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MODELING, DESIGN, AND OPTIMIZATION OF A SOLID STATE
ELECTRON SPIN QUBIT∗
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Abstract. This paper describes a solid state system in which a qubit is realized as the spin
of a single trapped electron in a quantum dot and read functionality is via an adjacent quantum
wire with a single or a small number of conductive states. Because of the limited design window
for this system, simulation is an important guide to an experimental search for successful designs.
We use a semianalytic approximation that is accurate enough to provide meaningful results and
computationally simple enough to allow high throughput, as needed for design and optimization. In
particular, we find designs that achieve double pinchoff (i.e., a single trapped electron in the dot and
a single conductive state in the wire). After relaxing the design requirements to allow for a small
number of conductive states in the wire, we find successful designs that are optimally robust, in the
sense that their success is unlikely to be affected by fabrication errors.
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1. Introduction. Quantum logic, based on manipulation and interaction of bi-
nary quantum states or “qubits,” has great potential for communication and compu-
tation. Quantum communication could offer absolute security [14] and transmission
rates beyond the Shannon limit [5]. Quantum computation could greatly accelerate
the solution of certain important problems, such as prime factorization [15], database
searching [6], and simulation of quantum systems [16]. This potential has motivated
a large effort to develop and implement quantum logic. Currently, the foremost prob-
lem for quantum communication and computation is the implementation of qubits
in a robust and scalable system, which will allow for error correction and control of
decoherence. Solid state implementations of a qubit, based on an electron or nuclear
spin confined to a quantum dot, have been proposed in [1, 8, 9, 10, 11, 12, 17, 18].

This paper is concerned with the design of a single qubit system in a solid state
implementation, as proposed in [3, 17], in which a qubit is represented as the spin
of a single electron confined in a quantum dot. A quantum wire is placed below
the quantum dot, so that the conductivity of the wire will depend sensitively on the
charge present in the dot. The wire can then be used to verify the presence of a single
electron in the quantum dot and, in the presence of a spin polarized electron reservoir,
to read out the spin of that electron. The latter can be accomplished in several ways,
for instance, by measuring tunneling times from the reservoir into the qubit. As the
spin singlet state has lower energy than the triplet states [4], we can arrange to make
tunneling into a triplet state energetically forbidden, and since the singlet state must
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be formed using two opposite spins, the tunneling time will then depend strongly on
the relative alignment of the qubit spin to the reservoir spin.

In our design, the quantum dot and wire are formed in two vertically stratified,
parallel semiconductor quantum wells and are defined electrostatically using litho-
graphically patterned gates on the surface of the semiconductor. Further description
of the geometry and electrostatics of this system are provided in section 2. An alterna-
tive design using a horizontal placement of quantum dots has been carried out in [18].

A successful qubit design requires a single electron in the quantum dot and a small
number of conduction states in the quantum wire. If there is only a single state in
the quantum wire, it can be used both as spin reservoir and charge sensor. Moreover,
the design should be robust with respect to fluctuations or errors in modeling and
fabrication. These are very stringent requirements that are difficult to satisfy, and
numerical simulation can serve as an important guide in the experimental search for
successful designs.

The principal goal of the present study is development of a semianalytic model
and its application to design and optimization for this quantum system. This re-
duced order model is based on a number of approximations that restrict its validity.
Comparison to full scale numerical simulations, however, indicate that its accuracy
is sufficient to provide meaningful results. Computational speed is the model’s great
virtue, enabling the high throughput that is required for design and optimization of
the quantum system.

There are three distinct aspects to simulation of this quantum system: construc-
tion of a mathematical model embodying the correct physics, development of an
effective numerical method for solving the model, and use of the numerical method to
search for a successful design. The semianalytic model and its use for design and op-
timization, as presented in this paper, address only the last of these. Related efforts,
which are beyond the scope of this paper, include a full-scale numerical method for
the Schrödinger–Poisson model [2] and simulations using nextnano3 [13] that include
more detailed physics.

Furthermore, design of this qubit system is an intermediate, but important step
toward the much more challenging goal of constructing a quantum device. A function-
ing quantum device using this qubit system must satisfy additional requirements, such
as preparation of initial data, coupling of qubits, measurement of the qubit state, con-
trol of decoherence, and error correction, that are not included in the present design
problem.

In section 2 we develop a Schrödinger–Poisson model for simulation of the electro-
static potential and the single electron wavefunction, and we formulate design goals
for performance of this system. A reduced order, semianalytic model is derived in
section 3 using square well or parabolic approximations for the electrostatic poten-
tial. In section 4 the accuracy and validity of this semianalytic model is assessed by
comparison to full scale numerical solution of the Schrödinger–Poisson model from
[2]. Successful designs with double pinchoff are found in section 5 through a random
search in parameter space. A measure of design robustness, in terms of the sensitivity
of the design to fabrication errors, is formulated in section 6. In section 7, an anal-
ysis is presented that greatly simplifies the computation of design robustness. Using
this simplified analysis, a search for designs that are optimally robust is described in
section 8. Finally, conclusions are presented in section 9.

