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‘We explore the potential of parallel tempering as a combinatorial optimization method,
applying it to the traveling salesman problem. We compare simulation results of parallel
tempering with a benchmark implementation of simulated annealing, and study how
different choices of parameters affect the relative performance of the two methods. We
find that a straightforward implementation of parallel tempering can outperform simu-
lated annealing in several crucial respects. When parameters are chosen appropriately,
both methods yield close approximation to the actual minimum distance for an instance
with 200 nodes. However, parallel tempering yields more consistently accurate results
when a series of independent simulations are performed. Our results suggest that par-
allel tempering might offer a simple but powerful alternative to simulated annealing for
combinatorial optimization problems.
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1. Introduction

In this work we explore the potential of applying parallel tempering to combinato-
rial optimization. Parallel tempering (PT), also called replica exchange or simulated
tempering, 2 is a Monte Carlo method intended primarily for sampling a proba-
bility distribution function with a complex structure. The original version of PT
was developed by Swendsen & Wang.! In their work, replicas of a system of interest
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were simulated at a set of different temperatures. Replicas at adjacent temperatures
undergo a partial exchange of configuration information. Initially the method was
applied to systems in statistical mechanics. Recently, it has been successfully ap-
plied more broadly,® including in engineering, biology and material science. The
main usage of the method in the literature is to enhance the sampling of config-
urations. We will use it to find near-optimal solutions to the traveling salesman
problem.

The traveling salesman problem (TSP) is to determine the shortest route
(“tour”) starting from a home location (“city”), visiting all other cities ex-
actly once and then returning home. The problem is NP-hard, and so when the
number of cities is large, it is computationally infeasible to find the true opti-
mal tour: an approximation algorithm must be employed. One of the simplest
constructive approximation techniques is the nearest-neighbor method. In this
method, the tour starts from any city and recursively chooses the nearest city
not yet visited. In addition, many highly effective iterative improvement heuris-
tics such as k-opt*” and Lin—Kernighan® have been developed over the past
decades.

The most popular Monte Carlo-based optimization method that has been ap-

I simulated

plied to the TSP is simulated annealing.®!° Using Metropolis dynamics,
annealing (SA) includes a schedule of temperatures and approaches the global min-
imum when the temperatures decrease gradually. There are extensive studies in
the literature of SA applied to the TSP. The survey by Johnson et al.'? remains
one of the most comprehensive treatments of how to implement the algorithm and
choose the most appropriate parameters, and so we use it as a benchmark for our
analysis. By contrast, we are aware of only one study'® that has considered parallel
tempering for the TSP.

Our main contribution in this paper is an example of how a straightfor-
ward implementation of PT can outperform the SA benchmark in several cru-
cial respects, offering a simple but powerful alternative. We compare the per-
formance of SA and PT on the traveling salesman problem. We study how dif-
ferent choices of parameters affect the simulation results and give insight into
relative performance. It is known that on random instances with hundreds of
cities, under appropriate selection of parameters, SA yields approximations that
are roughly 1% above optimal.'> We find that PT finds approximations that are
at least as good and typically more consistent, given roughly equivalent compu-
tational resources. Moreover, if computational resources are measured in terms
of parallel time, our results suggest that PT considerably improves upon SA’s
results.

The article is organized as follows. In Sec. 2, we describe our implementations
of simulated annealing (SA) and parallel tempering (PT). In Sec. 3, we present
simulation results for each method. In Sec. 4, we compare the two methods. In
Sec. 5 we conclude by discussing the implications of these findings.
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2. Methods

The use of Monte Carlo methods for the TSP is based on an analogy between
combinatorial optimization problems and statistical mechanics, described in Ref. 9.
Variable configurations in combinatorial optimization problems correspond to states
in thermodynamics; the cost of a configuration in optimization corresponds to the
energy of a state in thermodynamics. In subsequent sections, we use these termi-
nologies interchangeably when both are clear in the context of our discussion. In
the case of the TSP, cost is distance, and a configuration is a tour.

