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Abstract

This paper reviews the basic properties of American options and
the difficulties of applying Monte Carlo valuation to American options.
Asymptotic results by Keller and co-workers are described for the sin-
gularity in the early exercise boundary for time t near the final time T .
Recent progress on application of Monte Carlo to American options is
described including the following: Branching processes have been con-
structed to obtain upper and lower bounds on the American option
price. A Martingale optimization formulation for the American option
price can be used to obtain an upper bound on the price, which is com-
plementary to the trivial lower bound. The Least Squares Monte Carlo
(LSM) provides a direct method for pricing American options. Quasi-
random sequences have been used to improve performance of LSM; a
brief introduction to quasi-random sequences is presented. Conclusions
and prospects for future research are discussed. In particular, we expect
that the asymptotic results of Keller and co-workers could be useful for
improving Monte Carlo methods.
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1. Introduction

American options are derivative securities for which the holder of the
security can choose the time of exercise. In an American put, for exam-
ple, the option holder has the right to sell an underlying security for a
specified price K (the strike price) at any time between the initiation
of the agreement (t = 0) and the expiration date (t = T ). The exercise
time τ can be represented be represented as a stopping time; so that
American options are an example of optimal stopping time problems.

Valuation of American options presents at least two difficulties. First,
there is a singularity in the option characteristics at the expiration time.
For American puts and calls on equities with dividends, a thorough
analysis of this singularity was performed by Evans, Kuske and Keller
[10]. These results are briefly described in Section 3

A second difficulty occurs for Monte Carlo valuation of American op-
tions, the main subject of this paper. Monte Carlo methods are required
for options that depend on multiple underlying securities or that involve
path dependent features. Since determination of the optimal exercise
time depends on an average over future events, Monte Carlo simulation
for an American option has a “Monte Carlo on Monte Carlo” feature
that makes it computationally complex.

In this paper, we review several methods for overcoming this difficulty
with American options. The first, developed by Broadie and Glasserman
[5] and presented in Section 4, involves two branching processes, the first
of which provides an upper bound and the second a lower bound on op-
tion price. The second method, presented in Section 5, is a martingale
optimization formula developed in [29] that provides a dual formulation
of the Monte Carlo valuation formula and leads naturally to an upper
bound on the option price. The third (Section 6) is the Least Squares
Monte Carlo (LSM) method derived by Longstaff and Schwartz [19]. Fi-
nally we describe work by the authors on use of quasi-random sequences
in LSM [8] in Section 7.

A brief introduction to the salient features of American options is
given in Section 2 and a discussion of conclusions and prospects for
future research is described in Section 8.

2. American options

In this section we describe some of the basic features of American
options. These include the Black-Scholes PDE and the risk-neutral val-
uation formula for option price, the optimal exercise boundary, and the
“Monte Carlo on Monte Carlo” difficulty.
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Consider an equity price process S(t) that follows an exponential
Brownian motion process according to the following stochastic differ-
ential equation

dS = µSdt + σSdω (1.1)

in which µ and σ are the average growth rate and volatility (both as-
sumed to be constant) and ω = ω(t) is standard Brownian motion.

2.1 Option payout and early exercise

The option payout function is u(S, t). A path dependent option is
one for which u(S, t) depends on the entire path {S(t′) : 0 < t′ < t};
whereas a simple (non-path dependent) option has u(S, t) = u(S(t), t).
For a simple European option the payout may only be collected at the
final time so that it is f(T ) = u(S(T ), T ). For a simple American
option, exercise may be at any time before T so that the payout is
f(τ) = u(S(τ), τ) in which τ is an optimally chosen stopping time. The
reason τ is a stopping time is that the decision of whether to exercise at
time t can only depend on the values of S up to and including t.

Examples of simple payout function are a call, for which u = max(S−
K, 0), and a put, for which u = max(K − S, 0). Examples of path
dependent payouts are the Asian option uA and the lookback uL given
by

uA = U

(

(t − t0)
−1

∫ t

t0
S(t′)dt′

)

(1.2)

uL = U

(

max
t0<t′<t

S(t′)

)

(1.3)

in which U is some function such as the call or put payout. In uA and
uL, the lower time limit t0 could be 0 or it could be t − ∆, in which
the average is taken over a moving time window of length ∆. The latter
case is particularly difficult because the resulting American price is not
a Markov process.

The early exercise boundary is the set in time and state space on
which exercise of the American option is optimal. For a simple option,
this is just a curve S = S∗(t) in the space (S, t). For a path dependent
security, the exercise decision depends on more that S(t) and t, so that
the early exercise boundary is more complicated.
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2.2 Black-Scholes PDE and risk-neutral
valuation for American options

In their classic papers, Black and Scholes [3] and Merton [21] described
two methods for valuation of derivative securities. The first is the Black-
Scholes PDE. For an American option with value F , the Black-Scholes
PDE is

Ft + rSFS + σ2S2FSS = rF (1.4)

in which r is the risk-free rate of return. The “final condition” is

F (S, T ) = u(S, T ) (1.5)

and the boundary conditions on the free boundary S = S∗(t) are

F = u (1.6)

FS = uS. (1.7)

The second method, which is applicable to path-dependent options
and other derivatives for which the PDE is either unavailable or in-
tractable, is the risk-neutral valuation formula

F (S, t) = max
t<τ<T

E′[e−r(τ−t)u(S(τ), τ) | S(t) = S] (1.8)

in which E ′ is the risk-neutral expectation, for which the growth rate
µ in (1.1) is replaced by r. This is the formula to which Monte Carlo
quadrature can be applied.

