥,tf ∝
(
nfq2

t q2
f/m2

t vv2
th,f

)
v2
th,f

Fv ∝ − (mt/mf )
(
nfq2

t q2
f/m2

t vth,fv2
)
vth,f . (7)

Compared to the algorithm based on (1) in the large velocity
limit, the major difference is that the drag coefficient in the
Lemons et al., algorithm has Fv/Fd ∝ (mt/mf ); thus, the
drag for electron-ion collisions is much smaller compared to
the electron-electron collisions in the Lemons et al. algorithm.
Furthermore, in the Lemons et al. algorithm, the scattering of
the low-velocity test particles, where the drag dominates the
stochastic terms, is performed to remove divergences. [8] In
the limit that me/mi → 0, the scattering of electrons on ions
should only produce angle scattering of the electron without
changing the electron test-particle energy. The Lemons et al. [6]
Langevin equations algorithm in (3) for electron collisions on
ions is dominated by angle scattering. Moreover, the diffusion
Dv,ei in the magnitude of the electron test-particle velocity
and the drag Fv,ei are relatively weak. The slowing of the
electrons on the ions comes from the angle scattering. Thus, we
expect that (3) should be better able to accommodate electron-
ion scattering; and it should allow larger time steps than the
algorithm based on (1). An example of simulating electron-ion
collisions is presented in Section IV.

When the collisional scattering of the velocity vector in one
time step is too large using the grid-based Langevin equations
algorithm based on (1), relaxation rates and energy and momen-
tum conservation become inaccurate. If only the scattering an-
gle Δθ becomes too large in (3) when the time step is too large,
the angular diffusion rate becomes inaccurate, but the change in
the test-particle energy may still be small. In contrast, when the
time step becomes too large in the binary collision algorithm,
conservation of energy and momentum is still preserved, and
although relaxation rates may not be reproduced accurately, the
binary collision algorithm fails gracefully.

In the work of Wang et al., [13] the convergence properties of
the Takizuka and Abe and the Nanbu binary collision operators
with respect to particle number and time step were studied. It
was found that the Nanbu collision algorithm achieved a factor-
of-two improvement in relative accuracy over the Takizuka and
Abe basic algorithm for the same time step. The underlying
properties of the Nanbu algorithm were studied analytically in
the work of Dimits et al. [15].

III. CORRECTIONS TO FIRST-ORDER EULER INTEGRATION

OF THE GRID-BASED LANGEVIN EQUATIONS

COLLISION OPERATOR

In this section, we report the results of the studies of the grid-
based Langevin equations collision operator (1), attempting to
extend it to higher-order accuracy than first-order Euler. We
explore several time-discretization schemes for the grid-based
Langevin equations collision operator, which are represented
schematically in the following finite-difference Langevin equa-
tions fashioned after (1). In the cases considered in this section,
only ion-ion collisions are considered.
First-order Euler

yn+1 = yn + Δt
dy

dt
(yn) + N1Δt1/2

√
D(yn). (8)

Predictor-corrector (modified Euler)

predictor : y′
n+1 = yn + Δt

dy

dt
(yn) + N1Δt1/2

√
D(yn)

corrector : yn+1 = yn + Δt
dy

dt

((
y′

n+1 + yn

)
/2

)
+ N2Δt1/2

√
D

((
y′

n+1 + yn

)
/2

)
.

(9)

Predictor-corrector (two-step scheme)

predictor : yn+1/2 = yn +
1
2
Δt

dy

dt
(yn)

+ N1

(
1
2
Δt

)1/2 √
D(yn)

corrector : yn+1 = yn + Δt
dy

dt
(yn+1/2)

+ N2Δt1/2
√

D(yn+1/2). (10)

Partial corrector

predictor : y′
n+1 =yn+Δt

dy

dt

((
y′

n+y′
n−1

)
/2

)
+N1Δt1/2

√
D

((
y′

n+y′
n−1

)
/2

)
partial corrector : yn+1 =yn+Δt

dy

dt

((
y′

n+1+y′
n

)
/2

)
+N2Δt1/2

√
D

((
y′

n+1+y′
n

)
/2

)
(11)

subject to the constraint relations that the ensemble averages
〈(yn+1 − yn)/Δt〉 = dy/dt|yn

and 〈(yn+1 − yn)2/Δt〉 =
D(yn) (to lowest order in powers of Δt) are the drag and
diffusion coefficients, respectively, for the vector components
of the test-particle velocities given in (1). The partially
corrected Euler algorithm [16] is a special case in the family
of multistep Runge–Kutta methods and is closely related to the
two-stage explicit Adams method. It has advantages in that it
is easy to initialize and it can be represented with a reduced
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Fig. 1. BZOHAR simulations of like-species Coulomb collisions using the
grid-based Langevin equations algorithm (1) with first-order Euler time inte-
gration to study the relaxation of a weak temperature anisotropy: (a) simulated
temperature anisotropy versus time and (b) the difference of the simulated
temperature anisotropy from theory versus time for various values of the time
step (color online).

