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a b s t r a c t

We investigate the accuracy of and assumptions underlying the numerical binary Monte
Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997) 4642]. The numer-
ical experiments that resulted in the parameterization of the collision kernel used in Nan-
bu’s operator are argued to be an approximate realization of the Coulomb–Lorentz pitch-
angle scattering process, for which an analytical solution for the collision kernel is available.
It is demonstrated empirically that Nanbu’s collision operator quite accurately recovers the
effects of Coulomb–Lorentz pitch-angle collisions, or processes that approximate these
(such interspecies Coulomb collisions with very small mass ratio) even for very large values
of the collisional time step. An investigation of the analytical solution shows that Nanbu’s
parameterized kernel is highly accurate for small values of the normalized collision time
step, but loses some of its accuracy for larger values of the time step. Careful numerical
and analytical investigations are presented, which show that the time dependence of the
relaxation of a temperature anisotropy by Coulomb–Lorentz collisions has a richer structure
than previously thought, and is not accurately represented by an exponential decay with a
single decay rate. Finally, a practical collision algorithm is proposed that for small-mass-
ratio interspecies Coulomb collisions improves on the accuracy of Nanbu’s algorithm.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Modeling of Coulomb interactions is important to the understanding of many plasma systems. For an inter-particle dis-
tance d larger than the Debye length kD, Coulomb interactions are mediated through electro-magnetic fields governed by the
Vlasov equation. On the other hand, if d < kD, these interactions can be described as Coulomb collisions, governed by the Fok-
ker–Planck equation. There is a long history of study of Coulomb collisions in plasmas. The 1965 review paper by Trubnikov
[1] contains many of the important analytical results for relaxation processes associated with Coulomb collisions.

This paper considers issues important to Monte Carlo particle methods for simulation of Coulomb collisions. One of the
earliest and most influential Monte Carlo collision algorithms was a binary algorithm developed by Takizuka and Abe (TA)
[2]. In this model, the particles are paired locally in space and undergo binary elastic scattering events, which conserve par-
ticle number, energy, and momentum. Viewed in the center-of-mass frame of a binary scattering pair, the relative velocity,
the magnitude of which is preserved, scatters through some angle Dh. The distribution of the angles Dh is chosen so that for a
short time step Dt such that mD t� 1, where m is a mean collision rate, Dh is small; and the accumulation of many collision
events gives an evolution in agreement with the Landau–Fokker–Planck operator for Coulomb collisions. This scheme was
modified by Nanbu [3]. Nanbu aimed to develop a scheme in which the collisions were aggregated so that a single large time
. All rights reserved.
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step (i.e., mDt not necessarily small) would still yield an evolution (for example, of the distribution of collision angles) that
accurately represents an accumulation of Coulomb collisions. The two methods proposed by TA and Nanbu have been widely
used in the plasma physics community [4–9]. The questions addressed in this paper are the following: (1) What is the phys-
ics basis for Nanbu’s collision kernel [3]? (2) how accurate is Nanbu’s collision kernel and numerical collision operator over a
range of time-step and mass-ratio values?

Wang et al. [10] performed a numerical convergence study for the methods of TA and Nanbu, and the latter method
formed the basis for a hybrid simulation scheme developed by Caflisch et al. [11]. In [10], it was found that both for ion–
ion and electron–ion collisions, the pointwise errors for the Nanbu method were comparable to those of the TA method
run at approximately half the timestep. Thus the collision aggregation was at best partially successful.

In the remainder of this paper, we further study the accuracy of and assumptions underlying Nanbu’s collision operator
[3]. In Section 2, it is argued that collision kernel in [3] is an empirically obtained parameterization of the kernel for the Cou-
lomb–Lorentz pitch-angle scattering (diffusion) process, for which an analytical expression is known [1]. It is also demon-
strated empirically there that Nanbu’s collision operator quite accurately recovers the effects of such collisions, even for
very large values of the collisional time step. In Section 3, the analytical Coulomb–Lorentz and Nanbu kernels are evaluated
and compared. It is shown that the latter is a highly accurate approximation for small values of the normalized collision time
step, but loses some of its accuracy for larger values of the time step.

