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EXACT ARTIFICIAL BOUNDARY CONDITIONS FOR
CONTINUUM AND DISCRETE ELASTICITY∗
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Abstract. For the continuum and discrete elastic equations, we derive exact artificial boundary
conditions (ABCs), often referred to as transparent boundary conditions, that can be applied at a
planar interface below which there are no forces. Solution of the elasticity equations can then be
performed using this interface as an artificial boundary, often with greatly reduced computational
effort, but without loss of accuracy. A general solvability requirement is presented for the existence
of an artificial boundary operator for discrete systems (such as discrete elasticity) on an unbounded
(semi-infinite) domain. The solvability requirement is validated by introducing a sum-of-exponentials
ansatz for the solution below the artificial boundary. We also derive a new expression for the total
energy for the system, involving only the region above the artificial boundary. Numerical examples
are provided to confirm and illustrate the accuracy and effectiveness of the results.
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1. Introduction. Many of the boundary value problems arising in applied math-
ematics are formulated on unbounded domains. It is in general a nontrivial task to
solve such problems numerically [6], since the numerical solution naturally requires
boundary conditions at a finite depth in the body.

The main motivation of the present work comes from the numerical simulation of
strain fields in semi-infinite domains. For the strain equations, the use of a physical
boundary condition, such as the zero displacement field at a certain depth, has been
a common practice [21]. On the other hand, due to the long range of elastic interac-
tions, the zero boundary condition must be imposed at considerable depth in order
to accurately compute the strain field [4], which entails large computational cost.

The purpose of this paper is to derive exact artificial boundary conditions (ABCs)
such that the solution on the (bounded) computational domain coincides with the
exact solution on the unbounded domain. Such exact artificial boundary conditions
are oftentimes referred to as transparent boundary conditions (TBCs) [6].

There have been various works on ABCs for a wide range of problems. For exam-
ple, certain ABCs for the Poisson and Helmholtz equations on infinite domains are
investigated in [1] using domain decomposition and Fourier techniques. For general
elliptic problems, approximate ABCs and error estimates are performed within the
finite element framework in [3]. Boundary element methods for homogeneous elasto-
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static and elastodynamic cases, linear elastostatic problems, time dependent heat and
wave equations, and electromagnetic scattering problems are also treated in an exact
manner using the Dirichlet to Neumann boundary condition in [2, 7, 8, 9].

For the elasticity problem, several local and nonlocal artificial boundary condi-
tions are provided in terms of the finite element formulation in [12, 13, 14]. For a
discrete elastic strain model for an epitaxial thin film, ABCs were derived recently
by Russo and Smereka [20] using a formulation that is somewhat different from our
model.

In the present work, we perform an analysis for the equations of both continuum
and discrete elastic models. The discrete elastic equations correspond to an atomistic
strain model introduced in the recent work by Schindler et al. [21]. Although full
details are provided only for a discrete strain model, a general solvability requirement
is formulated, which results in the well-posedness or the solvability of the system in
an infinite domain. This work is a discrete analogue of the work by Hagstrom and
Keller [11]. The solvability requirement is then validated by analyzing the solution on
the exterior domain using a sum-of-exponentials ansatz. This framework, on the one
hand, leads us to derive the abstract ABC operator in the form of a Schur complement
operator and, on the other hand, guides the construction of the explicit ABC operator
for actual implementations. Thanks to the ABC operator, the force balance equation
that needs to be solved in the infinite domain can be posed as a reduced equation
on the bounded domain, whose solution has been shown to coincide with the exact
solution on the full (unbounded) domain. In addition, a new formula is derived for
the total elastic energy of the system, involving only the solution above the artificial
boundary. The latter is particularly important for practical applications such as thin
epitaxial film growth simulations.

The rest of the paper is structured as follows. In section 2, we introduce some
preliminaries and notation to ease the presentation. The ABCs, total energy formula,
and variational principle for continuum elasticity are derived in section 3. In section 4,
we briefly review the discrete elastic strain model and introduce the general solvability
requirement, present an abstract form of the ABC operator, and derive explicit ABCs
for a specific discrete strain model. The total energy formula and the variational
principle for the discrete strain model are also presented. Several illustrative numerical
results are provided in section 5. Conclusions are discussed in section 6. Some details
are saved for the appendix.

2. Preliminaries. Suppose that the domain Ω is a half-infinite body, e.g., Ω =
{(x, y, z) ∈ R

3 : z < h(x, y)} for h : R
2 �→ R being a bounded function. See Figure 2.1

for a schematic description. The interface Γ2 on which the artificial boundary will be
imposed is illustrated in Figure 2.1. For both the continuum and discrete problems,
the domain Ω is divided into a finite part Ω1 and a semi-infinite part (an exterior
domain) Ω2 = Ω\Ω1. The requirement on the choice of Ω2 is that its boundary Γ2

is planar and normal to the depth variable and that there are no external forces in
Ω2. For the boundary condition for both continuum and discrete elasticity equations,
we assume that the periodic conditions are imposed in x- and y-directions (lateral
directions) and that the Neumann condition (i.e., the variational principle with no
constraint at the boundary) is imposed on the top layer Γ1 unless explicitly stated
otherwise. Use of the Neumann condition is only for simplicity and to ensure that the
problem is well-posed; it does not influence the resulting ABCs.

We use boldface lower case letters for vectors in R
d with d = 2 or 3 and boldface

capital letters for symmetric tensors or square matrices. The differential operator ∂k
denotes the partial derivative with respect to the kth coordinate variable, i.e., ∂/∂xk,
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Fig. 2.1. The domain decomposition: An artificial boundary Γ2 (the horizontal plane) divides
Ω into Ω1 and Ω2. Γ1 is the top boundary (surface) of Ω.

and the operator ∇· is the standard divergence operator defined through

∇· = (∂/∂x, ∂/∂y) · for d = 2,

∇· = (∂/∂x, ∂/∂y, ∂/∂z) · for d = 3.

The notation ∇ denotes the usual gradient operator for d = 2 and d = 3 given,
respectively, as

∇ =

(
∂/∂x
∂/∂y

)
, ∇ =

⎛
⎝ ∂/∂x

∂/∂y
∂/∂z

⎞
⎠ ,

and Δ is the Laplace operator ∇ · ∇.
For two vectors u and v, u · v is the dot product; for a vector v = (vk)k=1,...,d

and a tensor N = (Nkl)k,l=1,...,d, v · N =
∑d

k=1 vkNk�. The magnitude of a vector u
will be denoted by |u| = (u · u)1/2.

Although the letters i, j, k are used for indices, we shall also use ı to denote the
imaginary unit

√
−1, and the complex conjugate of a complex number υ shall be

denoted by υ. Also, for the matrix N, NH and NT denote the complex conjugate
transpose and the real transpose of N, respectively. Finally, we shall use χ to denote
the usual characteristic function that is defined as

χ(x) =

{
1 for x ∈ Ω1,
0 for x /∈ Ω1.

(2.1)

Some other notation will be introduced in each section as necessary.

3. The ABCs for continuum elasticity. In this section, we review the con-
tinuum elastic equations from an energetic viewpoint. We then derive the artificial
boundary (or ABC) operator A, as well as a new expression for the total energy and
a formulation of the force balance equations depending on only the displacement on
and above the interface Γ2 on which the artificial boundary condition is given.

3.1. Continuum elasticity. Continuum elasticity is formulated in terms of a
displacement field u = u(x) = y(x) − x between the equilibrium position x of a
material point and the elastically deformed position y(x) of that point. The strain
tensor S has components defined as Sk� = (∂ku� + ∂�uk)/2 in which uk are the
components of u.