Fig. 2. BZOHAR simulations of like-species Coulomb collisions using the
grid-based Langevin equations algorithm (1) with partial corrector time inte-
gration to study the relaxation of a weak temperature anisotropy: (a) simulated
temperature anisotropy versus time and (b) the difference of the simulated
temperature anisotropy from theory versus time for various values of the time
step (color online).

Fig. 3. BZOHAR simulations of like-species Coulomb collisions using the
grid-based Langevin equations algorithm (1) with modified Euler predictor-
corrector time integration to study the relaxation of a weak temperature
anisotropy: (a) simulated temperature anisotropy versus time and (b) the
difference of the simulated temperature anisotropy from theory versus time for
various values of the time step (color online).

number of function evaluations: the corrector-step function
evaluations can be saved for reuse in the function evaluations
in the next predictor step. The method may be a natural
“upgrade” for some codes using predictor-corrector methods.
It is an upgrade in that it may be possible to nearly double the
efficiency of the calculation even with little rearrangement of
the code.

Figs. 1–3 show the results of a series of BZOHAR sim-
ulations [5] using the grid-based Langevin equations ion-ion

collision operator to study the collisional relaxation of a weak
ion temperature anisotropy (Ty = 0.95Tx, Tx = Tz) in which
we vary the product of the characteristic ion-ion collision
frequency ν∗ and the time step Δt for 1 000 particles per cell
and Np = 2 × 106 particles in one spatial dimension, where
ν∗ = (8/3

√
π)ν0, ν0 =

√
2πq4n ln Λ/

√
mT 3/2 and ν0 is the

Braginskii [20] characteristic collision frequency for like-
species collisions. In all of the BZOHAR simulations reported
here, the electrons are modeled as a fluid with a Boltzmann
response: the ions are particles; there are self-consistent electric
fields at thermal levels and particle advection; and the grid
cell size is chosen equal to the electron Debye length. The
value of ln Λ was scaled so that the value of ν∗Δt can be
set artificially. The exponential relaxation rate for a weak
temperature anisotropy is given by Trubnikov [9], νrelax =
(8/5

√
2π)ν0. Fig. 1 shows results for the relaxation of a

temperature anisotropy using the first-order Euler integration
scheme, (4). Figs. 2 and 3 show the corresponding results for
the first predictor-corrector algorithm (modified Euler) and the
partial corrector and (9) and (11), respectively. In each of these
figures, we plot the relaxation of the temperature anisotropy
normalized to the initial anisotropy as a function of time
and, separately, the difference of the normalized temperature
anisotropy with respect to the asymptotic theory exp(−νrelaxt)
for several different values of ν∗Δt. The number of particles
per cell and the total number of particles used here are typical
of those commonly used in well-resolved particle simulations
of many plasma phenomena. In these simulations, we observe
the weakly anisotropic Maxwellian ion velocity distributions
relax by transferring energy to the colder velocity dimension
from the hotter dimensions. The lower energy ions being more
collisional tend to relax their temperature anisotropy faster than
the more energetic ions.

The object of the scan with respect to ν∗Δt is to assess
any trend in the convergence of the simulation results to the
asymptotic theory. For completeness, we list several of the
sources that might contribute to the deviations of the simulation
results from the theory: i) the theory is asymptotic in the
small parameter (Ty − Tx)/Tx, but a finite value of the initial
anisotropy is used; ii) the drag and diffusion coefficients used
here are calculated from an assumed isotropic Maxwellian
velocity distribution, which is only an approximation to the
actual weakly anisotropic distribution of test-particle velocities;
iii) errors are associated with the finite value of ν∗Δt used
in the discrete time integration; iv) a finite number of test-
particle velocities is used to resolve the velocity distribution
(and the associated random numbers used in initializing the
velocity distribution of the particles); and v) there is a deviation
from an ideal distribution of the finite set of random numbers
associated with the finite number of collisions during any
time interval. There are systematic errors associated with i),
ii), and iii), and random errors associated with iv) and v).
Moreover, the random errors in iv) and v) are independent
of one another. However, the error analysis has an additional
complication. We note that in a fixed physical time interval τ ,
the number of collision events is determined by τ/Δt. Hence,
as we increase ν∗Δt, the number of collision events and the
number of random numbers Nr associated with the collisions



COHEN et al.: PARTICLE SIMULATION ALGORITHMS FOR COULOMB COLLISIONS 2399

in a fixed physical time interval both decrease proportional
to τ/Δt. For finite Nr, the variance of the distribution of
random numbers deviates from ideality with a standard error
that scales with 1/(Nr)1/2. Thus, there is a random error in
the time-averaged diffusion rate that is expected to scale with
Δt1/2. Hence, these statistical errors and the effects of the
discrete time integration are conflated. The random errors in the
time-averaged diffusion rate contribute to the time histories of
collisional relaxation events. The purely systematic error in the
discrete time integration would be expected to scale as a power
of Δt that is higher than first order in Δt in keeping with the
behavior of a first-order Euler (or higher-order) finite-difference
integration of a nonstochastic differential equation. With these
scalings, the statistical noise due to iv) and v) may dominate
the systematic error in the time integration iii) for any value of
ν∗Δt in a particular simulation diagnostic.