2. Qubit design problem. This sections describes the solid state system and
the design goals for a qubit. This description includes one-, two-, and three-dimensional
versions of the system.
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2.1. Qubit system description. The layered semiconductor system consists of
a series of material layers, with layer i consisting of material mi and having thickness
dzi, in which z is a measure of the distance from the top planar surface, increasing
in the downward direction. In addition there are δ-doped layers of zero thickness at
the boundaries of some of the material layers, with a density σk of ions per area in
the kth δ-doped layer. Note that the charge density σ is the doping density times an
activation factor, so that it is less than the actual doping density. Volumetric doping,
including intrinsic doping, is neglected.

As an example that will be used in this study and is pictured in Figure 1, consider
a system that consists of the following layers, in order starting at z = 0:

• layer of material A of thickness dz1;
• δ-doped layer with charge density σ1;
• layer of material A of thickness dz2;
• layer of material B of thickness dz3, the layer containing the quantum dot;
• layer of material A of thickness dz4;
• layer of material B of thickness dz5, the layer containing the quantum wire;
• layer of material A of thickness dz6;
• δ-doped layer with charge density σ2;
• layer of material A of infinite thickness.

The geometry of these layers is one-dimensional; higher dimensionality is deter-
mined by the geometry of the gates. At the top of the material system, i.e., z = 0,
there are a series of gates Gm on which the electron potential energy φm is speci-
fied. Away from the gates, the energy is taken to be equal to a constant free surface
potential φ0.

In this study the following gate geometries and potentials are considered:
• gate Gg consisting of a circle r < Rg/2 for the three-dimensional geometry

or an interval |x| < Rg/2 for the two-dimensional geometry, on which the
potential energy is φg;

• two gates Gb±, in which Gb+ consists of points with x > Rb/2 and Gb−
consists of points with x < −Rb/2 in both the two-dimensional and three-
dimensional geometries, with potential φb on both gates;

• no gates for the one-dimensional geometry;
• potential energies φg = −Vg + φschottky and φb = −Vb + φschottky, where

φschottky is the Schottky barrier, and Vg and Vb are the voltages applied to
the gates.

In this description all distances are measured in nm, the doping densities are measured
in units of electrons cm−2, and the energy φ is in units of eV .

A drawing of the device structure, with parameters from an optimally robust
design as in (8.1), is shown in Figure 1. A schematic drawing of the gates, the
potentials in the quantum wells, and the electron densities is shown in Figure 2.
Positive potential energy (φb) on the planar side gates raises the potential on the
sides of both quantum wells. Negative potential energy (φg) on the circular, central
gates lowers the potential energy, primarily in the upper well. This leads to a localized
electron density (i.e., a quantum dot) in the upper well and an electron density along
a line (i.e., a quantum wire) in the lower quantum well.

The layer widths dzi and the charge densities σi are determined during the ma-
terial growth, and the gate sizes Ri are determined during the device fabrication.
These parameters cannot be changed after fabrication. Thus the parameters can
be divided into two sets: the vector of operation parameters vo = (φg, φb), which
can be varied during operation of the device, and the vector of design parameters
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Fig. 1. Schematic drawing of the device geometry. The depths of the material layers are dzi,
in which dz3 is the depth of the upper quantum well, which contains the quantum dot, and dz5 is
the depth of the lower quantum well, which contains the quantum wire. The charge densities in the
delta-doped layers are σi. The electrostatic potential of the central gate (a circle of diameter Rg in
a three-dimensional geometry) is φg, and the electrostatic potential of the two side gates (separated
by a distance Rb) is φb. In a two-dimensional geometry the central gate would be an infinite strip
parallel to the side gates.

vd = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2), which cannot be changed during op-
eration. A device design can be identified with a choice of the design vector vd.
These are chosen from a subset C of R10 that has been determined from some exter-
nal consideration, such as additional constraints or previous experience. These have
the form

dzi < dzi < dzi for 1 ≤ i ≤ 6,(2.1)

Rg < Rg < Rg,(2.2)

Rb < Rb < Rb,(2.3)

σi < σi < σi for 1 ≤ i ≤ 2,(2.4)

φ
g
< −φg < φg,(2.5)

φ
b
< φb < φb.(2.6)
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Fig. 2. Schematic drawing of the gates, the potential energies in the quantum wells, and the
electron densities in the dot and the wire.

In the design searches conducted below, a typical set of constraints was the fol-
lowing:

20 < dz1 < 40(nm),

20 < dz2 < 40(nm),

5 < dz3 < 10(nm),

dz4 = 16(nm),

5 < dz5 < 15(nm),

dz6 = 50(nm),(2.7)

50 < Rg < 100(nm),

50 < (Rb −Rg)/2 < 400(nm),

0 < σ1 < 4 × 1011(cm−2),

0 < σ2 < 4 × 1011(cm−2),

0.1 < −φg < 0.3(eV ),

0 < φb < 2.0(eV ).