2.1. Metropolis method

Simulated annealing and parallel tempering are both based on the Metropolis
method,™ one of the most widely used simulation approaches. Let us recall the
main elements of this method. The Metropolis algorithm generates a sequence of
states for a system in equilibrium at a certain temperature T'. It is an acceptance-
rejection method. At each step, given a current state, the method attempts a trial
move to a new state, and then determines whether the trial is accepted or rejected
using a formula of acceptance probability. Let P be a probability density of a state,
exp|—E(i)/T]
Z

where Z = 3, exp[—F(2)/T] and E(%) is the energy at the state i. The selection of
the acceptance probability is motivated by the detailed balance condition:

P@i)=

P(o)r(o — n) = P(n)r(n — o) (1)

where P(0) is the probability at the old state o and w(o — n) is the transition
probability from the old state o to the new state n. If we define w(o — n) to be
the trial transition probability, define acc(o — n) to be the acceptance probability
and assume w is symmetric, then the condition for the acceptance probability can
be derived by the detailed balance condition (1)*:

acclo—n) _ Pln) (_ §>

= 2
acc(n — 0)  P(o) T @)
where AE = E(n) — E(o0). The Metropolis acceptance probability, one of many

satisfying the equation (2), is the following;:

acc(o — n) = % - &XP (‘%) if P(n) < P(o)
1 if P(n) > P(o)

For implementation, a uniform random variable £ on [0, 1] is sampled to deter-
mine whether a trial is accepted or not. If £ < min(1l,exp(—AFE/T)), then a trial
is accepted; otherwise, a trial is rejected. The Metropolis method uses a single
temperature and proceeds in small steps from one configuration to another. The
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temperature allows uphill moves and therefore gives the particles a chance to get
out of a local basin. Downhill moves are always accepted.

The Metropolis method has also been used to find a local minimum for a physical
system. The temperature T' controls the size of the uphill move for each step. Larger
temperature T allows greater uphill moves, while smaller 7' only permits small
uphill moves. When the temperature is very low, the method is close to a greedy
algorithm.

Metropolis dynamics are not effective when applied to a problem which has a
high energy barrier or multiple shallow basins. For such problems, a particle is easily
trapped in the basin and therefore not able to move freely within the configuration
space.

2.2. Simulated annealing

The process of physical annealing begins with heating metal to a high temperature
and holding it there for a certain length of time, and then letting it cool down
slowly. This process allows an atom in the metal to achieve minimal internal energy.
Motivated by the concept of physical annealing, simulated annealing uses a schedule
of temperatures to solve optimization problems. SA runs the Metropolis algorithm
using a high temperature in the beginning and reducing the temperature slowly, in
the hope of reaching a neighborhood that contains a global minimum.

The results of simulated annealing depend on the cooling schedule, i.e., the
choice of temperatures and the number of Metropolis steps at each temperature.
The most commonly used schedule for SA is exponentially decreasing temperatures:

T(i) = Tor’
where T is the initial temperature, r < 1 is the cooling rate and T'(i) is the
temperature used after the ith reduction. Let Nioia1 be the total number of steps,
and Nigpgth the number of steps before a temperature decrease (called temperature

length). Niemperatures = Ntotal/Niength — 1 s equal to the number of temperature
decreases during the simulation. The algorithm for SA is the following:

(1) For i = Oa 1a sy Ntemperatures
(2) Run Metropolis algorithm for Niengtn steps at the temperature T'(4), until total
number of steps Niotal has been reached.

As discussed in the previous section, larger temperatures in a Metropolis simulation
result in the acceptance of larger increases in energy. Using a wide range of tem-
peratures allows a simulation to explore the energy landscapes before it relaxes and
arrives at the ground state. In the beginning, higher temperatures are used so that
the configurations giving greater increases in energy will be accepted. This enables
a simulation to cross high energy barriers and hop among shallow energy basins,
therefore exploring broad energy landscapes. The lower temperatures are used to
achieve configurations with small uphill moves. The simulation then focuses on
finding the local minimum energy in a small region.
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For the traveling salesman problem, our Metropolis trial move is known as a
2-change. We select two links in the tour, and create a new TSP tour by deleting
these two links and then reconnecting the tour in the only other way possible. For
example, say our instance contains eight cities and the current tour is

1-2—-3—-4—-5—-6—-7—28.

