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Abstract In this paper we study the interaction of a fluid with a wall in the framework of
the kinetic theory. We consider the possibility that the fluid molecules can penetrate the wall
to be reflected by the inner layers of the wall. This results in a scattering kernel which is a
non-local generalization of the classical Maxwell scattering kernel. The proposed scattering
kernel satisfies a global mass conservation law and a generalized reciprocity relation. We
study the hydrodynamic limit performing a Knudsen layer analysis, and derive a new class
of (weakly) nonlocal boundary conditions to be imposed to the Navier–Stokes equations.

Keywords Boltzmann equation · Hydrodynamic limit · Navier–Stokes flow · Nonlocal
boundary conditions

1 Introduction

The motivation for this paper comes from the fact that the problem of finding the appropriate
boundary conditions for the Navier–Stokes equations is still an active area of research and
poses many interesting questions.

In fact, despite of their overwhelming success in most practical cases, the no-slip bound-
ary conditions usually imposed for the Navier–Stokes Equations (NSE), fail to correctly
describe the complicated interactions between the fluid and a solid boundary in many dif-
ferent situations like geophysical models,turbulence modeling and micro and nano-fluidics.

The aim of this paper is to derive non-local boundary conditions for the Navier–Stokes
equations starting from a kinetic description based on the Boltzmann equation. The relation
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of NSE with the Boltzmann equation has been discussed by many authors (see [5, 22] and
references therein): it is well known that the NSE can be obtained performing an asymptotic
expansion of the Boltzmann equation in the limit as the Knudsen number tends to zero. The
different boundary conditions (no-slip, free-slip, Robin) are obtained from the properties of
the solution of the Boltzmann half space problem inside the Knudsen layer (the theory of
the asymptotic limit of the boundary-value problem for a steady gas is treated, for example,
in [11, 16, 20, 21]).

Starting from the Boltzmann equation we shall derive Robin-type boundary conditions
for the macroscopic variables which take into account the effect of nonlocal interactions
at the wall. We shall investigate the steady behavior of the fluid on the basis of the Boltz-
mann equation on a 3-dimensional half space. We shall introduce a simple model for the
interaction of the fluid-boundary interaction whose corresponding scattering kernel gener-
alizes the classical Maxwell’s interaction law. The proposed kernel is shown to satisfy a
nonlocal mass conservation and a generalized reciprocity relation. We shall also perform an
asymptotic expansion in the Knudsen number leading, in the hydrodynamical limit, to new
boundary conditions for the macroscopic variables.

The core of this paper consists of Sect. 4 and Sect. 5 where we propose a model for
the interaction of fluid particles with a wall which, we believe, can be of interest in micro
and nano-fluidics. The problem of the derivation of the appropriate boundary conditions in
micro-fluidics or nano-fluidics has recently attracted a lot of interest both from the experi-
mental (see e.g. the review in [13]) and the theoretical point of view. Molecular dynamics
(MD) has become an important tool for investigating the behavior of a fluid at the boundary.
In the MD setting the wall is considered as a lattice of resting or oscillating particles inter-
acting with the fluid particles through a (e.g. Lennard–Jones) potential. The same kind of
interaction happens between fluid particles. It is impossible here to review the relevant liter-
ature on MD and we refer e.g. to [4, 6, 7, 14, 15] and to references therein. Our approach,
being based on kinetic theory, is mesoscopic, in the same spirit of [3] where the Lattice
Boltzmann Equation is considered.

Our approach is based on the idea of considering the wall as a lattice of fixed particles
through which fluid particle can penetrate to be specularly reflected by the inner layer of the
wall. The penetration probability is ruled by the Poisson distribution. Moreover, as typical
in the classical Maxwell kernel, we allow a portion of the particles to thermalize with the
wall. The interaction is described by a scattering kernel whose expression is given in (4.4),
and which represents a generalization of the classical Maxwell kernel.

The boundary conditions derived in the hydrodynamical limit for the macroscopic veloc-
ity do not contain non-local terms: the tangential component of the velocity at the boundary
satisfy a Robin boundary condition. On the other hand the boundary condition for the tem-
perature is given by a Robin boundary condition plus an extra term (weakly non local) which
is proportional to the divergence of the tangential component of the velocity.