Self-consistent electric fields also contribute to the total
effective collisionality in these simulations due to the thermal
noise and discrete particle effects [17]–[19]. An estimate for the
effective collisionality due to noise fields has been given by Vu,
DuBois, and Bezzerides [18], and this estimate has been applied
in the work of Cohen, Vu, and Williams [19]. In the BZOHAR
simulations for ion-ion collisions in which electric fields due to
thermal noise are present, the arguments in [18] and [19] lead
to an estimate for the effective ion-ion collision frequency νeff

ii

due to electric field noise νeff
ii /ωpi ∼ (1/2niλi)(v/vi), where

ωpi is the ion plasma frequency, vi is the ion thermal velocity,
v is an ion velocity, ni is the number of particle ions divided
by the length of the system, and λi is the ion Debye length. We
will evaluate the effective ion collision frequency due to noise
for a thermal ion v = vi.

For the parameters in the simulations shown in Figs. 1–3, the
effective collision frequency due to thermal noise in the electric
fields is estimated to be νeff

ii Δt ∼ 2 × 10−4, as compared to the
range of collision frequencies 3.5 × 10−4 ≤ ν∗Δt ≤ 9 × 10−2

used in the simulations. Thus, only the simulations for the low-
est values of ν∗Δt are affected by the additive contributions of
the effective collisions due to thermal electric field fluctuations.

The simulation results in Figs. 1–3 do not show any reduction
in error by using the higher-order-accurate partial corrector
or predictor-corrector (modified Euler) algorithms. If there
are only systematic discrete-time-integration errors associated
with ν∗Δt, then one might expect a scaling of the systematic
time-step errors proportional to (ν∗Δt)r, where r > 1 for the
first-order Euler algorithm and proportional to a higher power
of ν∗Δt for the higher order partial-corrector and predictor-
corrector algorithms based on the behavior of integrating non-
stochastic differential equations. However, we observe no linear
or higher order scaling of the errors with respect to ν∗Δt.
The superposition of random and systematic discrete-time-
integration errors in the stochastic diffusion terms obscures
deducing any clean error scaling with respect to the time
step. The comparisons of the simulation results with theory do
show a degradation of the agreement when the value of ν∗Δt
becomes sufficiently large.

A lack of a clear scaling with time step is also observed
for the binary collision algorithm reported in the work of
Wang et al. [13]. In [13], the binary collison models of [1] and [2]

Fig. 4. Particle simulations suppressing the electric field and particle advec-
tion of like-species Coulomb collisions using the grid-based Langevin equa-
tions algorithms with first-order Euler time integration to study the relaxation of
a weak temperature anisotropy: simulated temperature anisotropy versus time
for various values of the time step and algorithms based on (a) (1) and (b) (3)
(color online).

are employed, and convergence with respect to particle number
and time step are investigated with the additional feature that
ensemble averages are computed over many realizations of the
simulations to reduce the statistical variance. For fixed time
step, the simulations in [13] show a convergence with respect to
increasing the number of particles or the number of realizations,
i.e., the variance decreases as 1/N , where N is the product
of the number of particles and realizations. The scaling of the
errors with respect to Δt is less clear, but some cases show a
rough error scaling approximately as Δt1/2 in Fig. 5 of [13].

In Fig. 4, we show results for a series of simulations using
the first-order Euler grid-based Langevin equations collision
operators, combining (1) and (8) in Fig. 4(a) and using the
Lemons et al. algorithm (3) and (8) in Fig. 4(b), with electric
fields and particle advection suppressed. The initial condition
here corresponds to a weak temperature anisotropy (Ty =
0.95T, Tx = Tz = 1.05T ). In the series of simulations, we vary
the product of the characteristic collision frequency ν∗ and the
time step Δt for 600 particles per cell and Np = 6 × 104 in one
spatial dimension. A single species scatters on itself to relax
its temperature anisotropy here. We varied ν∗Δt over a range
of values ν∗Δt ≤ 3 × 10−3 in Fig. 4(a) and ν∗Δt ≤ 0.46 in
Fig. 4(b). We observe some random scatter in the relaxation
of the temperature anisotropy and no systematic dependence
on ν∗Δt over the range of ν∗Δt values used in both Fig. 4(a)
and (b). The relaxation of the temperature anisotropy depends
primarily on the angle scattering of the test-particle velocity
vector, for which both of the collision algorithms in (1) and
(3) for single species collisions perform relatively well at
significant values of the ν∗Δt, i.e., ν∗Δt < 0.1 in the examples
shown here (Figs. 1–6).

In Fig. 5, we compare the results of simulation scans using
the grid-based Langevin equations collision algorithm (1) and
the first-order Euler and the second predictor-corrector (two
step) integration schemes, (8) and (10), respectively, for like-
species collisional relaxation of a weak temperature anisotropy
(Ty = 0.95Tx, Tx = Tz) and extending to larger values of
ν∗Δt than those in Figs. 1–3. In these simulations, there are
333 particles per cell and Np = 666 000 in one spatial di-
mension, and ν∗Δt is varied in the series. The influence of
thermal electric field fluctuations on the collisionality here is
small at νeff

ii Δt ∼ 3.5 × 10−4 because this is small compared



2400 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 38, NO. 9, SEPTEMBER 2010

Fig. 5. BZOHAR simulations of like-species Coulomb collisions using the
grid-based Langevin equations algorithm (1) with first-order Euler time integra-
tion and two-step predictor-corrector time integration to study the relaxation of
a weak temperature anisotropy: simulated temperature anisotropy versus time
for various values of the time step (linear and log-linear plots) (color online).