If the two links chosen are 1 — 2 and 6 — 7, the new tour connects 1 to 6, reverses
the order between 6 and 1, and then connects 2 to 7:

1-6—-5—-4—-3—-2—-7—28.

We base the details of our SA implementation on the method described in
Ref. 12, as this is among the most competitive ones to date. Specifically:

e Letting n be the number of cities, set the initial temperature to be

1.5
Ty = —.
n

This results in an initial acceptance rate of approximately 1/2.'?

e Set the cooling rate to be r = 0.95.

e Use the nearest-neighbor construction heuristic to establish the initial tour: start-
ing from the first city, keep connecting to the nearest city that has not yet been
used on the tour, and finally return to the starting city. For Kuclidean TSP
instances, these initial tours are typically about 20-25% longer than optimal.

e For the trial move, select the two links as follows. Pick a city t; at random,
and pick a second city t5 from within a given neighborhood of the first one.
The neighborhood, defined in the next section, is such that each city typically
has around 20 neighbors. Now pick, with equal probability, one of the two cities
connected to ¢y, and call it ¢3. Finally, consider the branch of the tour that goes
from t5 to t3 without passing through ¢1, and let t4 be the city connected to
ts on this branch. The 2-change consists of deleting links ¢35 — ¢ and {4 — t9,
replacing them by t4, — t1 and {5 — 3.

e Take the temperature length to be proportional to the number of possible config-
urations accessible via a 2-change. Since there are n possibilities for ¢, roughly
20 possibilities for £ and 2 possibilities for t3, let Ngpgtn = 40an. The studies in
Ref. 12 use values of the proportionality constant a between 10 and 100.

Figure 1 shows a sample run of SA on a TSP instance with n = 200. The tour
length at first grows significantly from its starting value, and fluctuates greatly,
since a large fraction of uphill moves are accepted. As the temperatures decrease,
the tour distances also decrease, and the fluctuations gradually diminish.

The efficiency and accuracy of a simulation is largely determined by the cooling
schedule; i.e., the temperatures being used and the number of Metropolis steps
being run between two successive temperatures. We will discuss how the choice of
Niotal and Niengtn affect simulation results in Sec. 3.
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Fig. 1. SA with total number of steps N¢ota1 = 1000000, initial temperature Tg = 1.5/+/200 =
0.1061, cooling rate r = 0.95, and number of steps at each temperature Njepgtnh = 16 000 (corre-
sponding to a = 2).

2.3. Parallel tempering

We have observed that applying multiple temperatures in a simulation is crucial
for sampling the configuration space with a complex structure. Parallel temper-
ing (PT), like simulated annealing, employs this important component. The main
difference between the two methods is that whereas SA uses a fixed schedule of
temperatures, PT swaps temperatures dynamically. SA is also limited to solving
optimization problems. The method does not apply to sampling a distribution at
a fixed positive temperature, and basic Metropolis sampling can only do this effi-
ciently for high enough temperatures.

PT simulates multiple replicas of a system concurrently, using a different tem-
perature for each replica. Periodically, a pair of neighboring temperatures is selected
and their configurations are swapped with a certain probability. Specifically, let the
temperatures of M replicas be equal to T4, 15, ..., Ty, where Ty < To < -+ - < Ty
Simultaneously run M replicas of Metropolis simulation. Every Ngwap steps, select
a temperature T;, ¢ = 1,2,..., M — 1 and exchange the configuration of 7} with
that of T;41 with an acceptance probability p. The probability p is related to the
energy change and the difference between the reciprocal of the temperatures T; and
Ti+1 .