The primary motivation for studies reported here is to understand the regimes, in numerical parameter space, of validity
of Nanbu’s operator. Nanbu’s operator is accurate for sufficiently short time steps (and sufficiently large particle number).
For the widely considered temperature-anisotropy-relaxation test problem [1–3,10,12], we are able to delineate the regime
of validity. The breakdown of accuracy of Nanbu’s operator as a function of time step and mass ratio occurs because energy
diffusion competes with isotropization (i.e., diffusion in pitch angle). This energy diffusion can be thought of as a surrogate
for other processes that may compete with isotropization in more complicated plasma systems. Thus, the temperature-
anisotropy relaxation problem gives, at least at a qualitative level, information about the breakdown in accuracy of the Nan-
bu (and any Lorentz-kernel based) operator in more realistic situations.

A secondary motivation for our study of the accuracy of Nanbu’s kernel as a parameterization of the (Lorentz) collisions of
the numerical experiments in Ref. [3] is interest in the Coulomb–Lorentz operator itself. The ‘‘Lorentz-gas model” has been
widely discussed as a pedagogical model and a reasonable approximation that qualitatively captures the important effects of
collisions in gas-dynamic [13] and plasma [14] systems. A Coulomb–Lorentz-based kernel, and Nanbu’s operator (or a more
accurate version) may also be useful for the quantitative modeling of parts of some plasma systems when time scale sepa-
ration is present. An example is the slowing down of fast electrons by a high-Z plasma (where Z is the ion charge) as occurs,
for example, in fast-ignition inertial-confinement-fusion targets [15]. Because of the Z dependence of the Coulomb collision
rates, the collisions of the fast electrons with the target ions dominate over collisions with the target electrons. Although a
key quantity of interest is the energy loss of the fast electrons, which results primarily through collisions with the target
electrons, this process occurs on a significantly slower time scale than the electron–ion collisional isotropization. Thus, a Lor-
entz-kernel based operator, such as that of Nanbu or the modification outlined in Section 5, may be useful to represent the
isotropization process, as it will allow time steps of the order of the electron–ion collision time.

In Section 4, the relaxation of a temperature anisotropy by Coulomb–Lorentz collisions is examined in more detail, using
the analytical kernel from [1]. Based on the results of Section 3, a practical collision algorithm is proposed in Section 5, which
for small-mass-ratio interspecies Coulomb collisions improves on the accuracy of Nanbu’s algorithm. Conclusions of this
study are given in Section 6.

2. Accuracy of the Nanbu operator for long time steps

Some insight into the accuracy and applicability of the Nanbu operator can be gained by realizing that the collision kernel
given by Nanbu is actually derived from numerical experiments in which the orientation vector (only) of the velocity of a test
particle evolves. This evolution does not take into account the interaction between different pairs of particles, which would
result in evolution of the energy of the distribution (or of a test particle). Furthermore, in the numerical experiment of Nanbu
this orientation undergoes repeated small deflections (a typical value of the variance being h(Dh)2i � 3 � 10�3), each of
which is independent of the orientation itself and of the previous deflections. Such a process is well described by the Lorentz
collision operator, which represents diffusion with a uniform (i.e., independent of orientation) diffusion coefficient on a
(unit) sphere of the tips of the orientation vectors.
@fa

@s
¼ @

@l ð1� l2Þ @fa

@l

� �
þ 1
ð1� l2Þ

@2fa

@/2 ; ð2:1Þ
where l = cosh, h is the polar angle with respect to some point designated as the pole on the sphere, and / is the azimuthal
angle. The normalized time parameter s ¼ t=2sa=b

s , where t is the physical time, and sa=b
s is the longitudinal slowing down

time [1] for a charged particle of species a colliding off a particle of species b:
sa=b
s ¼ v3

4pKa=bnb

ma

qaqb

 !2

:



A.M. Dimits et al. / Journal of Computational Physics 228 (2009) 4881–4892 4883
Here, v is the test particle’s speed, Ka/b is the ‘‘Coulomb logarithm” [1], and na, ma, and qa are respectively the number den-
sity, mass, and charge of a particle of species a. The operator in Eq. (2.1) and the analytical solution for its kernel (which is the
solution from a point initial condition at h = 0) have long been known [1]. The association between the numerical experi-
ments of Nanbu [3] and Lorentz collisions, as well as the analytical solution for the (kernel of the) latter were also noted
by Bobylev and Nanbu [16]. The numerical evaluation of this analytical solution is straightforward, and is carried out in Sec-
tion 3. A comparison of Nanbu’s parameterization with this solution, also given there, shows that Nanbu’s parameterization
is an excellent approximation for short time steps, and a quite good approximation for all values, with a maximum relative
error of about 8%.