Fig. 6. BZOHAR simulations of like-species Coulomb collisions using the
grid-based Langevin equations algorithm (1) with first-order Euler time inte-
gration to study the relaxation of a weak temperature anisotropy: simulated
temperature anisotropy versus time for two values of the time step Δt and
particle number Np such that Np/Δt is held fixed (color online).

to the values of ν∗Δt considered. As the collisional time step
is increased in the series shown in Fig. 5, the collision operator
is applied with a discrete number of simulation time steps for
the particle advection, electric field solve, and diagnostics in
between collision operations, which accounts for the stair steps
in the data shown in Figs. 4–10. Electric fields are calculated
self-consistently at thermal levels, and particles are advected.
The results from the two integration algorithms are similarly
accurate, and the accuracy of the results degrades for ν∗Δt >
0.2 For ν∗Δt < 0.1, the relaxation agrees well with theory, and
there is no obvious scaling of the results with ν∗Δt. We note
that in the convergence tests of the binary collision algorithm
reported by Wang et al. [13], which address the same test
problem, the relaxation of a weak temperature anisotropy, there
is no clear scaling of errors with time step in some of the
cases; and there is one example with scaling approximately

Fig. 7. BZOHAR simulations of like-species Coulomb collisions using the
grid-based Langevin equations algorithm (1) with first-order Euler time inte-
gration and Milstein correction to study the relaxation of a weak temperature
anisotropy: simulated temperature anisotropy versus time for four values of the
time step Δt and particle number Np (color online).

Fig. 8. Simulations of the relaxation of a relative electron-ion drift due to
electron and ion collisions using the binary collision operator 〈vx(t)〉/〈vx(0)〉
versus time for various values of the time step (color online).

proportional to Δt1/2. There is no evidence of an error scaling
that is proportional to Δt or higher order in Δt in the results for
the Langevin-equations collision algorithms reported here and
for the binary collision algorithm reported in [13].

We believe that the statistical errors dominate over the purely
systematic errors associated with the discrete time integration
of the collision operator for our parameters. If the finite number
of collisions is a significant source of error in the collisional
relaxation of the temperature anisotropy, then two simulations
with the same number of total collisions proportional to the
product of the total number of particles Np and the number of
collisions each particle experiences, τ/Δt might yield similar
error magnitudes. We illustrate this in Fig. 6, which shows the
results of a simulation with Np = 0.33 × 106 and ν∗Δt = 0.07
compared to a simulation with Np = 0.66 × 106 and ν∗Δt =
0.14 The influence of thermal electric field fluctuations on the
collisionality here is again small at νeff

ii Δt ≤ 3.5 × 10−4 be-
cause this is small compared to the values of ν∗Δt considered.
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Fig. 9. Simulations of the relaxation of the plasma current Jz to a resistive
steady state in the presence of a weak, time-independent, and uniform electric
field Ez with binary electron and ion collisions ηJz/Ez versus time for various
values of the time step (color online).

The simulations use the first-order Euler grid-based Langevin
equations collision algorithm (1) in one spatial dimension with
self-consistent electric fields at thermal levels and including
particle advection. Both simulations yield relatively good re-
sults as compared to the asymptotic theory, and the results
exhibit similar error magnitudes.

Milstein [11], [12] has derived a subtle discrete time-step
correction in the time integration of the drag-diffusion sto-
chastic differential equations. Consider the first-order Euler
representation of a stochastic differential equation

yn+1 = yn + a(yn)Δt + b(yn)ΔW

〈ΔW 〉 = 0, 〈ΔW 2〉 = Δt (12)

where a represents the drag coefficient, b is related to the square
root of the diffusion coefficient, and ΔW is the normalized
diffusive step size. The drag term on the right side is O(Δt) and
the diffusion term is O(Δt1/2). Given that b is a function of the
dependent variable y, which is evolving as a result of infinitesi-
mal drag-diffusion incremental changes, Milstein observed that
by iterating the Taylor-series expansion of the trajectory in the
diffusive term, there is a correction to (12) at the same order as
the drag term b(yn + O(Δt1/2))ΔW = b(yn)ΔW + O(Δt).
Generally, the stochastic kicks are intended to accumulate as
a sum of infinitesimal kicks

Δystoch. =

t+Δt∫
t

dy=

t+Δt∫
t

b(y)dΔW

= b(yn)

t+Δt∫
t

dΔW +
db

dy

∣∣∣∣
yn

t+Δt∫
t

(y−yn)dΔW +· · ·

≈ b(yn)ΔW +b
db

dy

∣∣∣∣
yn

t+Δt∫
t

ΔWdΔW +· · ·

≈ b(yn)ΔW +b
db

dy

∣∣∣∣
yn

1
2
(ΔW 2−Δt)+· · · (13)

where we use yn+1 − yn = bΔW + higher order terms in Δt
and iterate the Taylor-series expansion. The expression

t+Δt∫
t

ΔWdΔW ≈ 1
2
(ΔW 2 − Δt) (14)

derives from the use of Ito calculus [12] and follows from

t∫
0

WdW =
n∑

j=1

Wtj
(Wtj+1 − Wtj

)

=
1
2
W 2

t − 1
2

n→∞∑
j=1

(Wtj+1 − Wtj
)2 =

1
2

(
W 2

t − t
)
.