p = min(1, exp(ABAE)) (3)

where A = 1/T; — 1/T;41, AE = E; — F;4 and F; is the energy of the replica at
temperature T;. The swap probability p is chosen in such a way that it satisfies the
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detailed balance condition:
P(r,5:)P(s, 5;) x wl(r, 8:), (s, 85) — (s, 8:), (r, 5;)]
xace|(r, 8:), (s, B7) — (s, 82), (1, 55)]
= P(r,8;)P (s, 8:) x wl(r, 35), (s, 8:) = (r,8:), (5, ;)]
xacel(r, 57), (s, Bi) — (r, 8:), (s, 55)]

where 8; = 1/T;, P(r,8;) is the probability at state r and temperature Tj,
w((r, B:), (s, 8;) — (s, 8:), (r, 3;)] is the transition probability for swapping the state
r and state s, and acc is the acceptance probability of the transition from state r

to state s.
We describe the algorithm for PT as follows:

(1) For j =1,..., Niota/Newap-

(2) Run Metropolis method for all M replicas for Newap steps.

(3) Randomly select a temperature T; among T4, ..., Thy—1, and then perform a
trial to swap the configuration at 7; with the configuration at 754 1; Sample a
uniform random variable £ on [0, 1] and accept the trial swap when £ < p =
min(1, exp(ABAE)).

(4) Return to step 1.

There are two ways to view the temperature swaps. At any particular temperature
T;, an accepted temperature swap move creates a global update; the current state

Distances for each temperature
12.4 T T T T T T T

wN =

distance (energy)

iteration step

Fig. 2. Tour distances at each step for temperatures T = 0.0025, Th = 0.004, T3 = 0.006.
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at T; is exchanged with the state at 7T;.; This global change in state creates a
sudden change in energy. See Figs. 2 and 3.

Alternatively, for a given replica the swap moves create a random walk in tem-
perature space. When a replica drifts to a high temperature, it can overcome energy
barriers and explore broad energy landscapes. When the replica returns to lower
temperatures, it only moves locally in the small region. If the global minimum
happens to reside in the region, small uphill moves increase the chance of finding
the global minimum. Figure 4(a) shows the distances at each timestep when the
replicas are fixed and 4(b) the random walks of three replicas in temperature space.

Distances for each temperature N
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Fig. 3. (a) A blow up of Fig. 2. We see jumps due to a swap of configurations between T and
T3 at step ~ 2.4 X 10% and a swap of configurations between T1 and T> at step ~ 3 x 103, (b) A
corresponding plot for the attempt swaps at each temperature and the attempt probabilities. Each
“square” represents an attempt swap, corresponding to a “diamond” which means the attempt
probability. A “cross” means a swap is accepted.
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Fig. 4. (a) The tour distances at each step for fixed replicas r = 1, r = 2, r = 3. (b) For a given
replica, the swap moves create a random walk in temperature space.
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From Figs. 2-4, we use five replicas and five temperatures. For the sake of clarity,
we only show three of them here.

The values of two neighboring temperatures and their corresponding energy
affect the swap acceptance rate. If AGAFE > 0 i.e., the replica with higher tem-
peratures has lower energy, then the swap acceptance probability p is equal to 1.
In this case, a definite temperature swap will further relax the low-energy replica;
simultaneously, the high-energy replica will have a higher temperature and more
likely be able to escape a local potential well.

If ABAE < 0 i.e., the replica with higher temperature has higher energy, then
the acceptance probability p is less than 1. p increases as |[ABAFE]| decreases. Such
a swap gives the lower energy replica a chance to get out of the local potential well,
and let higher-energy replica relax.

Our intention in implementing PT on the traveling salesman problem is to make
it as analogous to SA as we can. Thus, we initialize tours for all replicas with the
nearest-neighbor construction heuristic, and we use the same 2-changes for trial
moves. On the other hand, PT can potentially require many more parameters to
be set, including the number of replicas and the exact temperature for each replica.
While there has been some study'? of the latter, for the present purposes we content
ourselves with employing a set of temperatures that gives satisfactory results and
avoid fine tuning.

