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Layered nanocrystals consist of a core of one material surrounded by a shell of a second ma-

terial. We present computation of the atomistic strain energy density in a layered nanocrystal,

using an idealised model with a simple cubic lattice and harmonic interatomic potentials.

These computations show that there is a critical size r∗
s for the shell thickness rs at which

the energy density has a maximum. This critical size is roughly independent of the geometry

and material parameters of the system. Interestingly, this critical size agrees with the shell

thickness at which the quantum yield has a maximum, as observed in several systems and

thus leads one to support the hypothesis that maximal quantum yield is strongly correlated

with maximal elastic energy density.

1 Introduction

Layered nanocrystals consist of a core of one material surrounded by a shell of a second

material. Synthesis of layered nanocrystals with precise control over their size and shape

has been achieved by a number of research groups [1, 4, 5, 6] and provides an effective

method for designing material systems with desired optoelectronic properties [4]. In par-

ticular, the photostability (hole confinement in the core), electronic accessibility (electron

spreading into the shell), and high quantum yield make these core–shell nanocrystals very

attractive for use in optoelectronic devices [6].

Because of the small size of these systems, their atomic structure is epitaxial in many

cases. Lattice mismatch between the materials in the core and the shell leads to elastic strain

in a layered nanocrystal. This strain has both structural and optoelectronic consequences.

If the strain is large enough, then it is relieved by irregular growth of the shell [4]; i.e., the

epitaxial structure is lost. As a result, the shell may break off from the core [4]. Quantum

yield for a layered nanocrystal has been found to correlate with strain [1].

The present study employs a simple model for the structure and strain of a layered

nanocrystal. Simulation of this model for a range of geometric and elastic parameters

shows that there is a critical shell size at which strain has maximal influence. Moreover,

this critical shell size correlates well with the shell size at which quantum yield is maximal.

We shall show that the elastic energy density of a nanocrystal is concentrated near the

interface between core–shell and that its maximal value as a function of shell thickness has

a peak with small shell thickness. We define this shell thickness as critical shell thickness

and compare and contrast these results with the known photoluminescence quantum yield
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results from experiments in [6]. Furthermore, we examine the sensitivity of the critical

shell thickness to material parameters and the size of core.

The strain model is presented in Section 2, and the computational results of the resulting

strain for a nanocrystal are presented in Section 3. Section 4 contains a discussion of the

results and their implications. Conclusions and prospects for further work are discussed

in Section 5.

2 Atomistic strain model

A typical nanocrystal contains a relatively small number of atoms (i.e. several thousand

or less) so that continuum elasticity is not appropriate. We employ a lattice statics model,

consisting of atoms whose positions are displaced from a regular grid. Since the goal of

this study is qualitative properties of nanocrystals, an idealised model is appropriate. For

the geometry, we use a simple cubic lattice, with different equilibrium lattice constants

for the core and shell materials. Since all of the cubic systems of Bravais lattice groups

have the same symmetry of elastic constants, we expect to obtain qualitative properties of

nanoscale systems, using a simple cubic lattice. For the atomistic energy, we use harmonic

potentials, which are equivalent to linearized springs between the atoms and bonds. To

access the full range of elastic parameters, we allow nearest neighbor springs, diagonal

springs, and bond-bending springs, the last of which involves three-body interactions.

Further study using nonharmonic potentials is beyond the scope of this work and will be

addressed in further study.

The resulting discrete energy density at a discrete point x can be written in the form
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where p, q is + or − and k, l is 1, 2 or 3 for a discrete strain component Spq
kl . This represents

the energy at a discrete point for a ‘ball-and-spring’ system on a three-dimensional (3D)

cubic lattice with variable spring constants, in which k and l denote the three possible

lattice vectors, p = ± signifies the springs in the positive (+) or negative (−) directions

along a given lattice vector and (for example) the coefficient α+
k is an elastic coefficient

related to the spring in the positive kth direction. For consistency between the discrete and

continuum energy densities, we can get the elastic coefficients from the Voight constants

as

(α, β, γ) = (C11, C44, C12)/4. (2.2)

The term S±
kk is a discrete analogue of an elastic strain component; specifically, it is

the kth component of the displacement for the spring in the ±kth direction from x. In

other words, the bond displacement at the point x is

dk± = D±
k u − εk, (2.3)

where D±
k is the finite difference operator, u the displacement, and εk the relative magnitude

of the lattice distortion in the interface, e.g., lattice mismatch. Then, the discrete strain
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Figure 1. Basic geometry of core–shell nanocrystal model.

components are given by
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k , (2.4a)
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in which k and l are 1, 2 or 3 (denoting the component number of the bond) and p and

q are + or − (denoting positive or negative direction along that component).