The plan of the paper is the following: in Sect. 2 we introduce some basic notation.
In Sect. 3 the basic requirements of the scattering kernel are briefly recalled. In Sect. 4 we
propose our model scattering kernel, while in Sect. 5 we study the asymptotic limit for small
Knudsen number and we derive the boundary conditions for the fluid-dynamic variables.
The setting we shall adopt for this analysis is the Sone’s (or modified Hilbert’s) expansion
[22]. Finally, for the reader’s convenience, two appendices are inserted. In Appendix 1 the
definition and the basic properties of the collision integral are given. These properties are
used for the Knudsen layer analysis. In Appendix 2 the explicit expressions of the first and
second order Hilbert solution are given.
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2 Notation

We shall be concerned with the mathematical description of the behavior of a fluid composed
by a collection of identical point particles confined to a spatial domain Ω = R+ × R

2. Let
us introduce some notation: the X = Xi (i = 1,2,3) are the Cartesian coordinates of the
physical space, X̂1 is the unit vector normal to the boundary wall, ξ = (ξ1, ξ2, ξ3) is the
molecular velocity; f (X, ξ) is the velocity distribution function of the gas molecules; ρ is
the density, T is the temperature, p is the pressure of the gas and R is the gas constant per
unit mass. We also introduce the corresponding dimensionless quantities: let L,p0, T0 be,
respectively, the reference length, pressure and temperature and set ρ0 = p0/(RT0)

−1, then:

xi = Xi/L, ζi = ξi/(2RT0)
1/2, f̂ = f/

[
ρ0(2RT0)

−1
]
,

ρ̂ = ρ/ρ0, ui = vi/(2RT0)
1/2, p̂ = p/p0, T̂ = T/T0,

T̂w = Tw/T0, ρ̂w = ρw/ρ0, p̂w = pw/p0, (p̂w = ρ̂wT̂w),

(2.1)

where vi are the components of the gas velocity and Tw,ρw and pw are the wall temperature,
density and pressure, respectively.

We also introduce the following notation:

E(ζ ) = 1

π3/2
exp (−ζ 2), ζ = (ζ 2

i )1/2 = |ζi |, (2.2)

so that the Maxwellian distribution f0 with vi = 0,p = p0 and T = T0:

f0 = ρ0

(2πRT0)3/2
exp

(
− ξ 2

i

2RT0

)
, (2.3)

can be written in the form:

f0 = ρ0

(2πRT0)
3/2 E(ζ ). (2.4)

In what follows we shall consider the state of the gas to be close to an equilibrium state
at rest, which choose to be the Maxwellian distribution function f0 given by (2.4). The
nondimensional perturbed variables are given by:

φ =
{

f/f0 − 1,

f̂ /E − 1,
ω =

{
ρ/ρ0 − 1,

ρ̂ − 1
τ =

{
T/T0 − 1,

T̂ − 1,

P =
{

p/p0 − 1,

p̂ − 1,
τw =

{
Tw/T0 − 1,

T̂w − 1
ωw =

{
ρw/ρ0 − 1,

ρ̂w − 1,

Pw =
{

pw/p0 − 1,

p̂w − 1.
Pw = ωw + τw + ωwτw,

(2.5)

Then the steady Boltzmann equation in dimensionless form reads:

ζi

∂φ

∂xi

= 1

k
[L(φ) +J (φ,φ)], (2.6)
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where J (φ) and L(φ) are the collision integral and the linearized collision integral, respec-
tively, whose explicit expressions are given in Appendix 1;

k =
√

πλ

2L
=

√
π

2
Kn, (2.7)

Kn is the Knudsen number and λ is the mean free path of the gas molecules.
Throughout the rest of this paper we shall make use of the following notation for the

local Maxwellian distribution in the nondimensional perturbed form:

Eφe(ω,ui, τ ) = 1 + ω

π3/2(1 + τ)3/2
exp

(
− (ζi − ui)

2

1 + τ

)
− E, (2.8)

which satisfies:

L(φe) +J (φe,φe) = 0. (2.9)

The relation of the nondimensional macroscopic variables and the nondimensional ve-
locity distribution function φ are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω =
∫

φ Edζ ,

(1 + ω)ui =
∫

ζiφEdζ ,

3

2
(1 + ω)τ =

∫ (
ζ 2
i − 3

2

)
φEdζ − (1 + ω)u2

i ,

P = ω + τ + ωτ,

(2.10)

3 Gas-Surface Interaction and Scattering Kernel Requirements

Let us consider a particle hitting the wall at x1 = 0: let ζ ′ = (ζ ′
1, ζ

′
2, ζ

′
3) be the velocity of

the impinging particle referred to the wall and ζ = (ζ1, ζ2, ζ3) is the velocity of the reflected
particle. Moreover let y = (x2, x3) be the position of a point on the plane x1 = 0.