3. Simulation Results

For our simulations, we use an instance of 200 cities, distributed uniformly at ran-
dom over the unit square [0, 1]? as shown in Fig. 5. We adopt periodic boundary

200 cities
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=
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* x
0.9r » < = b
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® ® ® 3
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Fig. 5. 200 cities uniformly distributed on [0, 1] x [0, 1].
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conditions, so that the distance d between two cities at (z;, y;) and (x;, y;) is defined
as

dy = min(|z; — 5], 1 — |z; — z4]), dy = min(|y; —y;l, 1 — |ys — y;1)
d= /&2 +d2

For the instance we use, we find with the Concorde TSP solver'® that the true
optimal tour length is 10.384906. Based on this exact minimum, we calculate the
“percent above minimum” for all of our SA and PT results.

In view of the uniform distribution of cities, we define the neighborhood relation
in our 2-change move (for both SA and PT) as follows. A city’s neighborhood
consists of all other cities that are within a distance of 2.5/4/n. Since the expected
number of cities in a disc or radius r is simply 7r2n, this means the neighborhood
contains, in expectation, 7(2.5)2 ~ 19.635 cities, very close to the target of 20.
Note that strictly speaking, detailed balance does not hold under this definition: a
city ¢ will not necessarily have exactly the same number of neighbors as another
city 7, so the ratio of acceptance probabilities in (2) for a trial move will not be
exactly equal to the ratio of the transition probabilities. However, since our objective
is optimization rather than finite-temperature sampling, this is not necessarily a
drawback.

Figures 6—8 show our benchmark results computed using SA, and Figs. 9 and 10
show results computed using PT. On each Fig. 5 independent simulations, numbered
1,2,...,5, are presented.

4 T
(3 N = 1 000 000
otal
8 3 N = 5000000
35f O N = 10 000 000 f
3l J
25} &

Percent above minimum

150 @

1 I I I
1 2 3 4 5

Simulation

Fig. 6. SA simulation: three different N¢gia1 values 1000000, 5000000, 10000000 are used for
each of the five independent runs; Nigpgen = 10000 for all simulations. The results computed by
different Niota1 for each of the kth simulation are indistinguishable, k =1,2,...,5.
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3.1. Simulated annealing

Using the implementation of Sec. 2.2, we run SA on our n = 200 instance with
an initial temperature of Ty = 1.5/\/% ~ 0.1061 and cooling rate r = 0.95,
analyzing the effects of varying the total number of steps Niota1 and temperature
length Niengtn. The aim is to establish a competitive baseline against which PT can
subsequently be compared.

We first confirm that when other parameters are the same, running more steps
will improve the approximation only up to a certain saturation point. Figure 6
demonstrates this effect for temperature length Niengin = 10000. When Nigia =
1000 000, Ntemperatures - [Ntotal/Nlength] —1= 99, and so

Tiowest = TorNemperatares 20,1061 - (0.95)% = 6.6123 x 107*. (4)

This temperature appears to be low enough that the simulation is no longer able to
escape from a potential well. When we increase Nyota to 5000000 and 10 000 000,
Tlowest becomes approximately 107 and 10724, Such low temperatures at the end
of the computation make the simulation steps essentially greedy moves. These extra
steps do not improve the accuracy of the results because the simulation has already
become stuck in a local minimum.

In Fig. 7, we instead use a fixed computational budget Niqta = 10000 000 but
varying temperature lengths. If the simulation does not run long enough at a given
temperature, not only will Tiowest be unnecessarily low but the system may not even
equilibrate at each temperature. Figure 7(a) shows that in most (but not all) cases,
SA results improve as Niengsh increases, with the best results in 3 out of the 5 runs
occurring for Niepgtn = 160000, where Tiowest == 0.0044. Using the temperature

3.5 T T T 186 T T T

& Ningp =30 000 14} N
o N = 60000

B Ny, - 160000 . 12|

w
Ps
%

n
o

™ o
v
@

=320 000

& Mengin
a N =160 000

length

Percent above minimum
o
3
Percent above minimum
®

=3
o
o

0 L L L 0

Simulation Simulation

(a) (b)