It follows from the above arguments that for Coulomb collisions of charged particles off much heavier (e.g., electrons col-
liding off ions) or infinitely heavy scatterers, Nanbu’s collision operator should be accurate even if very large time steps are
used. This indeed appears to be the case. Fig. 1 shows the results for the collisional isotropization test of [10], using the Nan-
bu collision operator, in the limit of zero mass ratio. In this test, the particles are loaded as an anisotropic Maxwellian with
different parallel and perpendicular temperatures. The initial relative temperature anisotropy is DT/T = 0.15, where
DT � Tk � T\ and T = (Tk + 2T\)/3. These runs use 1.6 � 105 particles. The curves in Fig. 1 are the time histories of the tem-
perature isotropy, normalized to their initial values, for simulations that used the four different time step values m0Dt = 0.22,
1.1, 2.2, and 3.3, and for the analytical result [1,12,17]:
Fig. 1.
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Here m0 is a thermally averaged collisional relaxation rate, given by
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is the electron thermal velocity, and e = qe is the absolute value of the electron charge. It is seen that the relax-

ation process is well represented even when the very long time steps m0Dt = 1.1–3.3 are used. At late times (m0t � 4), the sim-
ulation curves systematically depart from the analytical curve. The reason for this departure, which will be further examined
in Section 3, is that the Eq. (2.2) is valid only for short times.

Fig. 2 shows results for the collisional isotropization test, now with mass ratio me/mi = 10�4, for two different ensembles
of 10 realizations, each with 8 � 103 electrons and the same number of ions, for several values of the time step. The two
ensembles use different realizations of the initial loading and of the random numbers used in the collisions. Again, as for
all of the simulation results shown in this section, with the exception of the TA curves in Fig. 4, the Nanbu collision operator
is used. In the first ensemble [Fig. 2(a)], for all but the two shortest time step cases, there is a departure of the temperature
difference from the analytical result after the first time step. This departure subsequently decays. Apart from this, the tem-
perature difference curves are similar for the two ensembles. Additional simulations show that the early departure of the
simulation results is quite prevalent, and the degree of departure from the analytical curve is a more strongly a function
of the particular realization of the initial particle loading (i.e., velocity values), than of the particular realizations of the ran-
dom number sets used in the collision operator.

Fig. 3 shows results from a time step scan using ensemble averages over sets of 80 runs with different initial-condition
and collision random number seeds. Here again, the mass ratio is me/mi = 10�4, and the other numerical parameters are as for
the runs in Fig. 2, with the exception that the time step choices are not identical. This figure indicates that the departure of
the long time step curves from the shorter time step cases during the first one or two time steps occurs in a significant
Results for the collisional isotropization test of [10] for Lorentz collisions (zero mass ratio me/mi), for four different values of the time step. Also
is the analytical result from [17].



Fig. 2. Results for the collisional isotropization test for mass ratio me/mi = 10�4, for two ensembles, for m0Dt = 0.22, 0.44, 1.1, 2.2 and 3.3.

Fig. 3. Results for the collisional isotropization test for mass ratios me/mi = 10�4, averaged over 80 realizations of the initial loading, for m0Dt ranging from
0.11 to 6.6.
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fraction of the realizations in the ensembles. Again, as for Fig. 1, the curves in Figs. 2 and 3 show departures from the ana-
lytical formula, which over predicts the relaxation at intermediate and late times.

Fig. 4 shows a comparison of the Nanbu and TA operators for the collisional isotropization test for two ensembles with the
same realizations of the electron loading as for those in Fig. 2, with m0Dt = 1.1, and with other numerical parameters as in
Fig. 2. This shows that the TA operator is much less accurate than the Nanbu operator for large timesteps and small mass
ratio.
Fig. 4. Comparison of the TA and Nanbu operators for the collisional isotropization test for me/mi = 10�4, and m0Dt = 1.1. Cases A and B correspond to the
initial loading used in Fig. 2(a) and (b), respectively.



Fig. 5. Results for the collisional isotropization test for me/mi = 1, averaged over 80 realizations of the initial loading, for m0Dt ranging from 0.11 to 6.6.

Fig. 6. Results for the collisional isotropization test for mass ratios me/mi ranging from 10�3 to 1, for the same two realizations of the initial loading as in
Fig. 2, with m0Dt = 1.1.
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Fig. 5 shows the results for a time-step scan for the collisional isotropization test, now with me/mi = 1, and with ensemble
averaging as in Fig. 3. The electron and ion charges used are also the same, so these cases can also be considered as like-par-
ticle (e.g., electron–electron or ion–ion) scattering cases. For small values of time step, there is good agreement between the
simulation and analytical results. As the time step increases, the level of agreement degrades, with a systematically increas-
ing underprediction of the relaxation. This is to be expected [1], since energy evolution is important for me/mi = 1, and the
relaxation process is no longer accurately represented by Lorentz pitch-angle scattering alone. This loss of accuracy was not
present in the small and zero mass-ratio cases.