In what follows we shall always deal with the case of a simple boundary, namely a wall
where there is no mass flux across it.

Due to the very complicated mechanisms that take place between the surface layers of
the solid wall and the interaction potential of the gas molecules, one usually assumes a quite
general gas-surface interaction law of the following form:

|ζ · n|E(ζ )(1 + φ(y, ζ ))

=
∫

ζ ′ ·n<0
|ζ ′ · n|R(ζ ′ → ζ ;y)E(ζ ′)(1 + φ(y, ζ ′)) dζ ′ (x1 = 0, ζ · n > 0), (3.1)

where n is the unit vector normal to the boundary and R(ζ ′ → ζ ;y) is the scattering kernel,
i.e. the probability that a molecule impinging the wall at point y with velocity ζ ′ is scattered
with velocity between ζ and ζ + dζ . The problem of writing good boundary conditions
for the Boltzmann equation is to write a scattering kernel which correctly reproduces the
phenomena occurring at the wall.

Any physical kernel has to satisfy some conditions. Firstly, as it is a probability density,

R(ζ ′ → ζ ;y) ≥ 0 (3.2)
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must hold. The conservation of the mass at the wall (nonabsorbing and nonporous) is ex-
pressed by the following relation:

∫

ζ ·n>0
R(ζ ′ → ζ ;y) dζ = 1 (ζ ′ · n < 0), (3.3)

which, in turn, implies that the normal component of the velocity at the wall must be zero
(see Chap. III of [5]).

The last condition is the so-called Detailed Balance or Reciprocity relation, namely:

|ζ ′ · n|E[1 + φe(ζ
′)]R(ζ ′ → ζ ;y) = |ζ · n|E[1 + φe(−ζ )]R(−ζ → −ζ ′;y), (3.4)

where φe is the Maxwellian given by (2.8). It can be formulated as follows: at the equi-
librium the number of particles hitting the wall with velocity ζ ′ and scattered with velocity
ζ at point y is equal to the number of particle hitting with velocity −ζ and scattered with
velocity −ζ ′ at the same point y.

The theoretical modeling of the gas-surface interaction was first investigated by Maxwell.
He proposed a scattering kernel of the following form:

R(ζ ′ → ζ ,y) = (1 − α)δ(ζ1 + ζ ′
1)δ(ζ2 − ζ ′

2)δ(ζ3 − ζ ′
3)

+ α
2

π(T̂w)2
ζ1 exp

[
− (ζi − uiw)2

T̂w

]
,

for ζ ′
1 < 0, ζ1 > 0 (3.5)

where uiw is the wall velocity. The above model prescribes that an 1 − α fraction of the
molecules is specularly reflected at the surface of the wall, while the remaining α fraction
of the molecules is in thermal equilibrium with the wall: it gets absorbed and re-emitted
after a multiple-collision interaction with the molecules of the wall lattice. The case α = 1
corresponds to the diffuse-reflection boundary condition and the case α = 0 gives perfect
specular reflection. All the interactions are local in space: the particle hitting at point y of
the wall is re-emitted at the same position.

4 Nonlocal Scattering Kernel

In this section we want to propose a different model of the interaction between the fluid
particles and the wall. We suppose that, other than being reflected at the surface of the wall,
the fluid molecules have a non-zero probability of passing some layers of the wall without
experiencing any impact and then of being specularly reflected by some inner molecule of
the wall lattice. This introduces a nonlocality effect into the scattering kernel: in fact if the
molecule hits the wall at point y ′ on the wall x1 = 0, it will travel for some distance inside
the wall, will strike the lattice and will come out at a different point y. Since it is specularly
reflected, the impact will take place half-way between y ′ and y.

Let us first introduce the following notation. Let

y = (x2, x3), y − y ′ = ρy

(
cosαy

sinαy

)
, (4.1)

ζ y = (ζ2, ζ3) = ρζ

(
cosαζ

sinαζ

)
, ζ ′

y = (ζ ′
2, ζ

′
3) = ρ ′

ζ

(
cosαζ ′
sinαζ ′

)
, (4.2)
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where (ρy,αy) are the polar coordinates on the wall plane (x2, x3) centered in y ′, and
(ρζ , αζ ) are the polar coordinates on the wall plane (ζ2, ζ3).