The constraints on dz4 were chosen to allow electrons to tunnel between dot and wire
on a ms time scale; 16 nm is appropriate for the InP/InGaAs system. The lower
bounds on Rg and Rb are representative of what can be easily accomplished with
e-beam lithography. The upper bounds on σi are set to avoid hopping conduction
through the doping layers. The upper bound on φb and the lower bound on φg are set
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to avoid passing any current through the gates into the sample, which would disrupt
the qubit. The lower bound on φg is set to ensure formation of a quantum dot with
a bound electron state; at smaller voltages, the electron may not be bound, which
the central gate, the parabolic approximation in section 3 may fail to predict. The
remaining constraints are reasonable limits that were imposed to speed the design
search.

2.2. Schrödinger–Poisson model. The electrostatic potential Φ is assumed
to satisfy the Poisson equation

∇ · ε∇Φ = σ1δ1 + σ2δ2 − ρψ(2.8)

in which ε = kε0/e
2 is the scaled dielectric constant, δi is a δ-function on ith δ-

doped interface, and ρψ is the number density for electrons in the wire, which must
be determined self-consistently as described below. The function Φ is the potential
energy for an electron, measured in eV . For this equation the boundary conditions are
taken to be Dirichlet conditions (i.e., Φ prescribed) at the top, Neumann conditions
(i.e., ∂Φ/∂n = 0) at the bottom, and periodic conditions on the sides.

The electronic wave function for the unbound electron of lowest energy is assumed
to satisfy a single particle Schrödinger equation

−∇ ·
(

�
2

2m
∇Ψ

)
= −(Φ + U)Ψ + λΨ(2.9)

in which e is the electron charge, m is the electron effective mass, U is the conduction
band offset relative to material A (InP in the examples below), λ is the energy level
(eigenvalue) in units of eV , and Ψ is wave function (eigenfunction).

As an example, for InP , InxGa1−xAs, and AlyIn1−yAs, with alloy fractions
x = 0.53 and y = 0.48, the material parameters are given in Table 1 and the relevant
physical constants are given in Table 2.

Table 1

Material parameters.

Parameter InP In0.53Ga0.48As Al0.48In0.52As Units
k 12.61 13.9 12.7 1
ε = kε0/e2 .697 .769 0.702 1/(eV nm)
m .079 .041 0.0733 m0

�
2/2m .484 .94 0.522 eV/nm2

U 0 .224 0.25 eV

Table 2

Physical constants.

Constant Value Units

�
2/2m0 .0382 eV/nm2

ε0 8.854 × 10−12 C2N−1m−2

ε0/e2 .0553 1/(eV nm)

For the solutions of interest in this study, the electrons are localized either in
a dot in the upper layer or along a wire in the lower layer. This implies that the
eigenfunctions for the Schrödinger equation (2.9) are each localized in either the dot
or the wire. The eigenvalues and eigenfunctions in the quantum dot are labeled
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λd
k, Ψd

k; those in the wire are labeled λw
k , Ψw

k . Also denote dλ = λ2 − λ1 as the
difference between the first two eigenvalues. The eigenfunctions are normalized so
that

∫
|Ψ|2dx = 1. The self-consistent charge density is ρψ =

∑
|Ψ|2, summed over

all λ < EF , in which the Fermi energy EF is set to 0.
To emphasize the dependence of the eigenvalues λ on the gate voltages φg and φb

and the design vector v, we shall sometimes write λ = λ(φg, φb, v).
Note that the eigenfunctions for the quantum dot are quite distinct from those

for the quantum wire. So computation of these eigenfunctions is equivalent to a
computation using two separate wave functions for the dot and wire, and so it correctly
represents the charge density in the wire and its affect on the dot. Interaction terms
between the dot and wire are omitted, because they are small. On the other hand,
tunneling effects between the dot and wire are important for detection of an electron
in the dot using the wire. These tunneling effects are beyond the scope of the current
model.

2.3. Design goals. The design goals for the quantum dot are to have a single
confined electron under the gate and no confined electron states away from the gate.
The design goals for the quantum wire are to have a small number k of conduction
states in the wire, with no additional states in the wire under the gate. Denote Ed

k

and Ew
k to be the energy for k electrons in the dot and for k conduction states in the

wire, respectively. Also denote Ed
k(0) and Ew

k (0) to be the same energies but with no
voltage on the central gate; i.e., φg = 0. An unbound electron will be localized if its
energy is less than the Fermi energy EF = 0. The design goals can thus be stated as

Ed
1 < 0 < Ed

2 ,(2.10)

0 < Ed
1 (0),(2.11)

Ew
k < 0 < Ew

k+1,(2.12)

Ew
k (0) < 0 < Ew

k+1(0).(2.13)

Since Ew
k < Ew

k (0), (2.12), and (2.13) can be recombined as

Ew
k (0) < 0 < Ew

k+1.(2.14)

As shown below, the energy level Ed
2 is smaller than Ed

1 (0) in the regime of interest,
so that (2.11) is redundant.

In the quantum dot, the energy for a single electron is the lowest eigenvalue,
so that Ed

1 = λd
1 and Ed

1 (0) = λd
1(0). For the energy of two electrons, there is an

interaction (Coulomb) correction Ed
2 = λd

2 + Ẽd
2 . In the wire, we identify a conduction

state, as an eigenfunction for the cross-section of the wire and neglect the interaction
among different conduction states. Thus Ew

k = λw2D
k and Ew

k (0) = λw2D
k (0), in which

λw2D
k and λw2D

k (0) are the two-dimensional eigenvalues and φg = 0 for λw2D
k (0).