Fig. 6 shows the results for a range of mass ratios (me/mi = 1, 0.5, 0.25, 0.125, 10�2, 10�3) in the collisional isotropization
test using m0Dt = 1.1, averaged over 80 realizations of the loading. It is seen that the agreement is best for very small values of
the mass ratio, and degrades as the mass ratio increases. This degradation is again a sign of the increasing importance of
processes other than pitch-angle scattering (e.g., energy evolution in the present case) as the mass ratio increases from 0
to 1.

3. Analytical solution for the Coulomb–Lorentz collision kernel, and comparison with Nanbu’s parameterization

As argued in the previous section and in [16], the numerical experiments upon which Nanbu’s kernel is based are actually
numerical realizations of the Coulomb–Lorentz collision process, which is described by Eq. (2.1), and for which the analytical
solution has been obtained (for example, in [1]). This solution is
faðh; tÞ ¼ f ðl; sÞ ¼ 1
2p

X1
l¼0

lþ 1
2

� �
PlðlÞ exp½�lðlþ 1Þs�: ð3:1Þ
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(Recall that l=cosh.) The normalization, which is set by the initial condition, is chosen so that
Fig. 7.
s = 0.2,
2p
Z 1

�1
dlf ðl; sÞ ¼ 1: ð3:2Þ
Note also that the identification of Nanbu’s normalized time parameter s ¼ h2
1

� �
N=2 with the time normalized to Trubni-

kov’s collision time scale ss time, s = t/(2ss ) is easily made. Nanbu’s parameterization [3] of this solution is obtained empir-
ically from a simulation study. He notes that the solutions are quite accurately represented by linear approximations to the
dependence of log[f(l)] on l. Furthermore, by empirical examination and analysis of the short-time (small-s) dependence,
he finds
hsin2 h=2i ¼ 1
2
ð1� hliÞ ¼ 1

2
ð1� e�sÞ: ð3:3Þ
This can be recovered easily from Eq. (3.1). From Eqs. (3.2) and (3.3), and the assumption of a linear dependence of
log[f(l)] on l = cosh, it follows that
Nðl; sÞ ¼ AðsÞ
4p sinh AðsÞ exp½AðsÞl�; ð3:4Þ
where A satisfies
coth AðsÞ � 1=AðsÞ ¼ e�s ð3:5Þ
In order to enable detailed comparisons, we have coded both Eq. (3.1) and Nanbu’s parameterization, Eqs. (3.4) and (3.5),
in Mathematica.

We can assess the accuracy of the analytical curves by comparing the results with different numbers of terms retained.
Fig. 7 shows such a comparison, plotting log(f) as a function of l. It is seen that 8 terms are sufficient for good accuracy of any
integrals involving f(l) for s = 0.2 or larger. Note that for s = 0.2, the departure between the 8- and 14-term result occurs
when f(l) is a factor of e�10 ffi 5 � 10�5 below its maximum value. The places where the logarithm curves take very large
negative values represent oscillations through zero.

We now examine the time evolution of using enough terms to ensure good accuracy.
Fig. 8 shows the dependence of log(f), as given by Eq. (3.1) on l at the times (s values) corresponding to those of Fig. 2 in

[3]. These curves agree very well with those in [3]. Here, the values of s were obtained using, s ¼ hh2
1iN=2 with N as given in

Fig. 2 of [3], and hh2
1i ¼ 3:0524 � 10�3, which is the value used by Nanbu in that figure.

The direct evaluation of Eq. (3.1), shown in Fig. 8, is a more accurate solution to the Lorentz collisional evolution than the
parameterization of [3], provided that enough terms are kept in the sum in Eq. (3.1). At low values of f, Nanbu’s empirical
Comparison of logf(l), where l = cosh from Eq. (3.1) using 4 terms (small dashed), 8 terms (thick dashed), and 14 terms (solid) for (a) s = 0.1, (b)
(c) s = 0.3, and (d) s = 0.5.



Fig. 8. Evolution of f from Eq. (3.1) at times (s = 0.153, 0.305, 0.458, 0.763, 1.53, 4.58) corresponding to those of Fig. 2 in [3]. The curves can be identified
with their s values by noting that for larger s, the curves become less steep.
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results are affected by noise. This explains the fact that the curves in Fig. 2 of [3] trend up from the linear fits at small values
of s, while the curves resulting from the analytical solution trend down.