The total elastic energy of the system is the sum of the discrete energy densities for

each of the atoms. The force balance equations are obtained by setting the variation of

the elastic energy with each of the displacements equal to zero.

In core–shell epitaxial growth, strain is induced by mismatch between the lattice

constants in the core and those in the shell. Denote the lattice constants in the core

and shell as lc and ls, respectively. For bonds connecting a core atom and a shell atom,

the rest length is taken to be the average (lc + ls)/2. Similarly, the elastic coefficients for

the bonds connecting a core atom and a shell atom are taken to be the averages of the

elastic coefficients for the pure materials.

The significant geometric parameters are the core radius rc, the shell thickness rs and

the lattice mismatch,

ε =
lc − ls

lc
. (2.5)

The core consists of atoms whose lattice position x (before displacement) satisfies |x| � rc,

and the shell consists of atoms with rc < |x| � rc + rs, as shown in Figure 1.

3 Critical thickness: Simulation results

Computational results are presented here from minimisation of the total elastic energy

(after removing degenerate modes corresponding to translation and rotation), correspond-

ing to balance of all of the forces in the system for 2D (circular, or equivalently rods of

infinite length) and 3D (spherical) nanocrystals. For the harmonic potentials used here,
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Figure 2. Elastic energy density of 2D layered nanocrystals with core size rc = 20 monolayers and

with shell thickness rs of size (a) 1 monolayer, (b) 2 monolayers and (c) 20 monolayers.

(a) (b) (c)

Figure 3. Elastic energy density on an equatorial cross section for 3D layered nanocrystals with

core size rc = 8 monolayers and with shell thickness rs of size (a) 1 monolayer, (b) 2 monolayers

and (c) 7 monolayers.

this amounts to solving a linear system of equations, in which the forcing terms come

from the lattice mismatch ε. The simulation results include values of the displacements,

the forces and the energy density. Graphical results will be presented for the last of

these. As a figure of merit for the atomistic strain field in a nanocrystal, we shall use the

maximum value Em of the discrete energy density. Since the energy at each atom consists

of elastic energy and bond energy, the maximum elastic energy may be a good indicator

of strain-driven instability.

3.1 Elastic energy density

Figures 2 and 3 show the elastic energy density of 2D and 3D layered nanocrystals,

respectively, of fixed core size rc for various values of shell thickness rs. In the 2D nano-

crystal simulation (Figure 2), the shell has thickness values rs = 1, 2 and 20 monolayers, on

a core of radius rc = 20 monolayers. In the 3D nanocrystal simulation (Figure 3), the shell

has thickness values rs = 1, 2 and 7 monolayers, on a core of radius rc = 8 monolayers.

For all of these simulations, the elastic constants are α= 5, β = 1 and γ= 3 and lattice

mismatch is ε= 0.04.
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Figure 4. Maximum energy density Em versus shell thickness rs for (a) 2D and (b) 3D nanocrystal

of core radius rc = 8 monolayers.

We have simulated energy density for a nanocrystal that is larger than the physical

system, since the energy distribution is qualitatively similar but more easily seen in the

larger system. As the core radius increases, the number of atoms along the interface

also increases, so that we can more readily examine the discrete energy density along the

interface. In the 3D simulations of Figure 3, the core radius rc = 8 monolayers is a few

monolayers larger than the typical physical system. The 2D simulations of Figure 2 use

rc = 20 monolayers so that the strain energy distribution exhibits features that are nearly

those of a continuum system.

In these figures, the gray scale ranges from black for E = 0 to white for E =Em in

which Em is the largest value of E among the three subfigures; i.e. the scales are the same

for the different subfigures. The black region outside of each nanocrystal is a vacuum

where there is no energy. Both Figures 2 and 3 show that the energy is concentrated in

the region of the shell, along the interface with the core. As the shell thickness increases,

the strain energy becomes more concentrated near the shell/core interface, even though

the maximum energy density decreases for larger shell thickness. In addition, the largest

values of the energy density are close to the diagonal.