Therefore the operation goals can be rewritten as

λd
1 < 0 < λd

2 + Ẽd
2 ,(2.15)

λw2D
1 (0) < 0 < λw2D

2 .(2.16)

The design goal is to find a device design vd, for which there is a choice of operation
parameters vo such that the operation goals (2.15) and (2.16) are satisfied. A second
design goal, that the operation goals are still met in the presence of growth and
fabrication uncertainties, is formulated in section 6.



1292 CAFLISCH, GYURE, ROBINSON, AND YABLONOVITCH

3. Semianalytic model. In this section we formulate a simplified semianalytic
model that represents an approximate solution of the Schrödinger–Poisson equation.
As described below, the potential Φ in each of the upper and lower quantum wells is
approximated as a parabola in the lateral directions x and y and a square well in the
depth direction z. Because the layered geometry is independent of x and y and the
gates have a reflection symmetry with respect to both x and y, the first derivatives
Φx and Φy are 0 on the centerline x = y = 0. Thus the lateral variation of the
potential near the either quantum dot and quantum wire is approximately given by
1
2 (x2Φxx + y2Φyy).

3.1. Approximations for electrostatics. For the potential Φ = Φ1D due to
modulationally doped layers but not including the effect of the gates, put the bottom
boundary condition at ∞, omit any self-consistent terms, and neglect the variation in
dielectric constant by using the value for material A throughout to obtain

Φ1D =

⎧⎨
⎩

φtop − ε−1
A (σ1 + σ2)z, 0 < z < z1,

φtop − ε−1
A (σ1z − σ2z1), z1 < z < z2,

φtop − ε−1
A (σ1z2 − σ2z1), z2 < z,

(3.1)

in which z1 = dz1 and z2 = dz1 + dz2 + dz3 + dz4 + dz5 + dz6 are the positions of the
δ-doped layers.

The potential Φ = Φ2D
L , due to a gate that is a strip (in three dimensions) (i.e.,

|x| < L/2, z = 0) with potential Φ = 1 on the gate and Φ = 0 away from gate, is

Φ2D
L (x, z) = π−1

(
arctan

(
x + L/2

z

)
− arctan

(
x− L/2

z

))
.(3.2)

On the central axis x = 0, the values of Φ and its second derivative are

Φ2D
L (x = 0, z) = 2π−1 arctan(L/2z),(3.3)

Φ2D
Lxx(x = 0, z) = −π−1z−2 2L/z

(1 + L2/4z2)2
.(3.4)

The potential Φ = Φ3D
d , due to a gate that is a circle (i.e., r = |(x, y)| < d/2)

with potential Φ = 1 on the gate and Φ = 0 away from gate, is

Φ3D
d (x) = Φ(r, z)

=
|z|
2π

∫ 2π

0

∫ d/2

0

|x − x′|−3r′dr′dθ′(3.5)

=
|z|
2π

∫ 2π

0

∫ d/2

0

(z2 + (r − r′ cos θ′)2 + r′2 sin2 θ′)2)−3/2r′dr′dθ′.

On the central axis r = 0, the values of Φ and its second derivative are

Φ3D
d (r = 0, z) = 1 − (1 + (d/2z)2)−1/2,(3.6)

Φ3D
drr(r = 0, z) = −3

2
|z|(d/2)2(z2 + (d/2)2)−5/2.(3.7)

Add these together to obtain the total potential as

Φ =

{
Φ1D + φb(1 − Φ2D

d ) + φgΦ
2D
L in two dimensions,

Φ1D + φb(1 − Φ2D
d ) + φgΦ

3D
L in three dimensions.

(3.8)
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The second derivatives of the total potential on the central axis are

Φxx =

{
−φbΦ

2D
dxx + φgΦ

2D
Lxx in two dimensions,

−φbΦ
2D
dxx + φgΦ

3D
Lrr in three dimensions,

(3.9)

Φyy =

{
0 in two dimensions,
φgΦ

3D
Lrr in three dimensions.

(3.10)

All the subsequent computations for the semianalytic model were performed using
MATLAB programs.

3.2. Approximations for Schrödinger. The approximation for the Schrödinger
eigenfunctions and eigenvalues relies on separation of variables: if m is constant and
Φ(x, y, z) = Φx(x) + Φy(y) + Φz(z), then

λ = λx + λy + λz,(3.11)

Ψ(x, y, z) = Ψx(x)Ψy(y)Ψz(z)(3.12)

in which

−(�2/2m)Ψx
xx = −ΦxΨx + λxΨx,(3.13)

−(�2/2m)Ψy
yy = −ΦyΨy + λyΨy,(3.14)

−(�2/2m)Ψz
zz = −ΦzΨz + λzΨz.(3.15)

Use separation of variables to find eigenvalues in a channel of width w and center
z. Neglect variation of Φ across the well and approximate the x-dependence for Φ2D

(i.e., for a gate that is a strip in three dimensions) or the (x, y)-dependence for Φ2D