For a more detailed comparison, we have solved Eq. (3.5) for A(s), and inserted the result into Eq. (3.4). A comparison be-
tween the results of Eqs. (3.4) and (3.5) vs. Eq. (3.1) for s = 0.1, 0.2, and 0.3 is shown in Fig. 9. The curves from Eq. (3.1) were
made using 32 terms in the sum for the s = 0.1 curve, and 16 terms for the s = 0.2 and 0.3 curves.

It is seen that for small values of s, Nanbu’s parameterization gives an excellent approximation to the analytical result,
and that the quality of the fit degrades as time increases.

The excellent fit at early times can be understood from the fact that the process represented by Eq. (2.1) is diffusion on a
unit sphere with a constant and uniform diffusion coefficient. The particular solution given by Eq. (3.1) is for the evolution
from an initial condition that is proportional to a delta function at the pole, i.e.,
Fig. 9.
curves
faðh; tÞ ¼
1

2p
dð1� lÞ:
For short times, such that the solution is sufficiently localized to not sense the curvature of the sphere (i.e., l ffi 1,h ffi 0),
Eq. (2.1) becomes
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where the axial symmetry of the initial condition and resulting solution has also been used. Eq. (3.6) is recognized as the
equation for diffusion on a plane with axial (‘‘cylindrical”) symmetry and uniform diffusion coefficient. The solution of Eq.
(3.6), consistent with Eq. (3.2) is
faðh; tÞ ¼
1

2ps
exp � h2

2s

 !
8s > 0: ð3:7Þ
Examining Eqs. (3.4) and (3.5) for small s, we see that the solution of Eq. (3.5) for small s (and large A) is A ffi s�1. Upon
inserting this into Eq. (3.4), we recover Eq. (3.7).

We now examine the accuracy of Nanbu’s parameterization for larger s. A comparison between the results of Eqs. (3.4)
and (3.5) vs. Eq. (3.1) for s = 0.5, 1.0, and 2.0 is shown in Fig. 10.
Comparison for (a) f and (b) log(f), between the results of Eqs. (3.4) and (3.5) (dashed curves) and Eq. (3.1) (solid curves) for s = 0.1, 0.2, and 0.3. The
can be identified with their s values by noting that for larger s, the curves become less steep.



Fig. 10. Comparison for (a) f and (b) log(f), between the results of Eqs. (3.4) and (3.5) (dashed curves) and Eq. (3.1) (solid curves) for s = 0.5, 1.0, and 2.0.
Again, the curves can be identified with their s values by noting that for larger s, the curves become less steep.

Fig. 11. Comparison between the results of Nanbu’s Kernel (Eqs. (3.4) and (3.5) – small dashed curve), Eq. (3.1) with 2 terms kept in the sum (long-dashed
curve), Eq. (3.1) with 16 terms kept in the sum (solid curve), all for s = 1.5, and a convolution of two Nanbu Kernels Eqs. (B.1) and (B.2), each with s = 0.75
(medium dashed curve).
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For these larger values of s, Nanbu’s parameterization gives a reasonably good approximation to the analytical result, but
is not nearly as accurate as for the smaller s values. The departure can be understood from the fact that at large s, the expo-
nential formula of Eq. (3.4) intrinsically has more curvature than the true solution, which is quite accurately approximated
by the first two (linear in l.) terms Eq. (3.1). Fig. 11 shows a comparison between the accurate result, Eq. (3.1) with many
terms kept, Eq. (3.1) with 2 terms kept, and Nanbu’s formula at s = 1.5. It is seen that the 2-term result, which keeps only the
uniform (P0(l) = 1) and linear (P1(l) = l) terms, is a quite accurate approximation. In contrast, the curve from Eq. (3.4) has
significantly more curvature than the true solution. Also, it is seen that Eq. (3.4) slightly overestimates the value of the kernel
near l ffi ± 1, and slightly underestimates it near l = 0. A predictable consequence of this difference is that for values of
s ffi 1–2, the application of an operator based on this formula to isotropization by Lorentz collisions will slightly underpredict
isotropization rates (e.g., in the temperature isotropization tests in the previous section) in the first time step, such as that
seen in Figs. 2–4 and 6. The result of two applications of Nanbu’s Kernel, which is calculated in Appendix B, with times (s
values) s1, and s2 such that s1 + s2 = s is a better approximation to the analytical kernel than a single application of Nanbu’s
Kernel with time s. An example of this is also shown in Fig. 11.