Fig. 7. Five independent SA simulations using a fixed computational budget Niota1 = 10 000 000
and different temperature lengths. (a) Three different values Niepgen = 30 000, 60 000 and 160 000.
Best results are obtained when Njepgen = 160000 is used, suggesting that simulations with smaller
temperature lengths fail to equilibrate. (b) Two different values Niengen = 160000 and 320 000.
Here, the simulation with the smaller temperature length gives better results, suggesting that the
larger one fails to reach low enough temperatures.
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Fig. 8. SA simulation: Three sets of five independent simulations for fixed Ntemperatures = 62
and corresponding lowest temperature Tiowests = 0.0044. Three different values Niepgen = 16 000,
160000 and 640 000 are used in the simulations, with N¢gea = 1 000 000, 10 000 000 and 40 000 000,
respectively.

length parametrization of Nigpgth = 40an discussed earlier, this corresponds to
a = 20. On the other hand, given fixed Nioia1, temperature lengths that are too
long can result in Tjowest N0t being low enough. Figure 7(b) shows that doubling
Niength to 320000 (o = 40), where Tiowest = 0.0216, leads to significantly worse
approximations.

From this discussion, we reach a recipe for choosing Nigtal and Nigpgtn. We
determine the lowest temperature Tiowest DY choosing a suitable ratio of Nyota) and
Niengths 1.€., Niemperatures- Lhe ratio must be large enough (so that Tiowest 1s small
enough) to provide a good approximation to the optimal solution, but not so large
as to be inefficient. Once the ratio is determined, we increase Niepgth and Nigial
simultaneously, without changing Niemperatures- Lhis ensures that the simulation
equilibrates at each temperature and the computation can converge to a near-
optimal solution. Figure 8 demonstrates the results computed using this recipe.
For each set of computations, Niemperatures 15 fixed at 62. When increasing the
temperature length from 16000 to 160000 and then to 640000 (« = 2, 20 and 80),
we obtain more accurate approximations to the optimal solution, in most cases well
within 1% of optimal (in fact, one out of the five test simulations even hits the
exact optimum). This is consistent with the results in Ref. 12.

3.2. Parallel tempering

Having established benchmark results with SA, now we run our parallel tempering
implementation, quantitatively demonstrating its properties by varying the input
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parameters. There are three sets of parameters in PT: the total number of steps
Niotal, the number of steps Ngywap between trial swaps, and the set of temperatures
T ={T1,Ts, ..., Tay}. We aim to choose Ngyap large enough so that a replica equi-
librates after (M — 1) Ngwap steps, which is the expected number of steps between
when one of the M — 1 neighboring replica pairs attempts a swap. For the temper-
atures, Thax = T should be large enough that the replica at temperature T ax
can cross over substantial energy barriers and T, = 11 should be small enough
that the replica at temperature Th;, will approach the energy minimum. Finally,
in order for PT to be effective, the spacing between temperatures must be small
enough that a significant fraction of attempted swaps are accepted.

To see the effect of the choice of temperatures, let 7/° and T5high be two sets

of five temperatures:
T2V = {0.0025, 0.004, 0.006, 0.008, 0.01}
78" — £0.012,0.014, 0.016,0.018,0.02} .
T5high are higher than 7.°V. Let 71 be the union of the 7.°% and T5high,
Tio — T2 U 7—5high ’

so that 779 includes a broader range of temperatures.