(15)

Using (9), the drag-diffusion equation with Milstein correction
becomes

yn+1 = yn + a(yn)Δt + b(yn)ΔW

+
1
2

b
db

dy

∣∣∣∣
yn

(ΔW 2 − Δt). (16)

The lowest-order Langevin equations (1) with Milstein cor-
rection at next order in (νΔt)1/2 in the diffusion term for vz are
then given by

vt+Δt
z = vt

z + FdΔt + gΔt1/2N1 +
1
2
g
dg

dv
Δt

(
N2

4 − 1
)

vt+Δt
⊥1,2 = Δv⊥1,2 (17)

where Δv⊥1,2 are just the diffusion terms from (1). The
Milstein corrections to Δv⊥ at O(Δt) enter at higher order in
changing the particle energy

vt+Δt =
[(

vt
z + Δvz

)2 + Δv2
⊥1 + Δv2

⊥2

]1/2

(18)

and are omitted. It is important to note that 〈ΔW 2 −
Δt〉 = 〈N2

4 − 1〉Δt = 0 so that the ensemble average of
〈Δv/Δt〉 recovers the same Fokker–Planck drag coefficient
and 〈ΔvΔv/Δt〉 recovers the same diffusion tensor based on
either (17) or (1), assuming that the random kicks are ide-
ally distributed with zero mean and appropriately constrained
variance.

In Fig. 7, we show the results of a series of simulations
varying ν∗Δt over two orders of magnitude and comparing the
results of the first-order Euler integration of (1) to the solution
of the difference equations, including the Milstein correction in
(17) for the relaxation of a small temperature anisotropy, as in
Figs. 1–3. The influence of thermal electric field fluctuations
on the collisionality in this series of simulations is mostly
negligible, except at the smallest value of ν∗Δt used: νeff

ii Δt ∼
2 × 10−4 < ν∗Δt. The Milstein corrections are nonzero, but
are so small that the results almost overlay one another in the
plots. The smallness of the Milstein corrections for Coulomb
collisions in this example derives partly from the smallness
of dg/dv over most of velocity space, except for test-particle
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Fig. 10. Simulations of the relaxation of the plasma current Jz to a resistive quasi-steady state in the presence of a weak, time-independent, and uniform electric
field Ez with grid-based Langevin equations for electron and ion collisions: ηJz/Ez versus time for various values of the time step and algorithms based on
(a) (1), (b) (3), and (c) (3), with modifications for either energy and momentum conservation or electron-ion pitch-angle collisions or increased number of particles.
(See text for definitions of the color traces; color online.)

velocities that are comparable to the thermal speed of the field
particles. This significantly limits the influence of the Milstein
correction on the calculation of kinetic energy moments of the
distribution function which sample all of the velocity space.
Similarly, small Milstein corrections have been reported by
Lemons et al. [6] in their simulations of Coulomb collisions.

The derivation of the Milstein correction illustrates the Δt
accuracy of the collision model based on the Langevin equa-
tions. The Langevin equation, e.g., (8) or (12), is a stochastic
differential equation whose next order in powers of Δt1/2

correction is proportional to Δt(N2
4 − 1) shown in (17), where

N4 is a random number sampled from an ideal Gaussian
distribution with zero mean and a variance equal to unity. Of
course, any finite sample of random numbers has a sample
mean and sample variance that differ in general from the mean
and variance of the parent distribution. Without the Milstein
correction, the stochastic differential equation is accurate
through O(Δt1/2). Consider the diffusion term in (8) contain-
ing Δt1/2N1. N1 is also a random number sampled from a finite
set of Nr random numbers that belong to a parent distribution
that is Gaussian. Because the variance of {N1} differs from
unity in general, the time-averaged numerical diffusion rate
acquires a random error and is not exactly consistent with
the desired diffusion coefficient. Statistical theory asserts that
the variance of the collisional velocity changes proportional to
Δt1/2N1 sampled over a time interval (and hence the time-
averaged numerical diffusion coefficient) will have a relative
standard error whose size scales as 1/N

1/2
r . With one collision

per particle per time step, the number of collision events
in a physical time interval τ will be proportional to τ/Δt;
hence, the relative random error in the numerical diffusion will
scale as Δt1/2 over a physical time interval. Thus, there is
no clean separation between the purely systematic Δt errors
in the integration of the Langevin equations and the random
errors associated with the collisions. These random errors affect
the time histories of the collisional relaxation processes. In
contrast, the lowest-order Euler integration of a nonstochastic
differential equation is accurate through O(Δt), with errors at
O(Δt2). The arguments presented here provide insight into the
findings in the simulations that the random errors are dominant.