Let ζ ′
y be the tangential velocity of the incident particle. If y − y ′ is parallel to ζ ′

y then
the probability of the process described above is the product of three different probabilities:
the first is the probability of the particle traveling for a distance ρy/2 = (|y −y ′|)/2 without
hitting any other molecule. The second is the probability of having an impact between ρy/2
and ρy/2 + dρy . The third is the probability of traveling again for ρy/2 without impacts.
We shall assume each process to be governed by a Poisson distribution function with 1/η as
mean value, where η is a parameter measuring the rarefaction of the wall (or the strength of
the interaction between the wall and the fluid molecules) to be chosen later.

Therefore the above mentioned probabilities are: the first one exp (−ρy/(2η)), the second
dρy/η, and the third exp (−ρy/(2η)).

When y −y ′ is not parallel to ζ ′
y then the probability is 0. This introduces a Dirac δ in the

angular variable, i.e. δ((αy − αζ ′)/ρy (the factor ρ−1
y is due to the use of polar coordinates)

which has to multiply the volume element in αζ ′ i.e. ρydαζ ′ . Finally one can write:

Knowing that the particles hits the wall
at y ′ with velocity ζ ′, the probability of
having just an impact inside the wall and
getting out at the volume element dρydαy

centered at y with velocity ζ , is:

� 1

η
exp

(
−ρy

η

)
δ(αy − αζ ′)dρydαy. (4.3)

This term will affect the specular reflection part of the scattering kernel. Notice how we are
taking as the parameter of the distribution function the quantity |y −y ′|, instead of the actual
distance traveled by the particle inside the wall. This is a simplifying assumption (that at this
level could be easily relaxed) that will make manageable the asymptotic analysis in the fluid
dynamic limit.

On the other hand, we suppose that the molecules which experience multiple scattering
inside the solid will get in thermal and mechanical equilibrium with the wall, so that, as
in the Maxwell scattering kernel, they will obey the diffuse reflection law at the boundary.
Hence the nonlocal scattering kernel which takes into account both the nonlocal specular
reflection and the diffuse reflection is given by:

R(ζ ′ → ζ ,y ′ → y) = (1 − α)δ(ζ1 + ζ ′
1)δ(ζ y − ζ ′

y)
1

η
e

− |y−y′ |
η

δ(αy − α′
ζ )

ρy

+ α
2

π(1 + τw)2
ζ1 exp

[
− (ζi − uiw)2

1 + τw

]
δ(y − y ′),

for ζ ′
1 < 0, ζ1 > 0. (4.4)

In the above equation (4.4) the constants are chosen so as to satisfy the following nonlocal
normalization condition:

∫

R2
dy

∫

ζ1>0
R(ζ ′ → ζ ;y ′ → y) dζ = 1 (ζ ′

1 < 0) (4.5)

Notice that the above condition (4.5) is the nonlocal analog of (3.3): the latter expresses a
pointwise conservation of the mass while the former requires the overall mass flux to be
conserved. It is obvious that the above scattering kernel satisfies the positivity condition
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(3.2). On the other hand one can easily verify that the reciprocity relation (3.4) is satisfied
in the following form:

|ζ ′
1|E(ζ ′)[1 + φe(ζ

′)]R(ζ ′ → ζ ;y ′ → y)

= |ζ1|E(ζ )[1 + φe(−ζ )]R(−ζ → −ζ ′;y → y ′), (4.6)

where φe is the Maxwellian given by (2.8). It can be formulated as follows: at equilibrium the
number of particles hitting the wall at point y ′ with velocity ζ ′ and scattered with velocity ζ

at point y is equal to the number of particle hitting with velocity −ζ at point y and scattered
with velocity −ζ ′ at the point y ′.