4. Analytical solution for the relaxation of temperature anisotropy by Coulomb–Lorentz collisions

The problem of relaxation of a small temperature anisotropy by like-particle Coulomb collisions was studied by Kogan
[12,1]. An approximate parameterization, extending this result to Coulomb collisions of test particles with field particles
of different mass as well as to large values of the temperature difference, is given in [17]. The results of [12] and the small
temperature anisotropy limit of the result in [17] both predict an exponential temperature decay as given by Eq. (2.2). It is
seen, for example in Figs. 1 and 3, that Eq. (2.2) does not predict the temperature anisotropy decay well for m0t J 4. This
discrepancy motivates a more detailed examination of the relaxation. For the case of small mass ratio (Lorentz scattering),
this examination is greatly facilitated by the analytical result of Eq. (3.1), which allows for a closed-form expression for the
evolution valid for all times.

The temperature anisotropy can be written as
DT ¼ T? � Tk ¼ mðhv2
?=2i � hv2

k iÞ ¼ �mhv2P2ðlÞi; ð4:1Þ
where hw(v,l)i represents and integral of w (v,l) over the distribution function.
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For an initial state with Maxwellian distributions in the parallel and transverse directions, the use of a small anisotropy
approximation results in a simple and useful form for the distribution function:
Fig. 12.
(large-d
f ðv ;l; t ¼ 0Þ ¼ FmðvÞ þ df ðv;l; t ¼ 0Þ;
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Here, v2
th ¼ T=m; T is the equilibrium temperature, and m is the particle mass. By applying the kernel of Eq. (3.1), or by simply

noting that under Lorentz collisions, the P2(l) component decays as exp[�3t/ss(v)]= exp(�3tv3
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Inserting Eq. (4.2) into Eq. (4.1) and integrating over l yields
DbT ðtÞ � DTðtÞ
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It can easily be verified that
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For small t/ss, Eq. (4.3) gives
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Somewhat paradoxically, the early-time decay rate predicted by Eq. (4.4) is a factor of
ffiffiffi
2
p

greater than that of Eq. (2.2).
The quality of various approximations can be better understood by comparing them with the result of direct numerical eval-
uation of Eq. (4.3). [We have also examined approximate saddle-point evaluations of Eq. (4.3) but have found that these give
little additional insight because either a numerical evaluation of the saddle point location and other related parameters is
needed or else the quality of the resulting approximation is poor.] The results of such a comparison, between the result
of Eq. (4.3) and exponential decay with decay rates given by Eqs. (2.2) and (4.4), are shown in Fig. 12. It is seen that although
the decay with rate given by Eq. (4.4) is an accurate approximation for very early times (m0t 
 0.3), for m0t > 1 the exponential
decay with rate given by Eq. (2.2) is a much more accurate representation of Eq. (4.3). The departure of the exponential decay
with rate given by Eq. (2.2), from Eq. (4.3) for m0t > 4, as well as the value DbT ðm0t ¼ 20Þ ¼ 0:076 are both in agreement with
the numerical results shown in Figs. 1 and 3.
Comparison of the temperature anisotropy decay vs. time as predicted by Eq. (4.3) (solid curve) with exponential decay with rates given by Eq. (2.2)
ashed curve) and Eq. (4.4) (small dashed curve), on two different scales. (Frame (b) shows detail of the early-time dependence.)
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5. Improvement of Nanbu’s collision operator for Coulomb–Lorentz collisions

An improvement to Nanbu’s operator, at least for application to Lorentz (small-mass-ratio) collisions can be made based
on Eq. (3.1) and the insight gained in the studies in the previous section. We outline this improvement here, but leave imple-
mentation for future work.

It follows from the results of the previous section that an accurate approximation to the kernel for the Lorentz collision
operator can be obtained by using a matched expression in which Nanbu’s form [Eqs. (3.4) and (3.5)] is used for s 
 s0, and
Eq. (3.1) with a finite number of terms is used for s > s0. While further optimization is possible, the results shown in Figs. 7
and 9 indicate that an accurate combination is given by s0 = 0.1, and 14 terms in the sum in Eq. (3.1). In addition, for s0 > 4.0,
two terms in Eq. (3.1) give an accurate approximation, and the leading (l = 0, independent of l) term is strongly dominant.
Thus, a good approximation is:
faðl; sÞ ¼