The derivation of the linear elasticity equations can be made via a variational
principle for the total energy E in a domain Ω, namely,

δE = 0.(3.1)
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The total elastic energy E for the linear elasticity is given as follows:

E =

∫
Ω

Edx,(3.2)

where the integrand is the energy density

E =
1

2

∑
k,�

Sk�Tk� − u · f χ,(3.3)

f = (fk) is a body force, and T = (Tk�) is the stress tensor defined, for an isotropic
material, as

Tk� = λδk�
∑
i

Sii + 2τSk�.(3.4)

The parameters λ and τ are the Lamé constants. In the absence of external force on
the boundary Γ1, (3.1) reduces to the classical Navier equations of linear elasticity,
i.e.,

−∇ · T = fχ in Ω,(3.5)

n · T = 0 on Γ1,

where n is the outer unit normal vector.
For linear elasticity with cubic symmetry, the elastic energy density E is the

following:

E =
C11

2

∑
i

S2
ii + 2C44

∑
k �=�

S2
k� + C12

∑
k �=�

SkkS��,(3.6)

where C11, C44, and C12 are the cubic elastic moduli, i.e., the Voigt constants. The
linear elasticity equations with cubic symmetry are

−C11∂k∂kuk − C44

∑
l �=k

∂l∂luk(3.7)

− (C12 + C44)
∑
l �=k

∂k∂lul = fkχ in Ω

for k = 1, . . . , d. Note that the isotropic linear elasticity equations (3.5) can be
recovered from (3.7) by choosing the following Voigt constants:

(C11, C44, C12) = (λ + 2τ, τ, λ).(3.8)

For the study of the ABCs for continuum elasticity, we restrict our attention to
the isotropic linear elasticity, namely, (3.7) with the Voigt constants given in (3.8),
for simplicity. It is easily generalized to the anisotropic case.

3.2. Two dimensional case. In this section, we construct the artificial bound-
ary operator A for the two dimensional case. The main idea is to analytically solve
the force balance equation (3.7) on the exterior domain Ω2 by introducing a sum-of-
exponentials ansatz, which must be modified to include algebraic terms.
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We assume that the solution is periodic in the x-direction with 2π periodicity and
that the interface Γ2 is a line, i.e., Γ2 = {(x, y) ∈ R

2 : y = 0}. We first look for a
modal solution u(x, y) for y < 0 as

u(x, y) = û(μ, y) eıμx(3.9)

= û(μ) eβy eıμx =

(
û(μ)
v̂(μ)

)
eβy eıμx.

Since u in (3.9) is the solution to (3.7), for each μ, û(μ) should satisfy the following
linear system:

M(μ, β)û(μ) = 0,

where û(μ) = (û(μ), v̂(μ))T and

M(μ, β) =

(
−(λ + 2τ)μ2 + τβ2 ıμ(λ + τ)β

ıμ(λ + τ)β −τμ2 + (λ + 2τ)β2

)
.

A nontrivial solution can be attained only if

detM(μ, β) = τ(λ + 2τ)(β2 − μ2)2 = 0,(3.10)

which implies that β = ±|μ|. Since the solution u should decay as y → −∞, then
β = |μ| is the proper choice. Note that for μ = 0, the only solution is β = 0, which
corresponds to a trivial solution, the constant displacement field.

We now compute the zero eigenvector for M(μ, |μ|). It is easy to see that the
matrix M(μ, |μ|) has a zero eigenvector given by q1 = (ı, μ/|μ|)T and a generalized
eigenvector q2 = (0,−c/μ)T satisfying M(μ)q1 = 0 and M(μ)q2 = −(λ + 3τ)|μ|q1

with c = (λ + 3τ)/(λ + τ), from which we obtain the general solution to the equation
(3.7) as follows:

û(μ, y) = ((aμ + bμy)q1 + bμq2) eıμx+|μ|y,(3.11)

where

aμ = −û(μ, 0)ı and bμ = −c−1(μv̂0(μ, 0) + ı|μ|û(μ, 0)).(3.12)

From this, we obtain the following simple but important lemma.
Lemma 3.1. A solution to (3.7) on the domain Ω2 with a given boundary value

u0(x) on Γ2 is given by the following:

u(x, y) =
1

2π

∫ 2π

0

G(x− x′, y)u0(x
′)dx′,(3.13)

where G is defined, using c = (λ + 3τ)/(λ + τ), as

G(x− x′, y) =

∞∑
μ=−∞

Gμ(x− x′, y),

Gμ(x− x′, y) =

⎛
⎝ 1 + |μ|

c y −μ
c ıy

−μ
c ıy 1 − |μ|

c y

⎞
⎠ e|μ|y eıμ(x−x′).

This analytic expression for the solution u on the domain Ω2 is used to derive the
ABC operator.
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3.3. The ABC operator for the two dimensional case. In this section,
using Lemma 3.1, we construct the ABC operator. First, consider the expression of
the solution u in the exterior domain Ω2 given in (3.13). By taking the derivative of
u with respect to y, one finds that

∂y(u(x, y)) =
1

2π

∫ 2π

0

∂y(Gμ(x− x′, y))u0(x
′) dx′.(3.14)

Note that the normal component of the stress tensor n · T is given by

n · T =

(
τ(∂yu + ∂xv)

(λ + 2τ)∂yv + λ∂xu

)
,(3.15)

and observe that it can be written in terms of u on the interface Γ2 as follows:

n · T =

∞∑
μ=−∞

1

2π

∫ 2π

0

Aμu0(x
′) dx′,(3.16)

where

Aμ =
2

λ + 3τ

(
τ(λ + 2τ)|μ| τ2ıμ

−τ2ıμ τ(λ + 2τ)|μ|

)
eıμ(x−x′).(3.17)

Define the artificial boundary operator A by the following:

Au0(x) =

∞∑
μ=−∞

1

2π

∫ 2π

0

Aμu0(x
′) dx′.(3.18)

It is interesting to note that the operator A is real and symmetric since Aμ(x−x′) =
AH

μ (x′ − x).

3.4. The ABC operator for the three dimensional case. We now extend
the previous analysis to the three dimensional case by constructing the solution of the
homogeneous linear elasticity problem in a semi-infinite domain, Ω2. Assume that
Γ2 is the plane z = 0. As in the two dimensional case, assume that in the lateral
direction, the solution is periodic with 2π periodicity for both variables, x and y. The
following result is the analogue to Lemma 3.1.

Lemma 3.2. A solution to (3.7) with given boundary data u0(x, y) on the interface
Γ2 is given by the following:

u(x, y, z) =
1

4π2

∫ 2π

0

∫ 2π

0

G(x− x′, y − y′, z)u0(x
′, y′) dx′dy′,(3.19)

where G is defined, using c = (λ + 3τ)/(λ + τ) and d = |(μ, ν)|, as

G(x− x′, y − y′, z)

=
∞∑

μ,ν=−∞

⎛
⎜⎜⎜⎝

1 + μ2

cd
z μν

cd
z −μ

c
ız

μν
cd

z 1 + ν2

cd
z − ν

c
ız

−μ
c
ız − ν

c
ız 1 − d

c
z

⎞
⎟⎟⎟⎠edzeı(μ,ν)·(x−x′,y−y′).
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For the definition of the artificial boundary operator A, note that the normal
component of the stress tensor T is

n · T =

⎛
⎜⎜⎝

μ(∂zu + ∂xw)

μ(∂zv + ∂yw)

(λ + 2τ)∂zw + λ(∂xu + ∂yv)

⎞
⎟⎟⎠ ,(3.20)

where n is the outer unit normal vector to the interface Γ2. It is easy to see that

n · T =

∞∑
μ,ν=−∞

1

4π2

∫ 2π

0

∫ 2π

0

Aμ,νu0(x
′, y′) dx′dy′,(3.21)

where

Aμ,ν =

⎛
⎜⎜⎜⎝

τ
(

μ2

cd
+ d

)
τ μν

cd
2τ2

λ+3τ
ıμ

τ μν
cd

τ
(

ν2

cd
+ d

)
2τ2

λ+3τ
ıν

− 2τ2

λ+3τ
ıμ − 2τ2

λ+3τ
ıν (λ + 2τ)

(
− d

c
+ d

)

⎞
⎟⎟⎟⎠eı(μ,ν)·(x−x′,y−y′).