IV. PARTICLE SIMULATION OF

ELECTRON-ION COLLISIONS

Electron-ion collision processes must be accurately resolved
in kinetic simulations to reproduce faithfully the classical
plasma resistivity. Classical resistivity is an important ingredi-
ent in the quasi-neutral response of a high-density collisional
plasma to injected beams and driving electric fields. What
are the requirements on time step for resolving electron-ion
collisions in a particle simulation? We have studied (1) the
relaxation of a relative drift between electrons and ions using
binary collisions and (2) the approach to a steady-state resistive
response to a weak driving electric field using both the binary
collision algorithm and the grid-based Langevin equations col-
lision algorithms.

For a drifting Maxwellian electron velocity distribution, the
initial slowing-down rate for electrons on ions with Ti �
(mi/me)Te is given by [1]

νs = μ(ε/Te0)(Te0/ε)3/2ν0

ν0 = 4πne4 ln Λ/2
√

2m1/2
e T 3/2

e , for Z = 1 and Te = Ti

μ = (2/π1/2)

x∫
0

e−ξξ1/2dξ = erf(x) − (2/π1/2)xe−x

x = (ε/Te0)1/2 (19)

where ε = mev
2
d/2 is the kinetic energy associated with the ini-

tial electron drift and μ = 0.428 for x = 1. The slowing down
of electrons is studied in a series of initial-value simulations
using the binary collision algorithm varying ν0Δt with initial
conditions ε0 = mev

2
d0/2 = Te0 = Ti0. Good results for the

initial relaxation rate are obtained for ν0Δt < 0.1 (Fig. 8). In
these simulations, electron-electron, electron-ion, and ion-ion
collisions were simulated in a 1-D periodic domain with the
electric field suppressed and with mi/me = 1836 and Zi = 1.
In [2], the analysis of the slowing down of a drifting electron
Maxwellian in the presence of only electron-ion collisions is ex-
tended to finite time durations by invoking energy conservation
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for the electrons (valid for mi/me � 1) so that ε + 3Te/2 =
const. for all time, replacing the relaxation rate with the time-
dependent expression νs = μ(ε/Te0)(Te0/ε)3/2ν0 and inte-
grating the relaxation equation. This allows the instantaneous
exponential relaxation rate to evolve for finite time and gives
the theoretical curve shown in Fig. 8 a decreasing slope. There
is a second mechanism that can contribute to a reduction in
the exponential relaxation rate for finite time. In the small-
mass-ratio limit, the slowing down of a drifting Maxwellian
test-particle population can be evaluated using the analytical
solution for the evolution of a distribution function under
Coulomb-Lorentz collisions given in [9]. The analysis shows
that there is a decrease in the exponential relaxation rate as
a function of time, which derives from the more energetic
electrons taking a longer time to collisionally relax than the
less energetic electrons. This then produces a deviation of
the electron velocity distribution from a Maxwellian. Such a
calculation was given for temperature-anisotropy relaxation in
[15]. The decrease in the slowing-down rate after ν0t ≈ 0.1 in
the smallest time-step case is qualitatively consistent with the
analytically determined behavior for the test-electron slowing-
down problem.

The approach to a resistive quasi-steady state was stud-
ied in a series of simulations with the binary and grid-
based Langevin equations collisions algorithms to compare
their performance. For a small constant applied small elec-
tric field, Ez = 0.6 V/cm, (e/me)EzΔt2/Δx = 7 × 10−7 and
(e/me)EzΔt/〈v2

z0〉1/2 = 4 × 10−5, with mi/me = 1836, bi-
nary collisions, Te = Ti, and 5 × 104 particles of each species,
we observe in Fig. 9 that the plasma acquires a quasi-steady cur-
rent in a time ∼5ν−1

0 , which satisfies the resistive relation [20]

Ez = η‖Jz, η‖ = 0.51
me

e

1
neeτe

, 1/τe = (4/3
√

π)νei

(20)

where νei =
√

2πZ2
i e4ni ln Λ/

√
meT

3/2
e . The relaxation

is studied in the numerical examples varying ν0Δt, and
relatively good results are obtained for ν0Δt ≤ 0.1 There
are no self-consistent thermal electric field fluctuations in the
simulations shown in Figs. 9 and 10. The constant applied
electric field in this example must be small enough so that
the acceleration and resistive heating of the electrons is weak
over the duration of the simulation. In general, as the plasma
electrons heat, the resistivity will decrease as Te increases (not
allowed in our simulation diagnostic) and the plasma current is
expected to increase. Consequently, high-energy electrons can
run away if the electric field is too large. We observe electron
velocity distributions that evolve in the presence of the applied
electric field to form high-energy tails because they are more
weakly collisional and more easily accelerated. This is how
“slide-away” velocity distribution functions are formed in the
presence of accelerating electric fields. The collisions tend to
isotropize the electron velocity distribution.

