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Summary. Epitaxy is the growth of a thin film by attachment to an existing sub-
strate in which the crystalline properties of the film are determined by those of
the substrate. In heteroepitaxy, the substrate and film are of different materials,
and the resulting mismatch between lattice constants can introduce stress into the
system. We have developed an island dynamics model for epitaxial growth that is
solved using a level set method. This model uses both atomistic and continuum scal-
ing, since it includes island boundaries that are of atomistic height, but describes
these boundaries as smooth curves. The strain in the system is computed using
an atomistic strain model that is solved using an algebraic multigrid method and
an artificial boundary condition. Using the growth model together with the strain
model, we simulate pattern formation on an epitaxial surface.

1 Introduction

Epitaxy is the growth of a thin film on a substrate in which the crystal proper-
ties of the film are inherited from those of the substrate. Since an epitaxial film
can (at least in principle) grow as a single crystal without grain boundaries
or other defects, this method produces crystals of the highest quality.

The geometry of an epitaxial surface consists of step edges and island
boundaries, across which the height of the surface increases by one crys-
tal layer, and adatoms which are weakly bound to the surface. Epitaxial
growth involves deposition, diffusion, and attachment of adatoms on the
surface. Deposition is from an external source, such as a molecular beam.
The principal dimensionless parameter (for growth at low temperature) is
the ratio D/(a4F ), in which a is the lattice constant and D and F are the
adatom diffusion coefficient and deposition flux. It is conventional to refer
to this parameter as D/F , with the understanding that the lattice constant
serves as the unit of length. Typical values for D/F are in the range of
104–108.
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2 Island Dynamics

Burton, Cabrera, and Frank [2] developed the first detailed theoretical descrip-
tion for epitaxial growth. In this “BCF” model, the adatom density solves a
diffusion equation with an equilibrium boundary condition (ρ = ρeq), and
step edges (or island boundaries) move at a velocity determined from the
diffusive flux to the boundary. Modifications of this theory were made, for
example in [11], to include line tension, edge diffusion, and nonequilibrium
effects. These are “island dynamics” models, since they describe an epitaxial
surface by the location and evolution of the island boundaries and step edges.
They employ a mixture of coarse graining and atomistic discreteness, since
island boundaries are represented as smooth curves that signify an atomistic
change in crystal height.

Adatom diffusion on the epitaxial surface is described by a diffusion equa-
tion of the form

∂tρ−D∇2ρ = F − 2dNnuc/dt (1)

in which the last term represents loss of adatoms due to nucleation, and des-
orption from the epitaxial surface has been neglected. Attachment of adatoms
to the step edges and the resulting motion of the step edges are described by
boundary conditions at an island boundary (or step edge) Γ for the diffusion
equation and a formula for the step-edge velocity v. The simplest of these is

ρ = ρ∗ (2)
v = D[∂ρ/∂n]

in which the brackets indicate the difference between the value on the upper
side of the boundary and the lower side. Two choices for ρ∗ are ρ∗ = 0,
which corresponds to irreversible aggregation in which all adatoms that hit the
boundary stick to it irreversibly, and ρ∗ = ρeq for reversible aggregation. For
the latter case, ρeq is the adatom density for which there is local equilibrium
between the step and the terrace [2]. Numerical details on implementation of
the level set method for thin film growth are provided in [5].

2.1 Nucleation

For the case of irreversible aggregation, a dimer (consisting of two atoms) is
the smallest stable island, and the nucleation rate is

dNnuc

dt
= Dσ1〈ρ2〉, (3)

where 〈·〉 denotes the spatial average of ρ(x, t)2 and

σ1 =
4π

ln[(1/α)〈ρ〉D/F ]
(4)
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is the adatom capture number as derived in [1]. The parameter α reflects the
island shape, and α � 1 for compact islands. Expression (3) for the nucleation
rate implies that the time of a nucleation event is chosen deterministically.
Whenever NnucL

2 passes the next integer value (L is the system size), a new
island is nucleated. Numerically, this is realized by raising the level set function
to the next level at a number of grid points chosen to represent a dimer.

The choice of the location of the new island is determined by probabilistic
choice with spatial density proportional to the nucleation rate ρ2. This proba-
bilistic choice constitutes an atomistic fluctuation that must be retained in the
level set model for faithful simulation of the epitaxial morphology. For growth
with compact islands, computational tests have shown additional atomistic
fluctuations can be omitted [16].

Additions to the basic level set method, such as finite lattice constant
effects and edge diffusion, are easily included [17]. The level set method with
these corrections is in excellent agreement with the results of kinetic Monte
Carlo (KMC) simulations.

2.2 The Level Set Method

Within the level set approach, the union of all boundaries of islands of height
k + 1, can be represented by the level set ϕ = k, for each k. For example, the
boundaries of islands in the submonolayer regime then correspond to the set
of curves ϕ = 0. The function φ is the level set function that evolves according
to

∂φ

∂t
+ v|∇φ| = 0. (5)

All the physical information is in the normal component v of the velocity
function. Islands grow because atoms diffuse toward and attach to island
boundaries, and shrink because they can detach from an island boundary.

3 Discrete Elasticity

In heteroepitaxy, strain is introduced into the epitaxial system due to the
lattice mismatch between the two constituents of the material. Because of
the strain, atoms are displaced by a vector u from their lattice position. The
following discussion of atomistic strain and stress follows that in [19].