Define the artificial boundary operator A as follows:

Au0(x, y) =

∞∑
μ,ν=−∞

1

4π2

∫ 2π

0

∫ 2π

0

Aμ,νu0(x
′, y′) dx′dy′.(3.22)

Similarly to the two dimensional case, the operator A is symmetric.

3.5. The total energy and force balance equation. In this section, we find
an alternative total energy formula for (3.2) and also a force balance equation for
(3.5) that involve only the domain Ω1 and Γ2, using the ABC operator constructed
in the previous sections. For convenience, denote u0 to be the displacement field of
u at Γ2.

Write the total elastic energy in Ω in terms of the total energy E1 in Ω1 and the
total energy E2 in Ω2 as follows:

Etotal =
1

2

∫
Ω

S : T dx −
∫

Ω

u · fχdx

=
1

2

{∫
Ω1

S : T dx −
∫

Ω1

u · f dx
}

+
1

2

∫
Ω2

S : T dx

= E1 + E2.

Let L denote the linear elasticity operator:

Lu = τΔu + (λ + τ)∇(∇ · u).

Note that E2 can be written in terms of the boundary data u0(x) on the interface Γ2

as follows:

E2 =
1

2

∫
Ω2

S : T dx

= −1

2

∫
Ω2

u · Lu dx +
1

2

∫
Γ2

u0 · (n · T) dΓ

=
1

2

∫
Γ2

u0 · Au0 dΓ,
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where we use the fact that Lu = 0 in the domain Ω2 and the definition (3.22) of the
artificial boundary operator A.

Consequently, the total energy Etotal in the domain Ω is

Etotal = E1 + E2(3.23)

=
1

2

∫
Ω1

S : T dx −
∫

Ω1

u · f +
1

2

∫
Γ2

u0 · Au0 dΓ.

This is the new formula for the total energy (3.2) that involves only the domain Ω1

and Γ2. Now apply integration by parts to the first term in (3.23) and obtain

Etotal = −1

2

∫
Ω1

u · Lu dx −
∫

Ω1

u · f dx(3.24)

+
1

2

∫
Γ2

u0 · Au0 − u0 · (n · T) dΓ.

Application of the variational principle for the new expression of the total energy
(3.24) results in the following force balance equations, which use the ABC operator
A in the ABC on Γ2:

−Lu = f in Ω1,

n · T = Au0 on Γ2.

4. The ABCs for discrete elasticity. In this section, we study the analogue
of the ABCs for discrete elasticity. In particular, we discuss the solvability (well-
posedness) of the discrete strain model in an unbounded or semi-infinite domain.

It is not trivial to show directly the well-posedness of the discrete strain model in
an infinite domain. As discussed in Hagstrom and Keller [11], the well-posedness can
be derived from a so-called solvability requirement, which is a solvability condition for
the exterior domain problem for which the force term is zero. Generally, the validation
of this solvability requirement is done by introducing a sum-of-exponentials ansatz
for the solution below the artificial boundary. It is difficult, however, to validate this
condition fully in an analytic manner [11] except for simple problems such as the
Laplace equation. Numerical validation is partially used, since an analytic validation
could not be made fully for the current problem of interest.

The importance of the framework developed in this section is that it identifies
how the solvability requirement can be used to show well-posedness of the discrete
equations posed on the unbounded domain, and also clarifies why an appropriate
use of the ABC operator leads to the exact boundary condition. To the best of our
knowledge, it is the first attempt to formulate a general discussion on the solvability
of discrete systems in an infinite domain in terms of solvability requirements. Fur-
thermore, this formal discussion leads to an understanding of the ABC operator as
a Schur complement operator and reveals various properties of the resulting reduced
system on the finite domain. These properties of the reduced system are important
when one attempts to develop an appropriate solver for the reduced system (see the
concluding remark in section 6).

Throughout this section, we assume that the lattice of the discrete strain model
is connected [19]. We begin this section by briefly reviewing the discrete elastic model
introduced in [21].
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4.1. Discrete elasticity. To describe the strain energy at each atom, i =
(i, j, k), introduce the translation operators, T±

k , and the discrete difference opera-
tors, D±

k , D0
k, defined as follows:

T±
k f(i) = f(i ± ek),

D+
k f(i) =

(T+
k − 1)f(i)

h
,

D−
k f(i) =

(1 − T−
k )f(i)

h
,

D0
kf(i) =

(T+
k − T−

k )f(i)

2h
,

where h is the lattice constant and ek is the vector in the kth direction for k = 1, 2, 3
with ‖ek‖ = h. Throughout this paper, we assume the lattice constant h = 1 for
simplicity. We use i for the depth-like index, with −∞ < i ≤ n. Here n is the
maximum height of the material. An ABC is sought at i = 0, assuming that there is
no force for i < 0.

Let u(i) = (uk(i))k=1,...,d be the displacement at the discrete point i relative to
an equilibrium lattice. The discrete strain components defined below ((4.1) and (4.2))
can be used to describe the discrete elastic energy. For k, � = 1, 2, 3 and p, q = ±,

S±
k�(u(i)) = D±

� uk(i),(4.1)

Spq
k� (u(i)) =

1

2
(Dq

�uk(i) + Dp
ku�(i)).(4.2)

The discrete energy density at a point i is then given by

E(i)(u,u) =
∑
k,p

αp
k(S

p
kk(u))2 +

∑
k �=�,p,q

{
2βpq

k� (S
pq
k� (u))2 + γpq

k�S
p
kk(u)Sq

��(u)
}
.

The subsequent discussion uses three constant displacement fields, denoted by 1k

for k = 1, 2, 3, for a constant displacement in the kth component. For convenience,
denote 1 for any constant vector. With some abuse of notation, it is used to denote
a constant vector formed by taking the linear combinations of 1k and 1� with k 
= �.

The elastic constants should be chosen to ensure positivity of the (total) energy
density, as discussed, for example, in [17]. A sufficient condition for the positivity is

min
k,p

αp
k ≥ max

pq
γpq + c(4.3)

for some positive constant c > 0. One consequence of positivity is that rigid body
motions are the only local displacements that entail no internal energy.

A discrete version of the elastic energy density E at a lattice point i = (i, j, k) is
then given as follows:

Etotal = Etotal(U,U) = Ẽ(U,U) − (F,U),(4.4)

where

Ẽ(U,U) =
∑
i

E(i)(u,u),(4.5)

U = (Un, . . . , U1, U0, U−1, . . . )
T ,(4.6)

F = (Fn, . . . , F1, F0, F−1, . . . )
T ,
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where Ui and Fi are the vectors of size N consisting of displacement components u
and force components f at depth i. The total energy formula (4.4) is modified in
section 5.3 to include effects of lattice mismatch. Under traction-free (i.e., Neumann)
boundary conditions on the surface Γ1, the external force vector F must be orthogonal
to any constant vector field. As shown in (5.6) in section 5.3, this is also true for the
effective force due to lattice mismatch in a thin film. Now, due to the boundary
condition, the periodic condition in the lateral direction, and Neumann condition on
the surface Γ1, and from the assumption that the lattice is connected, it follows that

Ẽ(U,U) = 0 ⇐⇒ U = 1;(4.7)

see also Martinsson and Babuska [19] for further discussion on connectivity.
As described in detail in section 4.5, the total energy Etotal has the following

alternative form:

Etotal = Etotal(U,U) =
1

2
(HU,U) − (F,U),(4.8)

where

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · 0 0 0 0 · · ·

· · · Ai+1i+1 Ai+1i 0
. . . 0

...
... Aii+1 Aii Aii−1 0

. . .
...

... 0 Ai−1i Ai−1i−1 Ai−1i−2 0
...

... · · · 0
. . .

. . .
. . .

...