3.2 Critical thickness

Figure 4 shows the maximum energy density for a layered nanocrystal, as a function

of shell thickness rs, for fixed values of the other parameters, core size rc and elastic

constants α, β, γ and ε. Figure 4 shows that the maximum energy density increases with

increasing shell thickness rs up to a critical shell thickness r∗
s . For rs > r∗

s , the maximum

energy density is decreasing as a function of rs. The general similarity between the critical

shell thickness in 2D and 3D is indicative of the robustness of this result. The physical

core radius of CdSe/CdS core–shell nanocrystal ranges from 11.5 Å to 19.5 Å, which is

equivalent to core radius of 3 monolayers to 6 monolayers, since one full monolayer is

approximately 3.5 Å [6].
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Figure 5. Critical thickness r∗
s versus core size rc for (a) 2D and (b) 3D nanocrystal.

Next we examine the critical shell thickness r∗
s and its dependence on the material and

geometric parameters of the nanocrystal, in particular, the dependence of r∗
s on the core

size rc, lattice mismatch ε and elastic parameters α, β and γ.

Figure 5 shows weak sensitivity of critical shell thickness r∗
s on the core radius rc. The

critical thickness r∗
s is uniformly 2 monolayers as long as the core size is big enough. We

interpret this to be caused by the number of steps along the core–shell interface. Steps

along the outer edge of the shell tend to lower strain energy density, but those along the

core–shell interface maximise strain effect. For smaller size of core, the number of steps on

the core–shell interface is insufficient to increase the strain energy density. For larger core

size, the interaction is weak between the core–shell interface and the outer edge of the

shell so that the strain energy density is not large. In between there is a critical thickness

when the strain energy density is maximal. In simulation, for smaller core size than 3

monolayers for 2D layered nanocrystals and 5 monolayers for 3D layered nanocrystals,

the maximum elastic energy density Em occurs at 1 monolayer of shell thickness rs.

We have systematically studied the critical shell thickness r∗
s as a function of the elastic

parameters α, β and γ and the lattice mismatch ε for 2D and 3D nanocrystals. The

physically relevant elastic parameters need to satisfy α > γ in cubic crystals in order

to have positive elastic energy density described in (2.1). We find that the critical shell

thickness r∗
s of nanocrystals is independent of elastic parameters as long as the set of

elastic parameters α, β and γ satisfies α > γ. Moreover, we find that the critical shell

thickness r∗
s is independent of the lattice misfit ε; i.e. the critical shell thickness is the

same for all values of lattice misfit ε with ε > 0.

4 Discussion

4.1 Step interactions

Since the continuum limit of the core–shell nanocrystal corresponds to a shell that

is atomistically thick, the critical shell thickness cannot be explained with continuum

elasticity. Some insight into the existence of a critical shell thickness r∗
s comes from
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Figure 6. Simplified model for step interaction between core and shell, as a thin film system

consisting of vacuum, shell layer, core layer, shell layer and vacuum, with a periodic step train on

each of the four interfaces.

consideration of step interactions. The strain field produced by a surface step, on an

epitaxial surface, interacting with a buried step, on the interface between an epitaxial

thin film and the substrate has been successfully studied in [7] using discrete harmonic

potentials developed in [2]. We now try to understand step relaxation in core–shell layered

nanocrystal system in a way that is analogous to that in [7]. Note that this discussion is

based on the use of harmonic potentials and a simple cubic lattice. Although we expect

that this provides qualitatively correct results, details would certainly be different for a

more realistic system.

On the outer edge of the shell, the shell atoms will relax towards their equilibrium

lattice constant, lowering the strain energy density. This relaxation will be greatest along

the diagonal, where the atoms have the smallest number of neighbors. Also, the relaxation

of the outer edge atoms puts additional stress on the atoms at the core–shell interface.

On the other hand, along the core–shell interface, shell atoms near the diagonal have the

largest number of core atom neighbors and so they have the largest strain. This maximum

is increased by their interaction with the atoms along the diagonal on the outer edge,

but that interaction decreases as the shell thickness increases. This indicates a critical

thickness.

To qualitatively model this step interaction, we consider a 2D thin film consisting of a

core layer between two ‘shell’ layers, with vacuum both below and above the thin film.

In addition, there is a periodic step train on each of the four interfaces, with aligned

steps on the two core–shell interfaces and on the shell–vacuum interfaces, as shown in

Figure 6. The geometric parameters are the core radius rc, the shell thickness rs and the

step distance a. Thickness of the core is 2rc, which is diameter of the core. We simulate

this system using the atomistic strain method described above, using shifted periodic

boundary conditions to reduce the computation to that over a single period of the step

train.