We find that PT clearly benefits from both the high and low temperatures in
T1o. Figure 9 uses Nigtal = 2000000 total steps and Ngywap = 6000 steps between
trial swaps. In the simulations 9(a) at T51°W and 77p, we see significant improvement
when the higher set of temperatures are included in the simulation. In the context
of thermal dynamics, this means the system needs the highest temperatures to
avoid being trapped in potential wells and to allow exploration of broad energy
landscapes. Similarly, in the simulations 9(b) at T5high and 7qp, we again see that
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3 3
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(a) (b)
Fig. 9. PT simulation: Two sets of five independent runs with Ny = 2000000 and Ngwap =

6000, using temperatures (a) 7'510‘” and 710, and (b) T;’igh and 719. PT requires sufficiently high
and low temperatures.
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Fig. 10. PT simulation: five sets of five independent runs each. The first three sets use N¢otal =
2000 000, 20000000 and 40000000 with ’2'510‘”, while the last two use N¢oga = 2000000 and
20 000 000 with 77¢g. This demonstrates that running more steps improves accuracy, but the extent
of improvement may be limited by the temperature selection.

71o yields better results. Including the lowest temperatures is thus needed once a
replica has entered in the basin that contains a good minimum, in order to guide
it downhill toward that minimum.

We also find that unlike simulated annealing, PT can in many cases improve
its simulation results simply by running more steps. The rate of improvement de-
pends on the selection of temperatures. Figure 10 shows three simulations using the
low temperatures T51°W with Niotar = 2000000, 20 000 000 and 40 000 000, and two
simulations using 779 with Niotar = 2000000 and 20000000. From the three sets
of results computed using T51°W, we see that, although running more steps yields
smaller values, the speed of the improvement is quite slow. On the other hand, if
we include high temperatures and simulate using 779, the approximations improve
significantly. We see considerably decreased values when we run Niqa1 = 20 000 000
steps using 77o.

Finally, we note that the temperature spacing we choose is almost linear, but
not exactly. These spacings have been chosen to try to keep swap acceptance proba-
bilities relatively uniform (and around 20%) across the different replica pairs. Some
theory exists as to how temperature spacings should be determined,'® and this is
a study in itself, beyond the scope of our present work. Our aim here is simply to
show that there exists a relatively straightforward set of temperatures that allows
PT to perform well.



Parallel Tempering for the Traveling Salesman Problem 553

4. Comparison

In the previous two sections, we have demonstrated that both SA and PT obtain
good approximations of the actual minimum (well within 1%) for a sample instance
of the traveling salesman problem, after suitable choice of parameters. We also find
that the results computed by SA fluctuate more, while those computed by PT are
more consistent. We are interested in understanding how often we can obtain such
a good approximation if we repeat the simulation many times.

In particular, we compute 100 independent runs for SA and PT. Figure 11 shows
the distribution (histogram) of these independent simulations of SA and PT. The
parameters we use for SA are Nigtal = 40000000, Niengtn = 640000, Ty = 0.10,
r = 0.95, and the parameters for PT are Nigia = 20000000, 719, Nowap = 6000.
We confirm that the results computed by SA vary considerably more than those by
PT. The SA results fluctuate between 0% and 2% above the actual optimum, and
PT results fluctuate between 0% and 0.34% above the actual optimum.

In Fig. 12, we examine these 100 independent runs for SA and PT in a different
way from above. We group them into 20 sets of 5 runs each, and for each set choose
the best of the 5. This again demonstrates that PT yields results that are more
consistent than those from SA, and almost always considerably closer to optimal.

One question raised when comparing SA and PT is how to choose parameters
for each method to perform an unbiased comparison. The two sets of parameters
used in Fig. 12 produce the best results that we were able to obtain for each method.
In this comparison, PT spends five times more total computational time than SA.
To ensure a more unbiased comparison, we perform a simulation of SA running
five times longer. Figure 13 shows the results from SA using Niotar = 200000 000,
Niength = 3200000 (corresponding to a = 400). The errors are reduced from a
range of 0 to 2.1%, shown in Fig. 11 to a range between 0 to 1.2%. However, PT

.
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Fig. 11. Histograms for SA (a) and PT (b) simulation; SA uses Nioea1 = 40000000, Niengen =
640 000, To = 0.10, r = 0.95, and PT uses Nyogas = 20 000000, Tio, Nawap = 6000.