0 · · · · · · · · · . . .
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(4.9)

The discrete strain equations are derived from the following optimization problem:

min Etotal = min

(
1

2
(HU,U) − (F,U)

)
.(4.10)

Note that the off-diagonal block matrices satisfy Ai+1i = AT
ii+1 for all i ≤ n. Further-

more, since the material is homogeneous below the artificial boundary, Aii+1 = A−10

and Aii = A00 are independent of i for all i < 0. Both A00 and A−10 are invertible.
In particular, the proof that A−10 is invertible is included in the appendix.

Denote

U =

⎛
⎝ U+

U0

U−

⎞
⎠ and F =

⎛
⎝ F+

F0

0

⎞
⎠ ,(4.11)

in which U− and U+ are vectors consisting of all Ui for i < 0 and i > 0, respectively.
The vector F+ of forces is defined similarly. Correspondingly, write H as follows:

H =

⎛
⎝ AII AT

I0 0
AI0 A00 BT

0 B M

⎞
⎠ ,(4.12)

where AII acts on U+, A00 acts on U0, and M acts on U−.
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An analysis in section 4.2 shows that under an appropriate solvability condition,
the optimization problem (4.10) leads to the force balance equation

HU = F.(4.13)

Moreover, the analysis shows that (4.13) and the optimization problem (4.10) are
well-posed.

Since the displacement u decays as i → −∞, one might expect that the space
�2 would be the appropriate admissible solution space for the optimization problem
(4.10). Coercivity of the operator H fails, however, for the space �2, so that it is diffi-
cult to show the solvability of the problem (4.10) directly. The solvability requirement
of the next section remedies this lack of coercivity.

4.2. The solvability requirement and the general form of the ABC op-
erator. In the region i < 0, i.e., below the artificial boundary, the solution of the
problem (4.10) satisfies

A−10U0 + A00U−1 + AT
−10U−2 = 0,(4.14)

A−10U−1 + A00U−2 + AT
−10U−3 = 0,

A−10U−2 + A00U−3 + AT
−10U−4 = 0,

... .

The solvability condition is phrased in terms of solutions for (4.14) that are decaying
or constant.

Condition 4.1. There exists an invertible matrix C such that for any U0 ∈ R
N,

the vector (U0, U−1, U−2, . . . ) with

Ui = CiU0 ∀i ≤ 0(4.15)

(where C0 is the identity matrix) satisfies (4.14). In addition,

CiU0 = U0 ∀i ≤ 0, ∀U0 ∈ span{1k : k = 1, 2, 3} and(4.16)

CiU0 → 0 as i → −∞ ∀U0 ∈ span{1k : k = 1, 2, 3}⊥.(4.17)

Note that the constant displacement field is a trivial solution to (4.14) since it is the
discretization of the differential operator L, which is reflected in the statement (4.16).
The second statement (4.17) says that if U0 is orthogonal to all constant fields, then
the solution decays to 0 at infinity.

Condition 4.1, which is validated in section 4.3, has a number of important con-
sequences, as described in the following subsections.

4.2.1. On the general ABC operator A. The general form of the ABC
operator, under Condition 4.1, is described in this subsection.

Define the following two special vector spaces:

Θ =

{
V = (V−1, V−2, . . . ) : inf

ξ∈R

‖V + ξ1‖�2 < ∞ Ψ(Vi) = 0 ∀i < −1

}
,

where

Ψ(Vi) = A−10Vi+1 + A00Vi + AT
−10Vi−1,(4.18)
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and

Θ∗ = {G = (G−1, 0, . . . , 0, . . . ) : G−1 ∈ R
N}.(4.19)

It is clear that both spaces Θ and Θ∗ are finite dimensional. In particular, due to
the constraints (4.18), the space Θ is completely determined by the first two vectors
V−1 and V−2. Due to Condition 4.1, the dimension of the space Θ is at least N; in fact,
as shown below, its dimension is exactly N. By defining ‖V‖Θ =

∑
k=−1,−2 ‖Vk‖�2

as a norm on Θ, the space Θ is a Banach space, as is Θ∗. The following lemma is
simple but important for the subsequent discussion (the proof can be found in the
appendix).

Lemma 4.1. Under Condition 4.1, the matrix M, given as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 AT
−10 0 0 0 · · ·

A−10 A00 AT
−10 0 0

...

0 A−10 A00 AT
−10 0

...
... 0 A−10 A00 · · ·

...
... 0

. . .
. . .

. . .
...

... · · · · · ·
. . .

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(4.20)

is an isomorphic mapping from Θ to Θ∗.

Since M is isomorphic, the following equation is solvable:

MU− = G,(4.21)

where

U− = (U−1, U−2, U−3, . . . )
T

and G = (−A−10U0, 0, 0, . . . )
T .

In particular, U− = M−1G. Multiplying both sides of this equation by B = (AT
−10, 0, . . . , 0)

yields the relation

AT
−10U−1 = −BM−1BTU0.(4.22)

The general form of the ABC operator A is defined by

A = BM−1BT .(4.23)

Note that the operator A relates Ui−1 and Ui for i ≤ 0. Since U− belongs to the
space Θ, Ui should decay as i → −∞, unless U0 has a nonzero component that is a
constant vector.

4.2.2. The total energy formula for the system above the artificial
boundary. This section introduces the new energy formula that is a by-product
of the ABC operator.

Since A−10Ui+1 + A00Ui + AT
−10Ui−1 = 0 and Fi = 0 for i < 0, the total energy



EXACT ARTIFICIAL BOUNDARY CONDITIONS 1761

Etotal from (4.8) can be written as follows:

Etotal =
∑
i≥0

1

2
(Ui, (Aii+1Ui+1 + AiiUi + Aii−1Ui−1)) − (Ui, Fi)

=
1

2

(
U0,

(
A01U1 + A00U0 + AT

−10U−1

))
− (U0, F0)

+
∑
i>0

1

2
(Ui, (Aii+1Ui+1 + AiiUi + Aii−1Ui−1)) − (Ui, Fi) .

This formula, however, depends on the displacement field U−1 below the artificial
boundary. To remove this dependence and obtain an energy formula (and a reduced
force balance equation) that involves displacement fields only above the artificial
boundary, use the operator A to obtain the following alternative formula:

Etotal =
1

2
(U0, (A01U1 + (A00 −A)U0)) − (U0, F0)(4.24)

+
∑
i>0

1

2
(Ui, (Aii−1Ui−1 + AiiUi + Aii+1Ui+1)) − (Ui, Fi) .

Note that the energy formula given in (4.24) depends only on the displacement fields
U0 and U+ above the artificial boundary, but it includes the energy in the strain field
below the artificial boundary. In addition, optimization of this formula for the energy
yields the reduced equation on the upper domain with the ABC using the operator
A, as shown in the next subsection.

4.2.3. The force balance equation. Define the following admissible solution
space for the optimization problem (4.10):

V =

{
V = (Vn, . . . , V0, V−1, . . . ) : inf

ξ∈R

‖V + ξ1‖�2 < ∞, Ψ(Vi) = 0 ∀i < 0

}
.

Thanks to Condition 4.1, the force balance equation that results from minimizing the
total energy in its reduced form (4.24) is

Ĥ

(
U+

U0

)
=

(
AII AT

I0

AI0 A00 −A

)(
U+

U0

)
=

(
F+

F0

)
.(4.25)

The reduced form (4.25) of the force balance equation, as well as its properties, is
the main result of this work. Note that (4.25) involves the Schur complement of the
matrix A00 in the original force balance equation (4.13).

The properties of the matrices A and Ĥ are summarized in the following lemma,
whose proof is provided in the appendix.

Lemma 4.2. The matrix A is symmetric and positive definite, the matrix Ĥ is
symmetric and nonnegative definite, and the null space of Ĥ consists of the constant
displacement fields span{1k : k = 1, 2, 3}.