Simulations studying the approach to a resistive quasi-steady
state using the grid-based Langevin equations collision algo-
rithms are shown in Fig. 10. In the simulations in Fig. 10(a)
and (b), Ez = 0.3 V/cm, (e/me)EzΔt2/Δx = 3.5 × 10−7,
and (e/me)EzΔt/〈v2

z0〉1/2 = 2 × 10−5, and we used 4 × 104

particles of each species with Te = Ti, mi/me = 1836 and
singly charged ions. Using (1), the expected relaxation is repro-
duced in Fig. 10(a) for ν0Δt = 1.2 × 10−4 over 105Δt with
a 3% growth of the total kinetic energy, and poor results are
obtained with ν0Δt = 9.7 × 10−4 with a significant loss of
energy conservation: there is a three-fold growth of the total
kinetic energy after 104Δt. A much smaller time step, O(10−3)
smaller, must be used here than with the binary collision oper-
ator in keeping with the arguments in Section II. Using (3), the
relaxation agrees adequately with theory for ν0Δt ≤ 9 × 10−3

and departs from theoretical expectation for ν0Δt ≥ 3 × 10−2

with more than a two-fold growth of the total kinetic energy in
3 × 103Δt. Thus, the Lemons et al. algorithm (3) allows the
use of a ν0Δt value that is O(mi/me)1/2 larger than for the
algorithm based on (1) in this example. However, the value of
ν0Δt can be chosen an order of magnitude larger for the binary
collision algorithm compared to that using the Lemons et al.
algorithm in Fig. 10(b).

In Fig. 10(c), additional results are shown for the numerical
simulation of the approach to a resistive quasi-steady state using
the Lemons et al. algorithm (3) with various modifications to
the algorithm or changes in the parameters, e.g., changing the
time step or the number of particles. One can modify the col-
lision algorithm to enforce momentum and kinetic energy con-
servation. After each like-particle collision, the momenta are
uniformly shifted in each cell (or globally if a uniform plasma
problem is being studied, as is the case here) and the momenta
are uniformly scaled relative to the average momentum in the
cell to conserve momentum and energy [4], [6]. For unlike-
particle collisions, e.g., electron-ion or ion-electron collisions,
the changes in the local (or global) total momentum and kinetic
energy of the test particles can be compensated for by equal
and opposite changes in the field particles momenta and kinetic
energies by means of locally uniform momenta shifts and
scaling of the momenta relative to the average momentum of the
field particles so that the sum of the total momentum and kinetic
energy of the test and field particles is conserved. For small time
steps and good statistics, the momenta shifts are small and the
scaling is near unity. Alternatively, we could shift the momenta
of both the test and field particles to conserve total momentum,
and then scale both the test and field particle momenta relative
to the mean momenta of each species to conserve total energy.
The results in Fig. 10(c) show no significant improvement in the
relaxation to a resistive steady state compared to the results in
Fig. 10(b) due to restoring momentum and energy conservation
after the Monte Carlo collisions. However, doubling the number
of particles for an adequately small time step results in a
significant improvement in the comparison of the relaxation to
the theoretical steady state in Fig. 10(c).

The traces in Fig. 10(c) are labeled as follows: red =
{Eq. (3) with ν0Δt = 3 × 10−3, Np = 40 000 for each spe-
cies, with adjusted energy/momentum conservation}; blue=
{Eq. (3) with ν0Δt = 9 × 10−3, Np =40 000 for each species,
with adjustments for energy/momentum conservation}; coral=
{Eq. (3) with ν0Δt=3 × 10−3, Np =80 000 for each species,
and no adjustment for energy/momentum conservation}; ma-
genta = {Eq. (3) with electron-ion collisions reduced to pitch-
angle collisions, ν0Δt = 9 × 10−3, Np = 40 000 for each
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species, and no adjustment for energy/momentum conserva-
tion}; light blue= {Eq. (3)with electron-ion collisions reduced
to just pitch-angle collisions, ν0Δt = 0.028, Np = 40 000 for
each species, and no adjustment for energy/momentum conser-
vation}; and green = {Eq. (3) with electron-ion collisions re-
duced to just pitch-angle collisions,ν0Δt=0.082, Np = 80 000
for each species, and no adjustment for energy/momentum
conservation}.

The reduction of the Lemons et al. algorithm (3) to just
pitch-angle collisions is shown to be particularly effective in
the results shown in Fig. 10(c). To achieve this reduction in
(3), one suppresses the drag and diffusion of the particle speed,
i.e., one forces Δv = 0 for collisions of electrons on ions,
which is a very good approximation for me/mi � 1. Only
pitch-angle collisions of the electrons survive in this reduction.
For larger values of ν0Δt, if an electron undergoes a large-
angle scattering event, it still conserves energy. Like the binary
collision algorithm, the accuracy of the collision algorithm fails
gracefully. Data for the relaxation to a resistive steady state is
shown in Fig. 10(c) extending to much larger values of ν0Δt
than in Fig. 10(b), and good results are recovered compared to
the theory provided that there is adequate statistical resolution
of the collisions. Energy conservation with no modification
of the algorithm for energy/momentum conservation after the
inter-species collisions is within a few percent over 6000 time
steps. The results for the relaxation to a resistive steady state
using the pitch-angle limit of (3) for electron-ion collisions are
similar to those obtained using the binary collision operator
shown in Fig. 9 with respect to time step, but the binary
collision algorithm yields smoother time traces.