To describe the strain energy at each atom, i = (i, j, k), introduce the
translation operators, T±

k , and the discrete difference operators, D±
k , D0

k,
defined as follows:

T±
k f(i) = f(i± ek),

D+
k f(i) =

(T+
k − 1)f(i)

h
,



Growth and Pattern Formation for Thin Films 69

D−
k f(i) =

(1− T−
k )f(i)
h

,

D0
kf(i) =

(T+
k − T−

k )f(i)
2h

,

where h is the lattice constant and ek is the vector in the kth direction for k =
1, 2, 3 with ‖ek‖ = h. Throughout this paper, we assume the lattice constant
h = 1 for simplicity. We use i for the depth-like index, with −∞ < i ≤ n.
Here n is the maximum height of the material. An ABC is sought at i = 0,
assuming that there is no force for i < 0.

Let u(i) = (uk(i))k=1,...,d be the displacement at the discrete point i
relative to an equilibrium lattice. The discrete strain components defined be-
low ((6) and (7)) can be used to describe the discrete elastic energy. For
k, � = 1, 2, 3 and p, q = ±,

S±
k	(u(i)) = D±

	 uk(i), (6)

Spq
k	 (u(i)) =

1
2
(Dq

	uk(i) +Dp
ku	(i)). (7)

The discrete energy density at a point i is then given by

E(i)(u,u) =
∑
k,p

αp
k(S

p
kk(u))2 +

∑
k �=	,p,q

{
2βpq

k	 (S
pq
k	 (u))2 + γpq

k	S
p
kk(u)Sq

		(u)
}
.

The total energy is the sum

E =
∑
i

E(i). (8)

The atomistic strain is determined by minimizing this energy with respect to
variations in u.

An effective numerical method for solving the atomistic strain equations
using an algebraic multigrid method was developed in [4]. Moreover an artifi-
cial boundary condition can be imposed in the substrate close to the interface
with the film, to greatly accelerate the computation [10].

4 Directed Self-Assembly

Regular patterns of nanoscale features, such as quantum dots [6,7,12], on an
epitaxial surface are of considerable interest for possible applications, ranging
from memory and logical devices to lasers. Features of this size are difficult to
obtain by standard “top-down” approaches, such as lithography. The sponta-
neous growth of quantum dot arrays is a promising “bottom-up” approach,
but it has proved difficult to control the size and spacing of quantum dots
obtained in this way. Directed self-assembly is an intermediate approach, in
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which formation of the desired patterns is guided by prepatterning of the
epitaxial system. For example, subsurface dislocation arrays have been sug-
gested as a prepatterning method [8,18]. These buried dislocations introduce
a long-range strain field, which alters the potential energy surface (PES) of
the system. Similarly, islands that are capped by a buffer layer of a different
material introduce a long-range strain field. It has been shown by density-
functional theory (DFT) calculations for metal systems [15] and semiconduc-
tor systems [14] that both the adsorption energy Ead and the transition energy
Etrans of the PES change upon strain.

We model epitaxial growth on a surface with a spatially varying, anisotropic
PES, using the following modification of the adatom diffusion equation (1)

∂ρ

∂t
= F +∇ · (D∇ρ)− 2

dN
dt

+∇ ·
(

ρ

kBT
D(∇Ead)

)
. (9)

In (9), D is a diffusion tensor where the diagonal entries are labeled Di(x)
and Dj(x), and correspond to diffusion along the two directions i and j.
For simplicity no other direction for diffusion is included (but could easily
be incorporated). The last term is the thermodynamic drift, where kB is the
Boltzmann constant, and T is the temperature. We enforce a boundary condi-
tion ρ(x) = ρeq(Ddet(x),x), where Ddet(x) is a (spatially varying) detachment
rate [3].

We assume a simple sinusoidal variation of Ead and Etrans. Figure 1 shows
the resulting patterns for PES with spatial variation that is one dimensional
(left) and two dimensional (right). These simulation results bear a striking
resemblance to the quantum dot patterns obtained in the experimental results
of [8].

Fig. 1. Pattern formation for monolayer height islands due to a spatially varying
PES, with sinusoidal variation in 1D (left) and 2D (right)
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Fig. 2. Morphologies at coverages Θ = 0.1 ML (left) and Θ = 0.3 ML (right) obtained
with a PES that has a much narrower variation

The morphologies shown so far were all obtained at a submonolayer
precoalescence coverage of Θ = 0.2 ML and with a PES that varies sinu-
soidally. Figure 2 shows the patterns that are obtained by a function that has
sharper peaks that those of a sine function. The resulting islands at coverage
Θ = 0.1 monolayer (ML) are highly aligned. Moreover, at Θ = 0.3 ML, all the
islands that are aligned along the j-direction have coalesced in this direction,
forming monolayer height “wires.” For more details on these computations,
see [13].

5 Conclusions

The island dynamics/level set method is capable of simulating epitaxial
growth with processes such as adatom detachment from islands that would
slow down other approaches. It can also be effectively combined with an atom-
istic strain code to simulate heteroepitaxial growth. The combined method can
be used to study pattern formation due to strain in self-assembly and directed
self-assembly.
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