The analysis in this section is performed for the Neumann boundary condition
at the top boundary Γ1, by which we mean that the variational principle (4.10)
involves no constraint on the solution at Γ1. In this case, it is most important to
note that (4.25) is solvable since (F+, F0) belongs to the range of Ĥ; namely, (F+, F0)

is orthogonal to the constant vector fields, which is exactly the null space of Ĥ as
noted in Lemma 4.2. In addition, the solution to (4.25) is determined up to a constant
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vector. However, the additional contribution of the constant vector does not affect the
total energy evaluation since the total energy is invariant with respect to the constant
displacement. Furthermore, use of the Neumann condition is only to simplify the
analysis. It does not affect the ABC operator A, which can be used for any choice of
boundary conditions on the top.

In passing to the next section, we summarize the most important properties of
the ABC operator A, which guide its construction.
P1 The operator A is a symmetric and positive definite matrix mapping R

N to R
N .

P2 The relation between U−1 and U0 is that U−1 = −(AT
−10)

−1AU0 = CU0.

4.3. Validation of the solvability requirement, Condition 4.1. In this
section, Condition 4.1 is derived by introducing a sum-of-exponentials ansatz. Much
of the derivation, including the most crucial steps, is analytic, but some steps are
based on numerical evidence. In related work on the Laplace equation, Hagstrom and
Keller [11] performed a completely analytic validation of the analogue of Condition
4.1.

The following presentation is mostly based on the thesis of Lee [18] and is similar
to the work by Russo and Smereka [20], which used the palindromic eigenvalue prob-
lem [15, 16]. Although these works did not state a general solvability condition like
Condition 4.1, their analysis is equivalent to a validation of this condition. Through-
out this section, denote F and F−1 to be the discrete forward and backward Fourier
transforms, respectively.

4.3.1. Two dimensional case. The force balance equations at a point (xm, yi) =
(m, i) are

−(Lu)1 = −C11D
+
x D

−
x u− C44D

+
y D

−
y u− (C12 + C44)D

0
yD

0
xv = 0,(4.26)

−(Lu)2 = −C44D
+
x D

−
x v − C11D

+
y D

−
y v − (C12 + C44)D

0
xD

0
yu = 0.

Since the solution is periodic in the x-direction, we introduce the following ansatz:

u(m, i) =
1

Nx

Nx−1∑
μ=0

û(μ, i) e2πıμm/Nx(4.27)

=
1

Nx

Nx−1∑
μ=0

û(μ)γi e2πıμm/Nx ,

where Nx is such that u(m, i) = u(Nx + m, i) for all m.
From (4.27), the force balance equations (4.26) become

P (μ, γ)û(μ, i) =
(
γ2Â−10(μ) + γÂ00(μ) + ÂH

−10(μ)
)
û(μ, i) = 0(4.28)

for μ = 0, 1, . . . , Nx − 1, where

Â−10(μ) =

(
−C44 −ıC12+C44

2
sin(2πμ/Nx)

−ıC12+C44
2

sin(2πμ/Nx) −C11

)
,

Â00(μ) =

(
2C44 + 2C11(1 − cos(2πμ/Nx)) 0

0 2C11 + 2C44(1 − cos(2πμ/Nx))

)
,

and ÂH
−10 is the complex transpose of the matrix Â−10.
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Nontrivial solutions for this system require that

detP (μ, γ) = 0.(4.29)

This is the well-known palindromic eigenvalue problem [15, 16, 20]. Note that for
μ = 0, which corresponds to the constant vector in the Fourier expansion of the
solution ansatz (4.27), the only solution to (4.29) is γ = 1, which corresponds to the
constant solution to (4.14).

For μ 
= 0, (4.29) has four solutions that occur in pairs (γk, γ
−1
k ) for k = 1, 2,

since

det(P (μ, γ)) = 0 ⇐⇒ det(P (μ, γ)) = 0(4.30)

and

P (μ, γ) = γ2P (μ, γ −1).

We then pick a pair of solutions (γ1, γ2) with |γk| > 1 for k = 1, 2, which are the
relevant choices since the corresponding solution is decaying as i → −∞ for μ 
= 0, and
we also pick two linearly independent eigenvectors q1(μ) and q2(μ) that correspond
to γ1 and γ2, respectively [10, 20]; i.e.,

P (μ, γ1)q1(μ) = P (μ, γ2)q2(μ) = 0.(4.31)

It is possible that |γk| = 1 or that γ1 = γ2 and there is a generalized eigenvector,
but these possibilities have not been seen numerically. Indeed, the occurrence of a
generalized eigenvector in the continuous case (cf. section 3.2) does not seem to have
consequences for the discrete case.

We then arrive at the general solution for û(μ, i) given as follows:

û(μ, i) = q1(μ)γi
1 + q2(μ)γi

2.(4.32)

For the zero mode μ = 0, two linearly independent vectors qk(0) are q1 = (1, 0)T

and q2 = (0, 1)T . Note that omitting this mode would make 0 an eigenvalue for the
operator A, but that A should be positive definite as indicated in property P1 in
subsection 4.2.3.

4.3.2. Three dimensional case. As in the two dimensional case, consider the
force balance equations at a point (xm, yn, zi) = (m,n, i):

−(Lu)1 = −C11D
+
x D

−
x u− C44(D

+
y D

−
y u + D+

z D
−
z u)(4.33)

−(C12 + C44)(D
0
yD

0
xv + D0

zD
0
xw)

= 0,

−(Lu)2 = −C11D
+
y D

−
y v − C44(D

+
x D

−
x v + D+

z D
−
z v)

−(C12 + C44)(D
0
yD

0
xu + D0

zD
0
yw)

= 0,

−(Lu)3 = −C11D
+
z D

−
z w − C44(D

+
x D

−
x w + D+

y D
−
y w)

−(C12 + C44)(D
0
zD

0
xu + D0

zD
0
yv)

= 0.
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Introduce the solution ansatz as follows:

u(m,n, i) =
1

NxNy

Nx−1∑
μ=0

Ny−1∑
ν=0

û(μ, ν, i) e(2πıμm)/Nx+(2πıνn)/Ny(4.34)

=
1

NxNy

Nx−1∑
μ=0

Ny−1∑
ν=0

û(μ, ν)γi e(2πıμm)/Nx+(2πıνn)/Ny ,

where Nx and Ny are the periods in x and y for u. From ansatz (4.34), the force
balance equations become

P (μ, ν, γ)û(μ, ν, i)(4.35)

=
(
γ2Â−10(μ, ν) + γÂ00(μ, ν) + ÂH

−10(μ, ν)
)
û(μ, ν, i) = 0

for each μ = 0, 1, . . . , Nx and ν = 0, 1, . . . , Ny, where Â−10 = Â−10(μ, ν) and Â00 =

Â00(μ, ν) are given by

Â−10 =

⎛
⎝ −C44 0 −s1

0 −C44 −s2

−s1 −s2 −C11

⎞
⎠,

Â00 =

⎛
⎝ a11 a12 0

a21 a22 0
0 0 a33

⎞
⎠,

in which

s1 = ı
C12 + C44

2
sin(2πμ/Nx),

s2 = ı
C12 + C44

2
sin(2πν/Ny)

and

a11 = 2C11(1 − cos(2πμ/Nx)) + 2C44(1 − cos(2πν/Ny)) + 2C44,

a12 = −(C12 + C44) sin(2πμ/Nx) sin(2πν/Ny),

a21 = a12,

a22 = 2C44(1 − cos(2πμ/Nx)) + 2C11(1 − cos(2πν/Ny)) + 2C44,

a33 = 2C44(1 − cos(2πμ/Nx)) + 2C44(1 − cos(2πν/Ny)) + 2C11.