(i.e., for a gate that is a circle in three dimensions) as parabolic with

Φ2D ≈ Φx
2D(x) = .5Φxx(x = 0, z) x2,(3.16)

Φ3D ≈ Φx
3D(x) + Φy

3D(y) = .5Φrr(r = 0, z)(x2 + y2).(3.17)

Both the two-dimensional and three-dimensional problems have been written as a sum
of one-dimensional parabolic potentials. The eigenvalue and eigenvalue spacing for a
one-dimensional parabolic potential Φ(x) = φbx

2 are

λp
1 = (Φxx�

2/4m)1/2,(3.18)

dλp = 2λp
1.(3.19)

We denote λpx and λpy for the eigenvalues due to the parabolic potential in the x-
and y-directions, respectively, and dλpx and dλpy for the corresponding eigenvalue
spacing.

In the z-direction, the potential is approximately a square well, since

Φz(z) =

{
0 |z − z0| > L/2,
−U |z − z0| < L/2

(3.20)

in which U is the offset in wells, neglecting variation across the well. The eigenvalues
for this square well are solutions of

λsw = c1k
2
1 − U,(3.21)

k2
1(1 + (c1/c0) tan2(k1w/2)) = U/c1(3.22)
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in which c0 and c1 are the values of �
2/2m outside the well and in the well, respectively;

i.e., c0 is the value for material A (InP) and c1 is the value for material B (InGaAs).
In summary, the eigenfunctions, lowest eigenvalue and eigenvalue spacing are

Ψ = Ψsw(z)Ψpx(x)Ψpy(y),(3.23)

λ = λsw + λpx + λpy,(3.24)

dλ =

{
dλpx in two dimensions,
min(dλpx, dλpy) in three dimensions.

(3.25)

In the simplest model, we also take the energy for two electrons to be the same as the
second eigenvalue in the quantum dot; i.e., set Ẽd

2 = 0 in (2.15).

3.3. Generalizations. Two generalizations of the semianalytic model of the
previous section are formulated here to include effects of Coulomb interactions and
self-consistent terms.

An approximation to the Coulomb correction Ẽd
2 for two electrons in the quantum

dot has been developed by Gyure [7]. He computed the energy for two electrons in
a one-dimensional parabolic potential using an iterative projection method, then fit
the result to the following simple formula:

Ed
2 = λd

1 + crdγ
κ
y(3.26)

in which rd = 0.00289 eV is the Rydberg energy, γy = λd
1, and the (dimensionless)

fitting parameters are c = 3.5213 and κ = 0.75654. The one-dimensional approxima-
tion was justified by two-dimensional calculations that showed the anisotropy of the
potential is large enough in most cases to ignore the smaller dimension. The error
induced is relatively small and decreases rapidly with anisotropy ratio.

The most significant self-consistent terms are the effect of the charge in the wire
on the potential in the dot. For a wire defined by a parabolic potential of width
ax and a square well of depth az, approximate the charge in the wire as being uni-
formly distributed over an ellipse with ax and az as the principal axes. Define elliptic
coordinates (u, v) in the (x, z) plane as

x = b cosh(u) cos(v),(3.27)

z = b sinh(u) sin(v)(3.28)

in which b =
√

a2
x − a2

z, so that the ellipse corresponds to u = ue = cosh−1(ax/b). As
an approximation to the potential for an elliptical charge, use

Φ̃ =

{
αu− γ for u > ue,
β(axx

2 + azz
2) − κ for u < ue.

(3.29)

In the limit u → ∞, u ≈ log(r/c), which implies that α = ρ̄/2π in which ρ̄ is the
total charge on the ellipse. At the top of the layered material, the correction Φ̃ should
vanish. Apply this at the value u0 = u(z = 0, x = 0) to get γ = u0ρ̄/2π. The total
charge in the wire ρ̄ is approximately given by

ρ̄ = π−1
√
dλw/c((2/3)N3/2 + N)(3.30)

in which c = �
2

2m and N = −λw
1 /dλ

w is the number of transverse eigenvalues that are
less than the Fermi energy. Formula (3.30) comes from the number of longitudinal
states below the Fermi energy for each transverse state. The potential corrections in
(3.29) are used to correct the eigenvalue λw

1 and eigenvalue spacing dλw, which are
then used in (3.30). These two equations are solved iteratively to determine ρ̄.
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Fig. 3. Comparison of potential Φ for a one-dimensional geometry from the full scale simulation
method (blue) and the semianalytic model (red), with no top gates, no Coulomb interactions, self-
consistent effects omitted, and no background doping, showing excellent agreement. Disagreement at
the top is due to use of a different material layer in the full-scale simulation that does not influence
the potential outside that layer and was not included in the semianalytic model.