AðsÞ
4p sinh AðsÞ exp½AðsÞl�; for s 6 0:1;
1

2p
P13

l¼0 lþ 1
2

� �
PlðlÞ exp½�lðlþ 1Þs�; for 0:1 < s 6 4:0;

1
2p
P1

l¼0 lþ 1
2

� �
PlðlÞ exp½�lðlþ 1Þs�; for s > 4:0;

8>><>>: ð5:1Þ
where A(s) is the solution of Eq. (3.5).
Further optimization studies could be used to yield an optimal upper bound m(s) for the sums in Eq. (5.1), and the fol-

lowing more general version may then be used:
faðl; sÞ ¼
AðsÞ

4p sinh AðsÞ exp½AðsÞl�; for s 6 s0;

1
2p
PmðsÞ

l¼0 lþ 1
2

� �
PlðlÞ exp½�lðlþ 1Þs�; for s > s0:

(
ð5:2Þ
Given a numerical implementation of a result such as that of Eq. (5.1) or Eq. (5.2), on a mesh in the (s,l) 2 [0,1) � [�1,1]
plane one can compute the indefinite integral
Fðl; sÞ ¼ 2p
Z l

�1
dnf ðn; sÞ;
the value of which lies between 0 and 1. Using Eq. (5.2) gives
Fðl; sÞ ¼
1

2 sinh AðsÞ ðexp½AðsÞl� � exp½�AðsÞ�Þ; for s 6 s0;

1
2

PmðsÞ
l¼0 f½Plþ1ðlÞ � Pl�1ðlÞ� � ½Plþ1ð�1Þ � Pl�1ð�1Þ�g exp½�lðlþ 1Þs�; for s > s0:

(
ð5:3Þ
where the identity
Z l

�1
dnPlþ1ðnÞ ¼

1
1þ 2l

ð½Plþ1ðlÞ � Pl�1ðlÞ� � ½Plþ1ð�1Þ � Pl�1ð�1Þ�Þ
has been used, with the convention P�1(l) = 0. In the next step F(l,s) is numerically inverted to obtain its inverse
FIðF; sÞ � F�1ðF; sÞ : ½0;1� � ½0;1Þ ! ½�1;1� � ½0;1Þ
on a mesh in the (F,s) 2 [0,1] � [0,1) plane. FI is the function needed for sampling the kernel using (pseudo)random numbers
uniformly distributed in the interval [0,1]. The resulting table of values of FI(F,s) needs to be computed only once, given a
choice of distribution of the (F,s) points on the mesh. A small preprocessor program or subroutine can be used to generate
this table either as a file to be read in by the code that does the time advance, or as an initialization step in this code before
the time advance is begun. In practice, it may be most expedient to compute and use the table directly only for intermediate
values of s, 0.1 < s < 4.0. For s 
 0.1, an analytical inversion can be used exactly as for Nanbu’s algorithm. For s � 4.0, a per-
turbative analytical calculation of the inversion can be used, based on the dominance of the first (l = 0) term in the sum in Eq.
(5.3). Keeping only the l = 0 term in Eq. (5.3) gives the leading order solution
lðF; sÞ ¼ FIðF; sÞ � F � 1:
Inserting this into the remaining terms gives a more accurate approximation:
lðF; sÞ ¼ FIðF; sÞ � F � 1� 1
2

XmðsÞ
l¼1

f½Plþ1ðF � 1Þ � Pl�1ðF � 1Þ� � ½Plþ1ð�1Þ � Pl�1ð�1Þ�g exp½�lðlþ 1Þs�;
where only a small number of terms is needed.
Having computed and stored these values, the computation of collisions during the time advance in a simulation proceeds

as follows. At any given time step, for each particle pair l with a s value sl, use a standard pseudorandom number generator to
generate a number r. Then, given this (r,sl), use either interpolation (if 0.1 < sl < 4.0) or the analytical results for FI(F,s) (for
sl 
 0.1 sl � 4.0) to find an approximation to FI(r,sl) = l. This value of l represents the cosine of the angle of the relative
velocity vector of the pair with respect to the pre-collision direction.
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For large time steps, the operator just described will produce a more accurate approximation to the Coulomb–Lorentz (or
very small-mass-ratio interspecies scattering process) than Nanbu’s original operator. The practical value of such an operator
will depend on the situation in which it is used, because in applications the (Lorentz) pitch-angle scattering process takes
place simultaneously with energy evolution due to scattering (if the mass ratio is not very small) or other processes (such
as acceleration by collective or macroscopic electric or magnetic fields). An accurate representation of such processes may
still require small frequent collisional time sub steps interspersed with sub steps that advance the effects of the other com-
peting processes.