A nontrivial solution can be found only if

detP (μ, ν, γ) = 0.(4.36)

As in the two dimensional case, for μ = ν = 0, the only solution is γ = 1, and for
(μ, ν) 
= (0, 0), there are three pairs of eigenvalues, namely (γk, γ

−1
k ) with |γk| > 1

for k = 1, 2, 3, and corresponding eigenvectors qk(μ, ν) that are mutually linearly
independent, from which the general solution can be given as follows:

û(μ, ν, i) = q1(μ, ν)γi
1 + q2(μ, ν)γi

2 + q3(μ, ν)γi
3.(4.37)
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Note that if the three values γk are distinct, then it can be seen directly that there exist
three linearly independent eigenvectors qk(μ, ν) corresponding to the three eigenvalues
γk (see the appendix). Often in our computation, as seen in the work by Russo and
Smereka [20], it happens that γk = γ� with k 
= �. When this happens, it is difficult to
establish analytically the existence of linearly independent eigenvectors; this is always
found to be the case, however, in the numerical computations.

4.4. On the discrete ABC operator A and Condition 4.1. In this section,
the ABC operator A is constructed for the three dimensional case only, since the
two dimensional construction is similar but simpler. We first construct the operator
C that relates Ui−1 and Ui by Ui−1 = CUi, as indicated in P2. We then construct
A = −(AT

−10)C. Finally, we discuss the validation of Condition 4.1.

Note that the Fourier transforms Â−10 and Â00 of A−10 and A00 consist of 3× 3

block matrices Â−10(μ, ν) and Â00(μ, ν). Since the vectors qi(μ, ν) from (4.37) are
mutually independent, define the following mutually orthonormal vectors:

q̃i = ci(qi′ × qi′′),

in which each triple (i, i′, i′′) is a rearrangement of (1, 2, 3) and the constants ci’s are
chosen so that

q̃i · qj = δij for i, j = 1, 2, 3.(4.38)

It follows that

û(μ, ν, k − 1) = C(μ, ν)û(μ, ν, k),(4.39)

in which

C(μ, ν) =

⎛
⎝ q̃T

1

q̃T
2

q̃T
3

⎞
⎠

−1 ⎛
⎝ γ−1

1 q̃T
1

γ−1
2 q̃T

2

γ−1
3 q̃T

3

⎞
⎠ .(4.40)

The matrix C is

C = F−1CF ,(4.41)

in which

C = diag(C(μ, ν))μ=0,...,Nx−1,ν=0,...,Ny−1.(4.42)

To construct the ABC operator A, multiply −ÂH
−10(μ, ν) by C(μ, ν). Note that

A = F−1AF , where A is a diagonal block matrix consisting of the submatrices
A(μ, ν) = −ÂH

−10(μ, ν)C(μ, ν) for μ = 0, . . . , Nx − 1 and ν = 0, . . . , Ny − 1, namely,

A = diag(A(μ, ν))μ=0,...,Nx−1, ν=0,...,Ny−1,(4.43)

and also for both two and three dimensional cases, the operator A = F−1AF is
symmetric and positive definite. It is quite difficult to see this directly from the
Fourier analysis discussed in this section, but it follows from the variational principle
based on the general form of the ABC operator as discussed in section 4.2.
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Finally, Condition 4.1 can be validated from the construction of the matrix C.
For any data U0 ∈ R

N which consists of displacement u on the interface i = 0, the
vectors Ui for all i < 0 can be written as follows:

Ui = F−1CiFU0 = CiU0.(4.44)

The matrix C is invertible. It satisfies (4.17), because |γ| > 1 for (μ, ν) 
= 0, while for
(μ, ν) = 0, γ = 1 and the corresponding term in (4.34) has no dependence on m and
n, so that (4.16) is also satisfied. This completes the validation of Condition 4.1.

4.5. Total energy. In this section we derive alternative general energy formulas
that involve a product of stress and strain. Note that in the section 4.2, the energy
and the variational principle are written in terms of displacement times force. For
some applications, such as a heteroepitaxial thin film, as described in section 5.3, it
is much more convenient to write the energy in the form of stress times strain, as in
(4.3).

The analysis of this section relies on the following “summation by parts” formulas:

∑
j≤0

(D+f)jgj = f1g0 −
∑
j≤0

fj(D
−g)j ,(4.45)

∑
j≤0

(D−f)jgj = f0g1 −
∑
j≤0

fj(D
+g)j ,(4.46)

∑
j≤0

(D0f)jgj =
1

2
(f1g0 + f0g1) −

∑
j≤0

fj(D
0g)j ,(4.47)

where D+, D−, and D0 are the forward, backward, and centered finite difference
operators, respectively. The total energy can be decomposed into two parts:

Etotal = Ei≥0 + Ei≤−1,(4.48)

where Ei≥0 =
∑

i≥0 Ei and Ei≤−1 =
∑

i≤−1 Ei, and i = 0 is the layer in which the
ABCs are imposed. Use (4.45)–(4.47) to derive the following relations, in two and
three space dimensions, respectively:

Ei≤−1 =
∑
i1

αv0(D
+
y v)−1 + βu0(D

+
y u)−1(4.49)

+
∑
i1

αv−1(D
−
y v)0 + βu−1(D

−
y u)0

+
∑
i1

[
β(u0(D

0
xv)−1 + u−1(D

0
xv)0)

+ γ
(
v0(D

0
xu)−1 + v−1(D

0
xu)0

)]
−

∑
i1,i≤−1

1

2
ui · (Lui) − ui · fi

and
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Ei≤−1 =
∑
i1,i2

αw0(D
+
z w)−1 + β(u0(D

+
z u)−1 + v0(D

+
z v)−1)(4.50)

+
∑
i1,i2

αw−1(D
−
z w)0 + β(u−1(D

−
z u)0 + v−1(D

−
z v)0)

+
∑
i1,i2

[
β
(
v0(D

0
yw)−1 + v−1(D

0
yw)0 + u0(D

0
xw)−1 + u−1(D

0
xw)0

)
+ γ

(
w0(D

0
yv)−1 + w−1(D

0
yv)0 + w−1(D

0
xu)0 + w0(D

0
xu)−1

)]
−

∑
i1,i2,i≤−1

1

2
ui · (Lui) − ui · fi,

in which L is the operator introduced in (4.26) and (4.33) and fi is the force. In these
formulas, the subscript refers to the depth-like index i.

Due to the assumption that fi = 0 for i ≤ −1, the last terms are zero in both the
two and three dimensional cases. This leads to the following formulas:

Etotal = Ei≥0 +
∑
i1

αv0(D
+
y v)−1 + βu0(D

+
y u)−1(4.51)

+
∑
i1

αv−1(D
−
y v)0 + βu−1(D

−
y u)0

+
∑
i1

[
β(u0(D

0
xv)−1 + u−1(D

0
xv)0)

+ γ
(
v0(D

0
xu)−1 + v−1(D

0
xu)0

)]
in two dimensions and

Etotal = Ei≥0 +
∑
i1,i2

αw0(D
+
z w)−1 + β(u0(D

+
z u)−1 + v0(D

+
z v)−1)(4.52)

+
∑
i1,i2

αw−1(D
−
z w)0 + β(u−1(D

−
z u)0 + v−1(D

−
z v)0)

+
∑
i1,i2

[
β
(
v0(D

0
yw)−1 + v−1(D

0
yw)0 + u0(D

0
xw)−1 + u−1(D

0
xw)0

)
+ γ

(
w0(D

0
yv)−1 + w−1(D

0
yv)0 + w−1(D

0
xu)0 + w0(D

0
xu)−1

)]
in three dimensions. In both (4.51) and (4.52), we replace U−1 by CU0 whenever u−1

appears.
If the ABCs are imposed on the layer i = 0 where there is no force, then the total

energy could be computed by the following new energy formulas that do not involve
U−1 or the operator C:

Etotal = Ei>0 +
∑
i1

αv1(D
+
y v)0 + βu1(D

+
y u)0(4.53)

+
∑
i1

αv0(D
−
y v)1 + βu0(D

−
y u)1

+
∑
i1

[
β(u1(D

0
xv)0 + u0(D

0
xv)1)

+ γ
(
v1(D

0
xu)0 + v0(D

0
xu)1

)]
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in two space dimensions and

Etotal = Ei>0 +
∑
i1,i2

αw1(D
+
z w)0 + β(u1(D

+
z u)0 + v1(D

+
z v)0)(4.54)

+
∑
i1,i2

αw0(D
−
z w)1 + β(u0(D

−
z u)1 + v0(D

−
z v)1)

+
∑
i1,i2

[
β
(
v1(D

0
yw)0 + v0(D

0
yw)1 + u1(D

0
xw)0 + u0(D

0
xw)1

)
+ γ

(
w1(D

0
yv)0 + w0(D

0
yv)1 + w0(D

0
xu)1 + w1(D

0
xu)0

)]
in three space dimensions, respectively. In both (4.53) and (4.54), we replace U−1 by
−(AT

−10)
−1AU0 whenever u−1 appears.