4. Validation of semianalytic model. Validation of the semianalytic model is
performed by comparison to a full-scale numerical solution of the Schrödinger–Poisson
equations by Anderson [2]. Consider a system with design parameters

vd = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2)(4.1)

= (40.5, 37.1, 12.6, 10.6, 16, 50.7, 61, 219.5, 3.6 × 1011, 1.25 × 1011)

and with operation parameters vo = (φg, φb) = (0, 0.53). Figures 3, 4, and 5 show the
potential on the central line (through the center of the quantum dot) in one, two, and
three dimensions, respectively, with no Coulomb interactions, self-consistent effects
omitted, and no background doping. In one dimension there are no gates on the top
of the system, so that the potential Φ is a function of z only. In two dimensions the
central gate is an interval (i.e., a strip in three dimensions); while in three dimensions
the central gate is a circular dot. Figure 6 is the same as Figure 4, except that
self-consistent effects are included in both the full-scale numerical computation and
the semianalytic model. The first eigenvalue is shown for each of these problems in
Table 3, in meV .

These results show excellent agreement for the case with no Coulomb interactions
and no self-consistent effects. In this case the energy errors in the semianalytic method
are all within 6 meV of those for the full simulation. With self-consistent effects, the
agreement is still good, with energy errors of size 20 meV .
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Fig. 4. Same as Figure 3 except that the plot is for the potential Φ on the central axis x = 0
for a two-dimensional geometry.
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Fig. 5. Same as Figure 3 except that the plot is for the potential Φ on the central axis r = 0
for a three-dimensional geometry.
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Fig. 6. Same as Figure 4 but showing the full-scale simulation method with (green) and without
(blue) self-consistent terms and the semianalytic model with (black) and without (red) self-consistent
terms.

Table 3

Lowest eigenvalues λ1.

Dot energies (meV) Wire energies (meV)
simulation semianalytic simulation semianalytic

1D −144.1 −148.3 −195.9 −201.1
2D −33.8 −37.3 −58.8 −60.8
3D 22.5 16.6 9.88 7.1
2D SC 11.6 −4.7 −3.7 −23.3

5. Double pinchoff designs. The principal virtue of the semianalytic model is
that the eigenvalues in the design criteria (2.15) and (2.16) can be quickly computed,
enabling rapid throughput as required for a design study or optimization exercise. In
this section we describe a design that achieves the strictest design criterion (2.15) and
(2.16) with k = 1, i.e., double pinchoff with a single electron in the dot and a single
conductive state in the wire.

An example of a system achieving double pinchoff has design parameters

vd = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2)(5.1)

= (40, 94.3, 22.5, 30.3, 17.7, 50, 53.7, 876.7, 3.4 × 1011, 1.4 × 1011)

and operation parameters vo = (φg, φb) = (−0.16, 1.47). The eigenvalues for this
design are (λd

1, λ
d
2, λ

w
1 (0), λw

2 ) = (−0.67, 2.2,−0.92, 0.27) meV . This system was found
by a random search over the full space of possible design parameters and operation



1298 CAFLISCH, GYURE, ROBINSON, AND YABLONOVITCH

parameters. In a search involving 10 million trial designs, 7 successful designs were
found. This establishes existence (within the simulation) of a design meeting the
double pinchoff goal. In section 7, however, we show that these double pinchoff
designs are not robust with respect to fabrication errors.

6. Design robustness. When a prescribed design is implemented, the outcome
will differ from the prescription due to errors and uncertainties in growth and fabri-
cation, including variability in the layer thicknesses and gate sizes and variability in
charge density in delta-doped layers due to uncertainties in both the doping level and
the ionization fraction. Additional modeling uncertainties, such as uncertainties in
the correct boundary conditions at the top of the device and additional physics such
as self-consistent terms, are not accounted for in this analysis.

To find a design whose success is insensitive to the growth and fabrication un-
certainties, we formulate a measure of design robustness. Assume that the errors in
each of the various design parameters are independent and normally distributed and
define αk to be the standard deviation of the kth design parameter. Define a distance
function d between two design vectors v and w as

d(v, w) =

(
K∑

k=1

((vk − wk)/αk)
2

)1/2

,(6.1)

i.e., d(v, w) is a measure of the distance between v and w in standard deviations.
Next fix a design criterion by choosing the number K of allowed conduction states in
the wire, and define the robustness R of a successful design vs as the distance to the
nearest unsuccessful design vu, i.e.,

R(vs) = min
vu

d(vs, vu).(6.2)

The design robustness optimization problem is to find the most robust design within
the constraint set C from (2.1)–(2.6), i.e., vs is chosen to be the successful design that
achieves the following max-min:

max
vs∈C

R(vs) = max
vs∈C

min
vu∈C

d(vs, vu).(6.3)

As an example for standard deviation of the fabrication, we take standard devia-
tion of the growth processes (layer thicknesses) to be 3% (relative error), the standard
deviation of the fabrication (gate sizes) to be 10 nm (absolute error), and the standard
deviation of the charge density in the delta-doped layers to be 40% (relative error).

7. Analysis of failure modes. A direct random search for the design vs that
achieves the max-min in (6.3) would involve a double random search over two designs
vs and vu. This can be considerably improved by analysis of the failure modes, i.e.,
the closest failed designs vu for a given successful design vs. This analysis relies on
a linear approximation for the dependence of the eigenvalues λ in the design criteria
(2.15) and (2.16), as functions of the gate voltages φg and φb.