554 C.-M. Wang et al.

0.7
8 PT
s SA
0.6F g
®
L
go.sf . ]
g &
E &
E 0.4r s ® ]
5 s
D
S
D
& g.2f g
o [
-] ©
0.1 ® g
886 o8& T8 @
8 8 9 & @ -1 g ®
o= L . ey I 8 I
0 5 10 15 20

The best result in five independent runs

Fig. 12. The best value from five independent runs repeated 20 times by SA and PT; SA uses
Niotal = 40000000, Nigngen = 640000, To = 0.10, 7 = 0.95, and PT uses Notal = 20 000 000, T1o,

Nawap = 6000.
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Fig. 13. SA simulation with Nioga = 200000000, Niengen = 3200000, Tp = 0.10, r = 0.95.

still yields more consistent accurate solutions (shown in Fig. 11) than the solutions

computed by SA using larger Nigtal and Niength-

5. Conclusion

We have presented a straightforward implementation of parallel tempering for com-

binatorial optimization, comparing it to benchmark results from a state-of-the-art
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implementation of simulated annealing. We use a traveling salesman problem in-
stance with 200 cities distributed uniformly on a unit square, and with periodic
boundary conditions. A trial move in the simulations randomly selects two cities
and rearranges the original tour to obtain a new tour connecting the two cities. We
find that when the parameters are chosen appropriately, both methods can closely
approximate the actual minimum distance.

Moreover, our numerical study shows how the parameters for SA and PT influ-
ence the approximation, and they provide guidelines for selecting the best param-
eters for the two methods. For simulated annealing, we use the initial temperature
and cooling rate suggested in the literature as a starting point. Our simulations show
that SA requires a sufficiently large temperature length, as well as a sufficiently low
(but not too low for efliciency) temperature at the end of the simulation. This
means once we determine the lowest temperature, with the initial temperature and
cooling rate being fixed, we should increase the total steps and temperature length
simultaneously to find the optimal value. For PT, we see that the method requires
sufficiently high and low temperatures to approach the optimal solution. The high
temperatures are used for exploring the energy landscape, and the low temperatures
are used in finding the minimum in a local energy basin. We also find that running
more timesteps almost always improves PT’s results. The degree of improvement
depends on the temperature selection. We see minor improvement when we use the
set of temperatures from 0.0025 to 0.01, but find more improvement (lower values)
when using the full range of temperatures from 0.0025 to 0.02.

A significant advantage of parallel tempering is that it yields more consistent
results. For example, for 100 independent simulations using the best set of param-
eters, we find that the results of SA fluctuate considerably more than those of PT.
This implies that it takes more simulations for SA to obtain a desired result, and
that PT yields higher confidence.

A disadvantage of parallel tempering is that for the same number of simulation
steps, it takes longer to run because it concurrently simulates multiple replica. This
disadvantage can be overcome by running the simulation on a parallel machine.

Some caution is required in interpreting these results. First of all, it is difficult
to ensure that a computational comparison between the two methods is fair. Our
study is biased in favor of SA because it employs knowledge from many previous
experiments with SA on TSP. On the other hand, it also has a bias in favor of PT,
in that more computational time was used for PT than SA. Nevertheless, we found
that the SA results do not improve with additional computational time. Second
of all, our results are limited to a single TSP instance at n = 200. While this
is reasonably given the exploratory nature of our study, any definitive numerical
comparison would need to use multiple instances and also consider how the relative
effects scale with size.

A major open question is how systematically to select an efficient set of tem-
peratures for PT. The temperature spacing we use is linear, with the exception
of the two lowest temperatures. From the swap acceptance probability condition,
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keeping the acceptance rate constant across neighboring temperature pairs means
that ABAFE must be kept constant. If E(T") can be replaced by its thermal aver-
age,'® which for the TSP is believed to scale as ~ T2,'6 then this suggests the gap
between successive temperatures should scale as T'V/2. However, empirically it is not
clear to us that PT actually performs as well with this prescription. We hope that
our success in employing P'T as an optimization algorithm will motivate further
study of this question.
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