V. SUMMARY

We have studied some of the accuracy issues for grid-
based Langevin equations and binary collision algorithms. In
an example of practical interest using numerical parameters
that are typical of plasma physics simulations using first-order
Euler and higher-order time-integration algorithms for the grid-
based Langevin equations collision model based on (1), we
find that statistical noise errors associated with finite numbers
of particles and collision events are dominant sources of error
in the computations. We have argued that the statistical noise
errors in the collision events can be, in general, conflated with
time-step issues. The dependence of the results on the time
step in our simulation examples is weak for the test case of
the relaxation of a weak temperature anisotropy. For the param-
eters employed in our simulations, there is no improvement in
the results achieved with higher-order-accurate time-integration
schemes, and acceptable accuracy can be obtained with a first-
order Euler time integration for an appropriate choice of time
step. The numbers of particles per cell and total numbers of
particles used in the simulations are representative of well-
resolved particle simulations commonly employed to study
plasma phenomena. We obtain similarly good results on this
same relaxation problem using a first-order Euler integration
of the Lemons et al. algorithm (3) for values of ν∗Δt < 0.1.
Results for the same collisional relaxation problem using the bi-
nary collision algorithm have been reported by Wang et al. [13],

who also observed a weak dependence of the accuracy of the
results on the time step. We also find that when a Milstein
correction [11], [12] to the Langevin equations model is in-
cluded, there is very little change in the observed results for
the collisional relaxation of a weak temperature anisotropy
studied here. The Milstein correction analysis also illustrates
the dependence of the errors in the integration scheme on Δt
and the sampling of the random numbers. The analysis of the
Milstein correction and the arguments on the scaling of the
random errors presented in Section III support the simulation
findings that the random errors dominate any systematic time
step errors.

We have not investigated the convergence of the simulations
of collision processes studied here with respect to numbers of
particles or ensembles of realizations of the random numbers
in the collision operators. Achieving improved statistical res-
olution to a high degree can be challenging. To reduce the
stochastic statistical errors by O(1/10) would require O(102)×
more particles and collision events per particle per time step
given the 1/N1/2 scaling of the statistical errors, which could
be impractical on a routine basis. Moreover, if the number
of collisions per particle per time step remains fixed at unity,
a decrease in the collisonal time step by 1/102 would be
required in order to increase the number of collision events
by 102 over a defined time interval. Here, we are again con-
fronted with the conflation of statistical errors with the time
step used in the integration. In the multilevel Monte Carlo
methodology suggested by M. B. Giles [21], the linkage of the
number of random collision events per particle per time step
is relaxed by averaging over additional collisional integration
paths with different values of the time step. Giles provides
estimates of the statistical error due to the sampling of random
numbers in the collision events and the integration error due
to Δt, and he shows how to balance the two sources of error
while minimizing the computational burden. However, Giles’
method has not as yet been applied to simulating collisions in
plasmas.

We have also studied the collisional relaxation of an ini-
tial electron-ion relative drift and the relaxation to a resistive
steady-state in which a quasi-steady current is driven by a weak
applied electric field, as functions of the time step used to
resolve the collision processes. For a sufficiently small time
step, the particle simulations recover the initial relaxation rate
for an electron-ion relative drift [1] and the classical resistivity
predicted by Braginskii’s theory [20]. Because the grid-based
Langevin equations algorithm in (1) has an unfavorable mass-
ratio scaling at low test-particle velocities, modeling electron-
ion collisions with this algorithm requires a much smaller time
step than that required using the algorithm based on (3) or the
Takizuka and Abe binary collision algorithm. A significantly
larger collisional time step can be used with the binary col-
lision algorithm than with either of the unmodified Langevin
equations collision algorithms for the example of the relaxation
to a resistive steady state involving electron-ion collisions in-
vestigated here. However, if the Lemons et al. algorithm (3) is
reduced to just pitch-angle scattering for electron-ion collisions,
which is a good approximation for me/mi � 1, then the results
for the relaxation to a resistive steady state are nearly as good as
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the results from the binary collision operator. Both algorithms
are shown to extend to larger values of the time step.

The binary collision model and the grid-based Langevin
equations collision models are widely used, and good results
can be obtained with both approaches. The binary collision
model requires some additional computations to do the sort-
ing and pairing of particles in a spatial cell as compared to
the Langevin equations model. Moreover, the latter model is
more easily parallelized. However, the binary collision model
described in [1] and [2] naturally conserves momentum and
energy. The Langevin equations model is more restrictive with
respect to the assumption that the velocity distribution function
of the field particles is close to a Maxwellian (although this
assumption can be relaxed if one is willing to calculate new
drag and diffusion coefficients from the Rosenbluth potentials
[4], [14]). In our experience, we have used both approaches
and advocate letting the nature of the problem at hand drive
the choice of which approach to use.

Although the results presented here are not intended to be a
detailed convergence analysis of collision algorithms in particle
codes, significant insights are presented into the characteristics
of the collision algorithms and their performance. The simu-
lation results presented here should be of value in providing
guidance in choosing between the collision algorithms and se-
lecting time steps for resolving collisional relaxation processes
in particle simulations.
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