Figure 7 shows that the maximum elastic energy density peaks at small critical thickness

r∗
s and small critical step distance a∗, but is nearly independent of a. The similarity between

the simulation results for a nanocrystal and the simplified model provides a means for
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Figure 7. The maximum energy density Em versus (a) shell thickness rs and (b) step distance a on

the core radius rc = 5, for the 2D thin film model pictures in Figure 6, (α = 5, β = 1, γ = 3 and

ε = 4%).

understanding the origin of the critical thickness. We examine the correlation of the shell

thickness r∗
s and the step distance a∗ for a given core radius rc. We find that the critical

shell thickness r∗
s does not depend on the step separation a and the critical step separation

a∗ is approximately half the shell thickness rs. It provides some understanding of the

fact that shell atoms near the diagonal have the maximum elastic energy density. This

interpretation is also consistent with the independence of the critical shell thickness on

the material and geometric parameters of nanocrystals, as shown in Section 3.

4.2 Comparison to quantum yield

The critical shell thickness, observed in the simulations presented above, correlates closely

to the maximum value of the quantum yield from experiments. Since high photolu-

minescence quantum yield is crucial in fabrication of optoelectronic device, the pho-

toluminescence quantum yield (QY) has been an indicator of high quality of devices.

Photoluminescence quantum yield data presented below come from both CdSe/CdS [6]

and InAs/CdSe [1] layered nanocrystals.

Figure 8 shows a comparison between the quantum yield QY and maximum energy

density Em as a function of shell thickness rs. The dotted line represents the strain

simulation results, and the solid line represents the quantum yield results. The core

radii of the CdSe/CdS nanocrystals are 19.5 Å and 110 Å × 20 Å, respectively, which are

approximately 5.5 and 5.7 monolayers, respectively, since each monolayer is approximately

3.5 Å. The core radius used in the strain simulation is rc = 5 monolayers. To compare the

qualitative behaviour of QY and Em, we scaled the strain simulation results to have the

same maximum as that of the quantum yield. Both quantum yields results have the peak

at the small shell thickness. Strain has been cited as a probable cause of high quantum

yield in [1, 5].
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Figure 8. Comparison of quantum yield QY (–) and Em (- -) as a function of shell thickness rs for

core radius rc = 5 monolayers. Em has been scaled so that its maximum value is the same as that

of QY . The experimental measurements of QY are for (a) photoluminescence quantum yield of

CdSe/CdS core–shell nanocrystal with shell thickness on core radius of 19.5 Å [6], (b) fluorescence

quantum yield of CdSe/CdS core–shell nanorod with shell thickness on core radii of 110 Å × 20 Å

[5].

4.3 Continuum limit of nanocrystals

As a check on the atomistic computations, we solve the analogous equations for continuum

elasticity. Our atomistic strain model is consistent with finite difference equations of

continuum elasticity, so we expect that atomistic strain computation is consistent with

continuum elasticity. The continuum limit is a nanocrystal with a large core radius and a

thick shell. Therefore, the continuum limit does not have critical thickness in which Em(rs)

peaks. From the study of continuum limit, we expect to check the atomistic phenomenon

and their validation.

We assume that the elastic coefficients are chosen to give isotropic elasticity so that the

continuum nanocrystals are isotropic and invariant under rotations with respect to their

centres. Therefore, the displacement vector −→u at the position x is a radial function. The

equilibrium equation for continuum elasticity is

3β∆−→u + (α + β + 2γ)
−→∇ (

−→∇ · −→u ) = 0 (4.1)

and the radial function satisfies
−→∇ × (

−→∇ × −→u ) = 0. With some algebraic computations,

we have the resulting equilibrium,

−→∇ (
−→∇ · −→u ) = 0. (4.2)

The lattice misfit is modeled as producing a pressure that is −ε on the interface between

core and shell and 0 on the outer edge of the shell. We recalculate the solution of the

continuum elastic equations given in [3]. The elastic energy density in the core is a constant

function and density in the shell is bigger than the density in the core. The maximum

elastic energy density for both a 2D and a 3D layered nanocrystal occurs along the

core–shell boundary. In this paper, we will compare the 2D simulations to the continuum
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Figure 9. The maximum energy density Em(rs) from continuum (•) and atomistic (�) simulations,

where rs ranges from 1 monolayer to 30 monolayers for fixed core radius rc of 20 monolayers.

solution. From continuum elasticity, the maximum elastic energy density for a 2D layered

nanocrystal is given by [3]

Em(rc, rs) =
ε2

8

r4c(
(rc + rs)2 − r2c

)2

{
3

α + β + 2γ
+

1

β

(rc + rs)
4

r4c

}
. (4.3)

In Section 3, we have examined the maximum energy density as a function of shell

thickness. To compare the continuum limit for a layered nanocrystal, we consider con-

tinuum limit with large radius of core and thick shell. Figure 9 shows the maximum

energy density Em as a function of shell thickness rs for a fixed core radius rc of 20

monolayers and rs ranges from 1 monolayer to 30 monolayers. The dots represent the

maximum elastic energy density obtained from a continuum elasticity, and the diamonds

represent one from an atomistic simulation described in Section 2 for a 2D nanocrystal.