4.1 Boundary Conditions for the Distribution Function

We want to find the boundary condition for φ at the wall corresponding to the scattering
kernel R(ζ ′ → ζ ;y ′ → y) given by (4.4). We impose a nonlocal analog of (3.1), namely we
require at the wall the following relation to hold:

|ζ1|E[1 + φ(y, ζ )]

=
∫

dy ′
∫

ζ ′
1<0

|ζ ′
1|R(ζ ′ → ζ ;y ′ → y)E[1 + φ(y ′, ζ ′)]dζ ′ (x1 = 0, ζ · n > 0), (4.7)

Using the expressions given by (4.4) in (4.7) one gets the following boundary condition in
x1 = 0:

φ(ζ ,y) = (1 − α)

∫ ∞

0
dρy

1

η
e

− ρy
η φ

(
−ζ1, ζ y,y − ρy

(
cosαζ

sinαζ

))
+ αφe(σ̌w,uw, τw)(y, ζ )

for ζ ′
1 < 0, ζ1 > 0, (4.8)

where φe(σ̌w,uw, τw) are given by:

Eφe(σ̌w,uw, τw) = 1 + σ̌w

π3/2(1 + τw)3/2
exp

(
− (ζi − uiw)2

1 + τw

)
− E, (4.9)

σ̌w = −2

(
π

1 + τw

)1/2 ∫

ζ1<0
ζ1E(ζ )φ(ζi, x2) dζ +

(
1

1 + τw

)1/2

− 1. (4.10)

5 The Asymptotic Analysis for Small Knudsen Number

The aim of this Section is to analyze the limit Kn → 0 starting from the kinetic description
given by (2.6) with the boundary condition (4.8). Our aim is to get the set of boundary
conditions for the fluid dynamic variables in the leading order, namely O(Kn). We shall
consider the case where the accommodation coefficient is of the same order of magnitude of
the Knudsen number. That is, we set:

ε =
√

π

2
Kn (= k) � 1, (5.1)

α = βε, (5.2)
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where β is a given constant and ε is a small parameter. The case where the accommodation
coefficient α = O(ε), was tackled in [1] where, on the basis of the linearized BKW equation
with an arbitrary but smooth shaped boundary, the Stokes system with mixed-type boundary
conditions was derived. Recently the small accommodation coefficient case was analyzed
in [2], where the authors studied the cylindrical Couette flow of a rarefied gas using the
nonlinear Boltzmann equation.

We shall choose:

η = aε, a > 0, (5.3)

which means that the mean free flight of the fluid particles inside the wall is of the same
order of the mean free path inside the fluid.

The asymptotic analysis of the boundary value problem (2.6) and (4.8), together with
(5.1–5.2), will give, to the leading order, the set of Navier–Stokes equations and its appro-
priate boundary conditions. Since the procedure to be carried out in order to derive the fluid
dynamic equations is described in detail in the book of Sone [22], here we shall only briefly
outline the main steps.

We shall investigate the asymptotic behavior of the solution of the boundary value prob-
lem (2.6) and (4.8) when Kn → 0. We want to describe the case of finite Reynolds number,
namely Re = O(1), so that, according to the Von Karmann relation (Ma ∝ ReKn), the de-
viation of the system from a uniform equilibrium state at rest has to be of the same order
as Kn. This accounts to choose φ = O(ε). In terms of the macroscopic parameters, the as-
sumption on the velocity distribution function requires that the nondimensional temperature
and density variation are O(ε).

First, putting aside the boundary condition (4.8), we look for a moderately varying so-
lution of (2.6) (which we shall denote by φS ), in the form of a power series of ε, which
satisfies ∂φS/∂xi = O(φS):

φS = φS1ε + φS2ε
2 + · · · , (5.4)

where the series starts from the first order in ε since φ is assumed to be O(ε), and the
component function φSm is a quantity of order of unity. This φS is called the S (or Hilbert)
solution.

The relation between the macroscopic variables and the distribution function is the same
as (2.10), except for the subscript S.

Corresponding to the expansion (5.4), the macroscopic variables ωS,uiS, τS, . . . are also
expanded in ε:

hS = hS1ε + hS2ε
2 + · · · , (5.5)

where h represents ω,ui, τ,P and the component function hSm is a quantity of the order
of unity. The relation between the component function hSm of the macroscopic variable hS

and the component function φSr is obtained by substituting in (2.10), (5.4) and (5.5) and by
equating the coefficients of the same power of ε.

Substituting the expansion (5.4) into the Boltzmann equation (2.6) and arranging the
same order quantities in ε, we obtain a sequence of integral equations for φSm, which can
be solved from the lowest order. For the leading order we get L(φS1) = 0, whose solution is
given by a local Maxwellian distribution.