6. Conclusions

We have investigated the accuracy of and assumptions underlying Nanbu’s collision operator [3]. It was argued that the
numerical experiments that resulted in the parameterized collision kernel of [3] were (apart from statistical and finite time-
stepping errors) numerical realizations of the Lorentz pitch-angle scattering process, for which an analytical solution for the
collision kernel has long been known [1]. It was demonstrated empirically that, consistent with this argument, Nanbu’s col-
lision operator quite accurately recovers the effects of Coulomb–Lorentz pitch-angle collisions, or processes that approxi-
mate these (e.g., interspecies charged particle collisions with very small mass ratio) even for very large values of the
collisional time step. Further, through an investigation of the analytical kernel, it was shown that Nanbu’s parameterized
kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values
of the time step. Careful numerical and analytical investigations were presented, which showed that the time dependence of
the relaxation of a temperature anisotropy by Coulomb–Lorentz collisions has a richer structure than previously thought,
and is not accurately represented by an exponential decay with a single decay rate. Finally, based on the results of our inves-
tigations of the analytical and Nanbu kernels, a practical collision algorithm was proposed that for Coulomb–Lorentz pitch-
angle collision dominated processes improves on the accuracy of Nanbu’s algorithm.
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Appendix A. Evaluation of the scattering angle variance versus the minimum deflection angle

The integral h2
1

� �
¼ 8

R 1
0 ½tan�1ðhmin=2gÞ�2gdg [3], which is used to relate the variance in Nanbu’s experiments to the min-

imum collisional deflection angle, can be evaluated using
Fig.
8
Z 1

0
½tan�1ðhmin=2gÞ�2gdg ¼ 2h2

min

Z 1

hmin=2
½tan�1ðyÞ�2y�3dy: ðA:1Þ
An accurate approximation to this for sufficiently small hmin can be obtained using tan(y) � y for y� 1, so that
h2
1

� �
� 2h2

min

Z e

hmin=2
y�1dyþ

Z 1

e
½tan�1ðyÞ�2y�3dy

( )
¼ 2h2

min logð2e=hminÞ þ
Z 1

e
½tan�1ðyÞ�2y�3dy

 �
;

where hmin/2 < e� 1. Setting e = 0.1 gives
h2
1

� �
� 2h2

minflogð0:2=hminÞ þ 2:57145g; ðA:2Þ
13. hh2
1i (in radians squared) vs. hmin (in degrees) from Eq. (A.2) (dashed curve) and from accurate direct numerical integration using Eq. (A.1).
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Comparing this with a direct numerical evaluation gives excellent agreement up to hmin � 30� or 0.5 radians, as shown in
Fig. 13. Shown also in this figure is the value (in degrees) used for 2e, at which the logarithm term is zero.

Appendix B. Convolution of two Nanbu Kernels

Here, we evaluate the convolution of two Nanbu Kernels
N2ð�; s1; s2Þ ¼ Nð�; s1Þ � Nð�; s2Þ;
where N(l,s) is given by Eqs. (3.4) and (3.5). The simplicity of the Nanbu Kernel enables a straightforward evaluation of this
convolution in closed form as a one-dimensional integral, which is easily evaluated numerically. Denote the two reference
points and one integration point on the unit sphere, respectively as O, P and P

0
, given by the unit vectors and polar coordi-

nates ô : ðh ¼ 0Þ; p̂ : ðh;/Þ, and p̂0 : ðh0;/0Þ. Then
N2ðl; s1; s2Þ ¼
Z

dSP0Nðl0; s1ÞNðp̂ � p̂0; s2Þ;
where dSP0 ¼ 2pdl0d/0 is an area element for integration over points P0 on the unit sphere, and l0 = cosh0. Using
p̂ � p̂0 ¼ sin h sin h0 cosð/� /0Þ þ cos h cos h0;
integrating over /0, and using
H

d/0exp (acos/
0
) = 2pI0(a), where I0 denotes the modified Bessel function of order zero, gives
N2ðl; s1; s2Þ ¼ 2pCðA1ÞCðA2Þ
Z 1

�1
dl0 exp½ðA1 þ A2lÞl0�I0 A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þð1� l02Þ

q� �
; ðB:1Þ
where
CðAiÞ ¼
AðsiÞ

4p sinh AðsiÞ
: ðB:2Þ
Eqs. (B.1) and (B.2) have been coded in Mathematica to yield the medium dashed curve in Fig. 11.
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