Since our simulation calculates energy density as energy per unit lattice cell, we adjust the

energy scale by multiplying continuum limit Em by cell area for a 2D layered nanocrystal

or cell volume in three dimensions.

We find Em from an atomistic simulation converges to one from a continuum elasticity

as shell thickness increases. However, the continuum limit does not show any peak for

very thin shell in contrast to atomistic simulations. This proves that the critical thickness

is atomistic phenomenon that is not present in the continuum theory. The convergence

for thicker shell shows that our strain model described in Section 2 is valid for simulating

the strain field of a layered nanocrystal.

4.4 Nanorod

A number of research groups have demonstrated a peak of photoluminescence quantum

yield for a layered nanorod [1, 4, 5]. Although our model can be applicable to a nanorod

of any shape, we will simulate it for the special case of an ellipsoidal spheroid. For a 3D

layered nanorod, the geometric parameters are the core radius rd along the diameter and

rl along the length of rod, and the shell thickness rs. The core consistsof atoms whose
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Figure 10. A series of plots of Em(rs) for aspect ratio rl : rd ranging from 2:1 to 10:1 for rd equal to

(a) 5 monolayers and (b) 7 monolayers.

lattice position (x, y, z) satisfies

x2

r2l
+

y2 + z2

r2d
� 1 (4.4)

and shell consists of atoms satisfying

x2

r2l
+

y2 + z2

r2d
> 1 and

x2

(rl + rs)2
+

y2 + z2

(rd + rs)2
� 1. (4.5)

Research on colloidal semiconductor nanocrystals suggested the possibility for the epi-

taxial strain, depending on the shape of the core varying from nearly spherical to nearly

cylindrical. We expect that a series of Em(rs) on an aspect ratio rl : rd provides one of

opportunities to study the strain at the interface.

Figure 10 presents a series of the maximum elastic energy density Em(rs) of 3D nanorod

for rl : rd varying from 1:1 to 10:1 for the core radius rd equal to 5 monolayers

(Figure 10(a)) and 7 monolayers (Figure 10(b)). Both Figure 10(a) and (b) show that the

series of Em curves all peak at the critical thickness r∗
s of 2 monolayers. These results

show that the critical shell thickness r∗
s is generally applicable to layered nanorods and

nanocrystals.

An increase in Em was observed in thinner rods for rs > r∗
s . We believe that this effect

is a result of the reflection of the strain field, but we have not analysed it yet. Thinner

rods have more reflection effect from the relaxation on the outer edge of the shell and

strain on the interface of core–shell. The increase in Em becomes less as the core radius

rd along the diameter increases. This supports the explanation of strain reflection effects.

The research of [4] demonstrated that the planes extending along the diameter of the

rod are more compressed than planes extending along the length of the rod. From the

fact that the compression along the plane is the trace of the strain tensor, we verified

that Sxx + Syy < Syy + Szz at every atom, which is consistent with the experimental results.

It also implies that the irregular growth occurs along the planes along the diameter, as

shown in [4].
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5 Conclusion

We have examined the elastic energy density of a nanocrystal and the corresponding

critical shell thickness. The simulation results presented above are for a highly idealised

model of a layered nanocrystal. The robustness of these results with respect to variation

of dimension, geometry and material parameters suggests that these results are qualitative

and generally applicable. In addition, there is some evidence that the critical shell thickness

found in these simulations is related to the maximal values of quantum yield, as found

experimentally.

We have demonstrated the nature of the critical shell thickness by the step–step

interaction analysis. A continuum approach also shows that the effect of step interaction

is essentially atomistic. The spheroid model generalizes the effect of epitaxial strain at

the interface of core–shell nanocrystal. These may lead to determination of the location

where thick shell nanorod changes morphologically and grows irregularly.

We expect our atomistic strain computations to provide evidence of the strain effect in

nanotechnology. The relation between strain and quantum yield can help to explain why

the maximum quantum yield occurs at the thin shell thickness and further shell growth

reduces the quantum yield. This suggests that engineering of strain effect may be a fruitful

approach to obtaining desired optoelectronic properties in nanoscale devices.
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