5. Numerical results. In this section, sample computations are performed to
validate and illustrate the ABCs developed in previous sections. Throughout this
section, the elastic constants C11, C12, C44 are assumed to be C11 = 8, C12 = 4, and
C44 = 4 unless explicitly stated otherwise.

5.1. The ABCs for continuum elasticity. This section shows the effective-
ness of the ABCs for continuum elasticity equations (3.7). The Lamé constants are
chosen to be λ = 1 and τ = 1.

The test problem is (3.7) on Ω = [0, 2π)×(−∞, 0) with data on Γ1 = [0, 2π)×{y =
0}. Periodicity is assumed in the lateral direction, and there is no body force; i.e.,
f = 0. The interface Γ2 at which the artificial boundary condition is imposed is the
line [0, 2π) × {y = −1}.

The Dirichlet data given on Γ1 is as follows:

u = (u, v) = (cosx + sin 2x, 0),

for which the exact solution to (3.7) is

(5.1)

u =

((
1 +

y

2

)
cosx ey + (1 + y) sin 2x e2y,

7

2
sinx ey − y cos 2x e2y

)
.

This exact solution is compared to the solution of (3.7) with the exact artificial bound-
ary condition (3.16) on the interface Γ2 and also to the solutions with the following
two alternative boundary conditions:

• The zero Dirichlet boundary condition u(x,−1) = 0.
• The Neumann boundary condition n · T = 0 on y = −1.

Figure 5.1 shows the u-displacement field at the line y = −0.75 for the exact solution,
the solution using ABCs, and the two alternative solutions. Although there is still
error, due to discretization of the continuum equation, it is clear that the solution
obtained with the exact ABCs (3.16) is in good agreement with the analytic solu-
tion (5.1). On the other hand, the solutions obtained with the other two boundary
conditions are in error by about 20%–30% at the peaks.

5.2. The ABCs for discrete elasticity. In this section, we investigate the
ABCs for the discrete elastic equations for both two and three space dimensions with
the Dirichlet data given on the boundary Γ1. As in the continuum case, there are no
external forces, and periodic boundary conditions are imposed in the lateral directions.
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Fig. 5.1. Test of the ABCs for the continuum solution in two space dimensions. Comparison
of the u-displacement field of u = (u, v) given at y = −0.75 for the exact solution (line) and for the
following boundary conditions: ABC (circle), zero-displacement (plus), and Neumann (triangle).
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Fig. 5.2. Test of the exact discrete ABCs in two dimensions: a comparison of the u-
displacement field of u = (u, v) at (x, y) = (x, 3). The boundary Γ1 is at y = 1, and the interface Γ2

is at y = 5 for the exact solution (line) and for the following boundary conditions: ABC (circle),
zero-displacement (plus), and Neumann (triangle).

More precisely, for the two dimensional case, the lattice Ω consists of Nx = 25
layers in the x-direction and Ny = 5 in the y-direction, and the prescribed Dirichlet
boundary condition for u on Γ1 = {y = 1} is

u = (cosx + sin 2x, sinx).(5.2)

For the three dimensional case, the lattice Ω consists of Nx = Ny = 25 layers in the
x- and y-directions and Nz = 4 layers in the z-direction, and the Dirichlet data on
Γ1 = {z = 1} is

u = (cosx + sin 2x, sin y, sinx).(5.3)

Numerical results are plotted in Figures 5.2 and 5.3. For numerical experiments,
the exact ABCs and other approximate boundary conditions are imposed on Γ2 =
{y = 5} for the two dimensional case and Γ2 = {z = 4} for the three dimensional
case, respectively. The results show that the solution with the ABCs is much more
accurate than those from the Dirichlet and Neumann boundary conditions. Indeed,
the accuracy obtained with the ABCs operator is within the round-off error, i.e.,
O(10−14).

5.3. Numerical simulations for thin films. In heteroepitaxial growth, a thin
film of one material (e.g., Ge) is grown on top of a substrate of a second material (e.g.,
Si), with perfect, single crystalline structure in both materials and with the lattice
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Fig. 5.3. Test of the exact discrete ABCs in three dimensions: a comparison of the v-
displacement field of u = (u, v, w) at (x, y, z) = (10, y, 3). The boundary Γ1 is at z = 1, and
the interface Γ2 is at z = 4 for the exact solution (line) and for the following boundary conditions:
ABC (circle), zero-displacement (square), and Neumann (triangle).

structure of the film determined by the substrate. If the lattice constants af and as
for the film and substrate are different (e.g., aGe = 1.04×aSi), then strain is generated
in the film. This strain has important effects on the material structure, as well as on
its electronic properties.

For this system, it is most convenient to define the atomic displacement relative
to a single reference lattice, for example, the equilibrium lattice of the substrate, so
that the displacement u in the film is defined relative to a nonequilibrium reference
lattice. The bond displacement dk± is then

dk±(i) = (dk±1 , dk±2 , dk±3 ) = D±
k u(i) − εekχ,(5.4)

in which ε =
af−as

as
is the relative lattice displacement, and χ is 0 in the substrate

and 1 in the film. The resulting discrete strain equations have a force of size ε along
the film/substrate interface, and the energy has the form

Etotal =
1

2
(HU,U) − (F,U) + G(ε),(5.5)

where

(F,U) =
∑
i

∑
p=±,k=1,2,3

εDp
kukχ.(5.6)

Further details are given, for example, in [5].
In this section, we compare the displacement fields u that are computed with the

ABCs and with zero boundary conditions for a heteroepitaxial thin film. Since the
forces lie on the film/substrate boundary, the artificial boundary can be taken to be
any plane below this interface. Our computational domain is three dimensional with
Γ2 being of size 10 × 10. As in the last section, we denote NC to be the thickness
of the substrate, including Γ2. Note that on the top boundary Γ1, the homogeneous
Neumann boundary condition (no external force) is imposed.

To demonstrate the effectiveness of the ABCs, we first compute the displacement
field u by imposing the ABCs on Γ2 with substrate thickness NC = 1 and take it as
the reference solution. We then compute two displacement fields that are generated
by imposing zero boundary conditions on the bottom boundary with NC = 2 and
NC = 8. For these three solutions, Figure 5.4 shows a comparison of the u component
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Fig. 5.4. The comparison of u-displacement on the second layer from the top boundary Γ1 with
x = 1. The u-displacement computed with the ABC (circle) imposed on the first substrate layer and
u-displacement computed with zero boundary condition with NC = 2 (triangle) and NC = 8 (cross).
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Fig. 5.5. Schematic drawing of quantum dot geometry.

of the displacement vector u = (u, v, w) on the line x = 1 in the second layer from
the top. It is clear that the displacement field computed with the zero boundary
conditions approaches the reference displacement field as the number of substrate
layers increases. In addition (not shown in Figure 5.4), the results from the ABC are
found to be independent (i.e., within round-off error) of the depth at which the ABC
is applied.

5.4. Energy computation. This section presents results to validate the total
energy formulas (4.51) and (4.52) derived in section 4.5. As in the previous section,
NC denotes the number of substrate layers, including Γ2 itself. In addition, EA

denotes the total energy computed by imposing the ABC on Γ2, and EZ denotes the
total energy computed with the zero boundary condition on Γ2.