As for the higher order terms, one gets the inhomogeneous Boltzmann equation, namely a
linear integral equation containing the linearized collision integral L, with inhomogeneous
terms consisting of the earlier terms of the expansion. The corresponding homogeneous
equation, namely L(φSm) = 0, has five independent solutions 1, ζi, ζ

2
i . This implies that, for
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the inhomogeneous equation to have a solution, its inhomogeneous term should satisfy the
solvability conditions:

∫
gζi

∂φSm−1

∂xi

Edζ = 0 (5.6)

where g = 1, ζi,or ζ 2
i . The application of this condition to φS1, φS2, . . . in the solution

process of the sequence of the integral equations from the lower order, leads to the fluid
dynamic equations for hm in (5.5).

The explicit expressions of φS1 andφS2 are explicitly given in Appendix 2; rearranging
the equations obtained from the series of the solvability conditions (5.6), one gets the set
of equations that determine the component functions of the expansion of the macroscopic
variables:

∂PS1

∂xi

= 0, (5.7)

∂uiS1

∂xi

= 0, (5.8)

ujS1
∂uiS1

∂xj

= −1

2

∂PS2

∂xi

+ γ1

2

∂2uiS1

∂x2
j

, (5.9)

uiS1
∂τS1

∂xi

= γ2

2

∂2τS1

∂x2
i

. (5.10)

where i, j = 1,2,3, and the expression of γ1 and γ2 are given in Appendix 2.
Equation (5.7) is the momentum equation at the order ε and imposes PS1 to be a constant.

The pressure variation at order ε must vanish for a flow field with Mach number of order ε to
be established. The next equations (5.8–5.10), which determine ωS1, uiS1, τS1 and PS2 are the
Navier-Stokes equations for an incompressible fluid, with γ1 and γ2 as the nondimensional
viscosity and thermal conductivity whose explicit expressions are given in Appendix 2.

We now focus on the derivation of the set of the boundary conditions and therefore look
for an asymptotic expansion of the boundary conditions (4.8).

Making the following change of variable z = ρy/(aε) in (4.8), where a is the constant
introduced in (5.3), one gets:

φ(ζ ,y) = (1 − εβ)

∫ ∞

0
dze−zφ

(
−ζ1, ζ y,y − aεz

(
cosαζ

sinαζ

))
+ εβφe(σ̌w,uw, τw)(y, ζ )

for ζ ′
1 < 0, ζ1 > 0. (5.11)

If one now expands the function φ in power series of ε and retains only the terms O(ε)

(which is sufficient to get the boundary conditions at order O(ε2) since φ = O(ε)), the
following boundary condition is obtained:

φ(ζ ,y) = (1 − εβ)φ(−ζ1, ζ y,y) + εβφe(σ̌w,uw, τw)(y, ζ )

− aε(1 − εβ)

(
cosαζ

sinαζ

)
· ∂φ

∂y

∣
∣∣
∣
ε=0

(−ζ1, ζ y,y) + O(ε2),

for ζ ′
1 < 0, ζ1 > 0. (5.12)
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We notice that the first row in (5.12) is the usual Maxwell boundary condition, while the
second row is the effect of the nonlocality of the scattering kernel.

In all the above procedure we are considering the steady case. In the unsteady case one
cannot ignore the fact that the particle, entering at location y ′ would get out at y with a time
delay. If one would consider this effect, then, in the asymptotic expansion (5.12), one would
get the time derivative of the φ.

5.1 Boundary Conditions for the Fluid Dynamic Variables

We now take into account the boundary conditions (5.12) that were put aside in the previous
section when the distribution function φS was derived. Since φS1 is a local Maxwellian given
by (8.1), it can be made so as to satisfy the boundary conditions (5.12) at order ε. In other
words, provided that

u1S1 = u1w1 = 0, (5.13)

φS1 satisfies the boundary conditions in the leading order, i.e.