A successful design vs is one for which the four design inequalities in (2.15)
and (2.16) form a quadrilateral (or triangular) set that has a nonempty intersec-
tion with the rectangular constraint set defined by (2.5) and (2.6), in the operation
space (φg, φb). As the design parameter vector v is (smoothly) varied, the sides of
the quadrilateral (or triangle) will (smoothly) vary. The first unsuccessful design vu
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is reached when the intersection becomes just a point. This characterizes the design
vu that occurs in (6.3).

The intersection of the operation window (i.e., the quadrilateral or triangle defined
by (2.15) and (2.16)) and the constraint set (defined by (2.5) and (2.6)) can shrink
to a point in either of two ways: First, the operation window can shrink to a point
in the interior of the constraint set. Second, the operation window can move outside
the constraint set with one vertex on the boundary of the constraint set.

We draw the operation window with coordinates (−φg, φb), so that both coordi-
nates are positive. Denote the boundaries of the operation window as follows:

a = {(−φg, φb) : λd
1(φg, φb) = 0},(7.1)

b = {(−φg, φb) : λd
2(φg, φb) = 0},(7.2)

c = {(0, φb) : λw
1 (0, φb) = 0},(7.3)

d = {(−φg, φb) : λw
2 (φg, φb) = 0}.(7.4)

Also denote ac to be the point of intersection of the lines a and c if it exists, with
coordinates φg(ac) and φb(ac), and similarly for the other intersections. Also denote
0a to be the intersection of a with the line φg = 0. They have the following properties:

1. c is a horizontal line.
2. a, b, and d are lines with positive slope, with a and b steeper than d.
3. a and b cannot intersect (for −φg > 0) and a is to the left of b.
4. −φg(ac) < −φg(bc).
5. The operation window is nonempty if and only if −φg(ac) < −φg(cd).
6. ad is the leftmost and the lowest point of the operation window.

From these properties, it follows that a nonempty operation window can have two
possible configurations. If −φg(bc) < −φg(cd), it is a quadrilateral with vertices
ad, bd, bc, and ac, which is denoted as Type I. If −φg(bc) > −φg(cd), a nonempty
operation window is a triangle with vertices ad, cd, and ac, which is denoted as
Type II. These two possibilities are shown in Figure 7.
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Fig. 7. A schematic drawing of the operation windows in (−φg , φb). The four lines that
define the operation window are a, b, c, and d. The successful operation vectors are those in
quadrilateral region labeled Q for the configuration on the left or in the triangular region labeled T
for the configuration on the right.
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This information allows characterization of the failure modes:
A Collapse of the operation window can occur only as a transition from Type

II, in which the three vertices of the triangle meet as one point acd. Failure
mode A is characterized by existence of a triple intersection point acd, which
is denoted as point A.

B If the operation window leaves the constraint region through the upper bound-
ary, φb = φb, then the final point of intersection of the two regions is ad.
Failure mode B is characterized by existence of a triple intersection point ad
with φb = φb, which is denoted as point B.

C If the operation window leaves the constraint region through the right bound-
ary, −φg = φg, then the final point of intersection of the two regions is ad.
Failure mode C is characterized by existence of a triple intersection point ad
with −φg = φg, which is denoted as point C.

D If the operation window leaves the constraint region through the lower bound-
ary, denoted as failure mode D, then line c coincides with the lower constraint
φb = φ

b
.

E If the operation window leaves the constraint region through the left bound-
ary, −φg = φ

g
, then the final point of intersection of the two regions is bc in

Type I or cd in Type II. Failure mode E is characterized by existence of a
triple intersection point bc or cd with −φg = φ

g
, which is denoted as point E.

The three failure points A, B, and C, which are the ones that most frequently occur,
are illustrated in Figure 8
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Fig. 8. A schematic drawing of the failure modes in (−φg , φb), including the four lines a, b,
c, and d that define the operation window, and the constraining lines φb = φ̄b in the middle and
−φg = φ̄g in the right. In mode A (left), the operation window has collapsed to a point A in the
interior of the constraint set. In mode B (middle), the operation window intersects the constraint set
in only a single point B on the upper boundary. In mode C (right), the operation window intersects
the constraint set in only a single point C on the right boundary.

The distance from a successful design vs to one of the failure points A, B or C
can be estimated through a linear approximation. For point A, let (ΦA

g (v),ΦA
b (v))

solve

λd
1(Φ

A
g (v),ΦA

b (v), v) = 0,(7.5)

λw
1 (0,ΦA

b (v), v) = 0.(7.6)

Then to leading order, since λw
2 (ΦA

g (A),ΦA
b (A), A) = 0,

λw
2 (ΦA

g (v),ΦA
b (v), v) = λw

2 (ΦA
g (v),ΦA

b (v), v) − λw
2 (ΦA

g (A),ΦA
b (A), A)

= (v −A) · ∇vλ
w
2 (ΦA

g (v),ΦA
b (v), v).(7.7)
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At a minimum point, the design difference v − A is parallel to the gradient in (7.7),
so that

min |v −A| = |λw
2 (ΦA

g (v),ΦA
b (v), v)|/|∇vλ

w
2 (ΦA

g (v),ΦA
b (v), v)|.(7.8)

A similar analysis can be carried out for B and C. For B, ΦB
b (v) = φb and let

ΦB
g (v) solve

λd
1(Φ

B
g (v), φb, v) = 0.(7.9)