For computational purposes, we take a geometry corresponding to a periodic
array of quantum dots. A typical geometry is illustrated in Figure 5.5. For two space
dimensions, Γ2 is one dimensional with the material system of size Nx = 128 and the
quantum dot of base size 64. For three space dimensions, Γ2 is two dimensional with
the material system of size Nx = Ny = 10 and the quantum dot of base size 8 × 8.

In order to validate the total energy formulas (4.51) and (4.52), by numerical
computation we show first that the total energy EA does not depend on the thickness
of the substrate NC and second that the total energy EZ obtained by imposing zero
boundary conditions on Γ2 approaches the total energy EA as the thickness of sub-
strates NC increases. These computational results are demonstrated in Figure 5.6, in
which the thickness of the substrate NC varies from NC = 2 to NC = 120 for two
space dimensions and from NC = 2 to NC = 14 for three space dimensions. The units
of the total energy are 1012dyne/cm2.



1772 SUNMI LEE, RUSSEL E. CAFLISCH, AND YOUNG-JU LEE

0 20 40 60 80 100 120
2.3

2.35

2.4

2.45

2.5

2.55

NC

To
ta

l E
ne

rg
y 

Total Energies versus Thickness of Substrates 2D

 

 

2 4 6 8 10 12 14
2.41

2.415

2.42

2.425

2.43

2.435

2.44
Total Energies versus Thickness of Substrates 3D

NC

To
ta

l E
ne

rg
y

 

 
ABC
Zero BC

ABC
Zero BC

Fig. 5.6. Total energies obtained by applying the ABC (circle) and zero boundary condition
(square) as a function of the thickness of substrates for two dimensions (left) (Nx = 128) and three
dimensions (right) (Nx = Ny = 10).

6. Conclusions. In this paper, we have derived the ABCs for continuum and
discrete elasticity equations. A solvability condition has been formulated and vali-
dated, under which the discrete equations in an unbounded domain can be shown to
be well-posed and the reduced force balance equation can be derived. Its solution co-
incides with the exact solution when restricted to the bounded domain. Furthermore,
a new total energy formula has been derived so that it can be computed by using only
the displacement field in the region above the artificial boundary.

These results are currently being used for modeling and simulation of the growth
of thin epitaxial films. By exploiting the symmetry of the resulting force balance
equations in further work, we shall combine the ABCs with a multigrid method to
get an accelerated simulation method for various applications.

Appendix. Several technical lemmas.

Lemma A.1. The matrix A−10 is invertible.

Proof. Observe that

A−10Ui = F−1Â−10F(Ui),(A.1)

where F and F−1 are Fourier and inverse Fourier transformations and Â−10 is a 3×3
(2 × 2 in two space dimensions) block matrix, such that for any given Fourier mode
(μ, ν),

Â−10(μ, ν) =

⎛
⎝ −C44 0 −s1

0 −C44 −s2

−s1 −s2 −C11

⎞
⎠ ,(A.2)

where

s1 = ı
(C12 + C44)

2
sin

(
2πμ

Nx

)
,

s2 = ı
(C12 + C44)

2
sin

(
2πν

Ny

)
.
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The eigenvalues for Â−10(μ, ν) can be obtained by solving the following equation:

det(Â−10(μ, ν) − λI) = −(C44 + λ)
[
(C44 + λ)(C11 + λ) − s2

1 − s2
2

]
(A.3)

= −(C44 + λ)
[
λ2 + (C11 + C44)λ + C11C44

+ sin2(2πμ/Nx)(C12 + C44)
2/4

+ sin2(2πν/Ny)(C12 + C44)
2/4

]
.

Hence, three eigenvalues λ1, λ2, and λ3 are given as follows:

λ1 = − C44,

2λ2 = − (C11 + C44)

+
√

(C11 − C44)2 − (sin2(2πμ/Nx) + sin2(2πν/Ny))(C12 + C44)2,

2λ3 = − (C11 + C44)

−
√

(C11 − C44)2 − (sin2(2πμ/Nx) + sin2(2πν/Ny))(C12 + C44)2.

The eigenvalue with the smallest magnitude is λ2 with sin(2πν/Nx) = sin(2πμ/Ny) =
0, in which case

2λ2 = (−(C11 + C44) + |C11 − C44|) = −2 min(C11, C44).(A.4)

It follows that no eigenvalues can be zero; hence A−10 is invertible. This completes
the proof.

Lemma A.2. For γi 
= γj, the corresponding eigenvectors qi and qj are linearly
independent.

Proof. Consider the linear reformulation of the palindromic eigenvalue problem
(4.30) by introducing x = γy as follows: With P (μ, ν, γ) = γ2Â−10 + γÂ00 + ÂH

−10,(
0 I

−ÂH
−10 −Â00

)(
y
x

)
= γ

(
I 0

0 Â−10

)(
y
x

)
.(A.5)

From the fact that Â−10 is invertible, it is obvious that the eigenvectors qi and qj

that correspond to different eigenvalues γi and γj must be linearly independent.
Lemma A.3. Under Condition 4.1, the matrix M given in (4.20) is an isomorphic

mapping from Θ to Θ∗.
Proof. For V− = (V−1, V−2, . . . )

T ∈ Θ with Vi = CiV0 for i ≤ 0, as in Condition
4.1,

MV− = (−A−10V0, 0, . . . , 0, . . . )
T(A.6)

= G = (G−1, 0, . . . , 0, . . . )
T

if G−1 = −A−10V0. Since A−10 is invertible, this shows that the matrix M is onto.
To show that M is one to one, it is enough to show that MV− = 0 implies V− = 0.

Consider the energy

E− =
∑
i<0

Ei(A.7)

over the space Θ and observe that

(MV−,V−) = Ê−,(A.8)
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in which Ê− is E− for V0 = 0. Therefore, MV− = 0 implies that Ê− = 0. Connectivity
of the lattice and U0 = 0 then imply that Ui = 0 for all i < 0. This shows that the
matrix M is one to one. Therefore, M : Θ �→ Θ∗ is isomorphic.

Proof of Lemma 4.2.
First, we show that A is symmetric. For any U = (0, 0, . . . , 0, U0, U−1, . . . , . . . )

T

and V = (0, 0, . . . , 0, V0, V−1, . . . , . . . )
T that belong to the space V, Condition 4.1

implies that

AT
−10V−1 = −AV0 and AT

−10U−1 = −AU0.(A.9)

Note also that Ẽ(U,V) = Ẽ(V,U); i.e.,

Ẽ(U,V) =
1

2

(
U0,

(
A00V0 + AT

−10V−1

))
(A.10)

=
1

2

(
V0,

(
A00U0 + AT

−10U−1

))
= Ẽ(V,U).

Use (A.9) in (A.11) to obtain

(U0, (A00V0 −AV0)) = (V0, (A00U0 −AU0)) .

Since A00 is symmetric, this implies that (U0,AV0) = (V0,AU0) for all U0, V0 ∈ R
N

and therefore, that A is symmetric. The symmetry of the operator A implies that
the matrix Ĥ is symmetric.

Next, we show that A is positive definite since for U0 
= 0 ∈ R
N ,

(U0,AU0) = (U0,BM−1BTU0) = (BTU0,M
−1BTU0)

= (MU−,M−1MU−) = (MU−,U−) = Ê− > 0,

where U− is the unique solution of MU− = BTU0. Finally, we show that the matrix
Ĥ is nonnegative definite. First note that Ĥ1 = 0. Furthermore, there is no other
null space for Ĥ, since

Ĥ

(
U+

U0

)
= 0 ⇐⇒ (U0, (A01U1 + (A00 −A)U0))

+
∑
i>0

(Ui, (Aii−1Ui−1 + AiiUi + Aii+1Ui+1)) = 0

⇐⇒ Ẽ(U,U) = 0 with U ∈ V

⇐⇒ U = 1 by connectivity of the lattice.

This completes the proof of Lemma 4.2.
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