φS1(ζ ,y) = φS1(−ζ1, ζ y,y). (5.14)

However, the next order term φS2, in no longer a Maxwellian (see (8.2)), so that, as in the
usual situation, it cannot satisfy the boundary conditions at order ε2. This is not surprising as
the Boltzmann equation (2.6) is of singular type. To obtain the solution of the boundary value
problem we need to introduce a correction close to the boundary, the so-called Knudsen
layer. We shall put the solution in the form:

φ = φS + φK, (5.15)

where

φK = ε2φK2 + ε3φK3 + · · · , (5.16)

is the Knudsen solution, which varies appreciably in a thin layer of thickness O(ε) adjacent
to the boundary (ε∂φK/∂x1 = O(ε)). We stress the fact that the expansion starts form order
ε2 because φS1 could satisfy the boundary conditions at order ε. Introducing the normal
stretched variable χ = x1/ε, so that φK = φK(ζ , χ,y) and substituting (5.14) into (2.6)
with (5.4) and (5.16), one gets the equation and boundary conditions for φK2:

ζ1
∂φK1

∂χ
= L(φK2) (5.17a)

φK2(ζ ,y) = − φS2(ζ ,y) + φS2(−ζ1, ζ y,y) + φK2(−ζ1, ζ y,y)

+ β

[
σ̌w1 − ωS1 + 2ζi(uiw1 − uiS1) +

(
ζ 2
i − 3

2

)
(τw1 − τS1)

]

− a

(
cosαζ

sinαζ

)
· ∂φ

∂y

∣
∣∣
∣
ε=0

(−ζ1, ζ y,y), for ζ1 > 0 at χ = 0. (5.17b)

where the macroscopic quantities appearing in φe have been expanded in ε and

σ̌w1 = 1

2
(τS1 − τw1) + ωS1.
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Equations (5.17a–5.17b) are the half-space boundary value problem of the linearized Boltz-
mann equation.

In order to get the boundary conditions for the fluid dynamic variables we use the orthog-
onality condition (the analog of (5.6)) for φK2:

∂

∂χ

∫
gζ1φK2Edζ = 0, for χ ≥ 0 (5.18)

from which
∫

gζ1φK2E dζ = 0, ∀χ ≥ 0, (5.19)

where g = 1, ζi , or ζ 2
i are the collision invariants. We now evaluate (5.19) at the boundary

χ = 0, so that φK2 is given by (5.17b), and the explicit expressions of φS1 and φS2 given in
Appendix 2 are used.

When we evaluate (5.19) for g = 1, we get the following condition:

u1S2 + a

4

(
∂u2S1

∂x2
+ ∂u3S1

∂x3

)
= 0. (5.20)

This means that at second order in the mean free-path the no-flux condition for the normal
velocity is not satisfied. However an integration shows that the zero total flux condition
(throughout the whole wall) is satisfied.

When we consider (5.19) for g = ζ2, use the explicit expression for φS1 and evaluate the
integrals over the velocities, we get:

√
πγ1

∂u2S1

∂x1
+ 2β(u2S1 − u2w1) = 0. (5.21)

Analogously, when one evaluates (5.19) for g = ζ3, one gets:

√
πγ1

∂u3S1

∂x1
+ 2β(u3S1 − u3w1) = 0. (5.22)

Finally, evaluating (5.19) for g = ζ 2, one obtains the following boundary condition for the
temperature:

γ2
∂τS1

∂x1
− 4

5
√

π
β(τS1 − τw1) − 1

2
a

(
∂u2S1

∂x2
+ ∂u3S1

∂x3

)
= 0. (5.23)

The above condition shows that a tangential divergence of the velocity can create a heat
flux through the wall also in absence of thermal gradients. This is an effect (weakly non-
local) of the non-local character of the fluid-wall interaction.

Equations (5.13), (5.21), (5.22) and (5.23) are the boundary conditions for the fluid dy-
namic equations (5.7–5.10). Equation (5.13) is the usual no-flux boundary condition. Equa-
tions (5.21–5.22) are the Robin boundary conditions for the tangential component of the
velocity. Equation (5.23) is the usual Robin boundary condition for the temperature plus an
extra term which is proportional to the tangential divergence of the velocity.
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6 Concluding Remarks

In this paper we have considered the possibility of non-local interaction of the fluid particle
with the wall molecules. The non-locality arose as the consequence of the possibility of the
penetration of the fluid particles through the wall lattice followed by a specular reflection.
The model resulted of in a non-local scattering kernel, whose expression is given in (4.4).

In the hydrodynamic limit we assumed the penetration length inside the wall to be of the
same order of the mean free path inside the fluid. The Knudsen layer analysis led to a set
of boundary conditions for the Navier–Stokes equations: (5.13) which is the usual no-flux
boundary condition, (5.21–5.22) which are the classical Robin boundary conditions for the
tangential velocity, and (5.23) for the temperature flux where the effect of the non-locality
shows as a heat flux induced by the velocity gradients.