Then to leading order, since λw
2 (ΦB

g (B), φb, B) = 0, it follows that

min |v −B| = |λw
2 (ΦB

g (v), φb, v)|/|∇vλ
w
2 (ΦB

g (v), φb, v)|.(7.10)

For C, ΦC
g (v) = φg and let ΦC

b (v) solve

λd
1(φg,Φ

C
g (v), v) = 0.(7.11)

Then to leading order, since λw
2 (φg,Φ

C
g (C), C) = 0, it follows that

min |v − C| = |λw
2 (φg,Φ

C
g (v), v)|/|∇vλ

w
2 (φg,Φ

C
g (v), v)|.(7.12)

The robustness R and the design robustness optimization problem can now be
rephrased as

R(vs) = min{|v −A|, |v −B|, |v − C|},(7.13)

max
vs∈C

R(vs) = max
vs∈C

min{|v −A|, |v −B|, |v − C|}(7.14)

in which |v−A|, |v−B|, and |v−C| are defined by (7.8), (7.10), and (7.12). This has
the advantage over the formulation (6.3) that it requires only a single random search
for successful designs vs rather than a double random search for vs and vd. For each
vs, the min is found by evaluation of the three quantities |v−A|, |v−B| and |v−C|
from (7.8), (7.10), and (7.12).

For the design vdp that achieved double pinchoff, as described in section 5, the
design robustness distance (from (7.13)) is R(vdp) = 0.3, which corresponds to prob-
ability of about 0.2 of successful design. The search for a more robust design through
maximization of R(vs) as in (7.14) is described in section 8.

8. Design optimization. The search for a maximally robust design vs in (7.14)
can be accelerated by decomposition and some analysis. First select values for the
geometrical design parameters v′ = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb).

For a given choice of geometrical parameters v′, the possible values of the δ-doping
densities σ1 and σ2 can be determined using the linear dependence of the eigenvalues
λd

1 and λw
1 on σ1 and σ2, as well as on φg and φb. The operation window can be

characterized as having the point ac inside the constraint set. The two equations
(7.1) and (7.3) defining ac can be used to define a mapping between the operation
vector (φg, φb) and the density vector (σ1, σ2). Then the constraint set defined by
(2.5) and (2.6) can be mapped to a constraint set in the space of density vectors,
which may need to be cut off to accommodate the constraints (2.4). To simplify, we
choose a value of (φg, φb) that is approximately in the center of the resulting polygon.
This is illustrated in Figure 9.
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Fig. 9. Design window in the space of doping densities (σ1, σ2) for one of the optimally robust
designs.
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Following this procedure for K = 7, we have found designs with robustness values
of 2.5 or more. A typical result is

v = (dz1, dz2, dz3, dz4, dz5, dz6, Rg, Rb, σ1, σ2)(8.1)

= (47.25, 49.31, 8.24, 16, 23.62, 50, 50.38, 608.28, 3.78 × 1011, 2.45 × 1011).

The operation vector is (φg, φb) = (0.24, 1.91). The eigenvalues for this design are
(λd

1, λ
d
2, λ

w
1 (0), dλw) = (−0.559, 3.60,−33.0, 4.0). There are seven transverse states in

the wire and the robustness is 2.8, which corresponds to more than 99% probability
of a successful design. The resulting operation window is shown in Figure 10.

9. Conclusions. In this work, we have developed a mathematical model for an
electron spin qubit system, for the successful design of the system, and for optimiza-
tion of the design robustness. In addition, we have developed a simple semianalytic
model that is both sufficiently accurate to provide relevant results for the system and
sufficiently fast to allow for the high throughput required by design and optimization
studies. After some analysis to simplify the computation of design robustness, we
have performed a random search for designs that satisfy the design criteria and for
designs that are maximally robust.

From this search, we have found system designs that achieve double pinchoff, in
the sense that they have a single electron in the quantum dot and a single conduction
state in the quantum wire. These designs are not sufficiently robust to be practical,
having a design robustness of only about 0.3, in terms of standard deviation using a
current assessment of design uncertainties. By relaxing the design criterion to allow for
a small number (e.g., K = 7) of conduction states in the wire, we have found designs
that are more than 2.8 standard deviations from an unsuccessful design. Currently
these designs are being built and tested for their electronic properties.

Several conclusions can be drawn from the present study. First is the importance
of models at different levels of complexity. A full-scale model, as in [2], is needed to give
reliable values for the system properties and to provide validation for simpler models.
Simpler models that are less computationally intensive are also needed, however, to
enable design and optimization studies on a reasonable time scale. In addition, we
have been using nextnano3 [13], a computational physics software package, which
includes a much wider set of physics in order to check and validate the results from
full-scale numerical solver for the Schrödinger–Poisson equation [2]. Second is the
importance of analysis as a method for accelerating the random search that is often
required in a design and optimization study. In the present study, the search for an
optimally robust design was greatly aided by analysis of the failure modes for a design
(i.e., the closest unsuccessful designs to a given successful design) and elimination of
the charge variables using their special (linear) occurrence in the model.
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