A similar analysis starting from more realistic gas-surface interaction models could also
be of interest. In fact, the criticisms opposed to the Maxwell scattering kernel [8, 17–19] sug-
gest to take into account the case when more than one accommodation coefficient is present
(see the Cercignani–Lampis model [8–10], and the anisotropic scattering kernel [12]). This
will be the subject of a subsequent work.
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Appendix 1: The Collision Integral

The collision integral J (φ,ψ) is given by:

J (φ,ψ) = 1

2

∫
E∗(φ′ψ ′

∗ + φ′
∗ψ

′ − φψ∗ − φ∗ψ)B̂ dΩ(α)dζ ∗, (7.1a)

φ = φ(ζi), φ∗ = φ(ζi∗), φ′ = φ(ζ ′
i ), φ′

∗ = φ(ζ ′
i∗), (7.1b)

where ζ ′
i and ζ ′

i∗ are related to ζi and ζi∗ by

ζ ′
i = ζi + αiαj (ζj∗ − ζj ), ζ ′

i∗ = ζi + αi∗αj (ζj∗ − ζj ), (7.1c)

αi is a unit vector expressing the variation of the direction of the molecular velocity owing
to an intermolecular collision, dΩ(α) is the solid-angle element in the direction of αi and
B̂ = B̂(|αi(ζi∗ − ζi)|/|(ζk∗ − ζk)|, |(ζi∗ − ζi)|), generally depends on T0 as well as on the
intermolecular potential. For hard-sphere gas

B̂ = |αi(ζi∗ − ζi)|
4(2π)1/2

; (7.2)

dζ ∗ = dζ∗1dζ∗2; the domain of integration in (7.1a) is all directions of α and the whole
space of dζ ∗ (see Sect. 2.9 in [22]).

The linear part of the collision integral, called the linearized collision integral L(φ) is
given by:

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dζ ∗. (7.3)
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The operator J is related to L in the following way:

2J (1, φ) = L(φ). (7.4)

Moreover the operator L satisfies the following relations:
∫

Eψ(ζ )L(φ) dζ = 1

4

∫
EE∗(ψ + ψ∗ − ψ ′ − ψ ′

∗)(φ
′ + φ′

∗ − φ − φ∗)B̂ dΩ(α) dζ ∗ dζ ,

for any φ and ψ, (7.5)
∫

g(ζ )L(φ)E dζ = 0 for any φ, (7.6)

L(g(ζ )) = 0, (7.7)

where g(ζ ) is one of the collision invariants 1, ζi, or ζ 2
i . Moreover, from (7.5), it follows

that the operator L is selfadjoint. Finally:
∫

g(ζ )J (φ,ψ)E dζ = 0 for any φ and ψ. (7.8a)

∫
g(ζ )L(φ)E dζ = 0 for any φ. (7.8b)

Appendix 2: Explicit Expressions of φS1 and φS2

The first-order S-solution φS1 is given by:

φS1 = ωS1 + 2ζiuiS1 +
(

ζ 2
i − 3

2

)
τS1. (8.1)

This is the first term of the expansion of the perturbed Maxwellian φe(ωS,uiS, τS)(= φeS)

in terms of ε.
The second-order S-solution φS2 is given by:

φS2 = φeS2 − ζiζjB(ζ )
∂uiS1

∂xj

− ζiA(ζ )
∂τS1

∂xi

, (8.2)

where φeS2 is the second term of the expansion of the perturbed Maxwellian φeS and the
functions A(ζ) and B(ζ ) are the solutions of the following integral equations:

⎧
⎪⎪⎨

⎪⎪⎩

L[ζiA(ζ )] = −ζi

(
ζ 2
j − 5

2

)
,

subsidiary condition
∫ ∞

0
ζ 4A(ζ) exp (−ζ 2) dζ = 0,

L
[(

ζiζj − 1

3
ζ 2
k δij

)
B(ζ )

]
= −2

(
ζiζj − 1

3
ζ 2
k δij

)
.

The coefficients γ1 and γ2 occurring in the Navier–Stokes equations (5.8–5.10) are given
by:

γ1 = I6(B), γ2 = 2I6(A), In(Z) = 8

15
√

π

∫ ∞

0
ζ nZ(ζ ) exp (−ζ 2) dζ. (8.3)
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