This risk-neutral valuation approach provides a stochastic character-
ization of the early exercise boundary. Consider the exercise decision at
a point (S, t). The value of early exercise is just the payoff u(S, t). The
expected value of deferred exercise is F̃ given by

F̃ = max
t<τ<T

E′[e−r(τ−t)u(S(τ), τ) | S(t) = S]. (1.9)

The holder of the option will choose to exercise if u ≥ F̃ , so that

F = max(u(S, t), F̃ ) (1.10)

and u(S∗(t), t) = F̃ on the early exercise boundary.
A lower bound on the American option price follows from the formula

(1.10). Let τ ′ be any stopping time and let F ′ be the price using this
stopping time; i.e.

F ′ = E′[e−r(τ ′
−t)u(S(τ ′), τ ′) | S(t) = S] (1.11)

then
F ≥ F ′. (1.12)
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2.3 American options on trees: rolling-back on
the tree

For a security whose price is modeled on a binary tree, evaluation of an
American option with simple payout is straightforward by “rolling-back”
on the tree. Suppose that the security price Sn follows the following
process:

Sn+1 =

{

uSn with probability p
dSn with probability 1 − p

(1.13)

in which p is the risk-neutral probability and the discrete time variable
runs over the values n = 0, 1, . . . N . Assume that the discount factor
over a single time period is erδt

At the final time N , exercise is determined by whether the payout is
positive or not. Consider a time k before the final time and suppose that
the price Fm has been found for all times m with m > k. The price Fk

at a point Sk is determined as in (1.10). Set

F̃ ′

k = E′

Sk
[e−rδtF (Sk+1)] (1.14)

and then

Fk = max(u(Sk), F̃k). (1.15)

In (1.14), the expectation is the empirical average over a chosen set of
branches that continue from Sk.

This straightforward method does not apply to path-dependent secu-
rities. Even at the first step, the value at the final time depends on the
path history for each path separately, not just on the value SN at the
final time. These difficulties with path-dependent securities are similar
to the difference between path-integrals and PDEs. Instead Monte Carlo
methods are required for evaluation of path-dependent options. If the
security is modeled as a process on a tree, then Monte Carlo can be
performed on the tree as well.

Similarly for options that depend on a large number of underlying
securities (or random factors), Monte Carlo is required because the cor-
responding Black-Scholes equation will have a large number of spatial
dimensions, making it computationally intractable. For a tree in a large
number of dimensions, a deterministic treatment on the tree would re-
quire branching for every dimension at every time step, which is also
intractable.
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3. Asymptotics for American puts and calls
with dividends

The most common form of American options are American puts and
calls. For an American call without dividends, early exercise of the
option is never optimal, so that an American call (without dividends)
is no different than a European call. On the other hand, early exercise
may be optimal for an American put or an American call on a security
that pays dividends.

Calls are not exercised early because of the risk premium that offers
a better average rate of return for a risky asset than for a non-risky in-
vestment. For a put on the other hand, at some low value of the security
the option holder can gain more by taking the payout and investing it
at the risk-free rate of return than by holding the option in hopes of a
small increase in payment later. This same argument works for a call
with dividend.

When the early exercise boundary S = S∗(t) hits the final time t = T ,
there is a singularity in the exercise boundary shape, which is charac-
teristic of a many free boundary problems. In addition, S∗(T ) (the in-
tersection of the early exercise boundary and the final time) may differ
from K (the exercise boundary at the final time).

While these properties have long been recognized, the detailed asymp-
totics of the singularity in the early exercise boundary were not analyzed
until recently. Evans, Kuske and Keller [10] derived the shape of the
early exercise boundary for American put and call with dividends by two
alternative methods: asymptotics for an integral equation formulation
and matched asymptotics for the Black-Scholes PDE. The dividends are
assumed to payout at a continuous rate D. The early exercise boundary
S∗

P (t) for the American put and S∗

C(t) for the American call satisfy the
following:

S∗

P (t) =



























K + c1

√

(T − t) log[1/(T − t)] if 0 ≤ D < r

K + c2

√

(T − t) log[1/(T − t)] if D = r

(r/D)(K + c3

√
T − t) if D > r

(1.16)

(1.17)

S∗

C(t) =



























K + c1

√

(T − t) log[1/(T − t)] if D > r

K + c2

√

(T − t) log[1/(T − t)] if D = r

(r/D)(K + c3

√
T − t) if 0 ≤ D < r

(1.18)
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in which c1, c2, c3 are constants that depend on σ, D and r. Note that
for D > r, S∗

P (T ) = (r/D)K < K and for D < r, S∗

C(T ) = (r/D)K > K
which shows that the exercise boundary on the final boundary is not on
the early exercise curve. Also as D → 0, the early exercise boundary for
the American call goes away to infinity.

Caflisch and Goldenfeld [7] have developed a cellular automata ap-
proach to evaluation of American calls and puts with dividends. In this
representation, diffusing particles are emitted from the singularity and
absorbed at the free boundary. In this method the principal effects are
generated from the singularity point, so that the asymptotics of Evans,
Kuske and Keller [10] could possibly be used to improve the convergence
of the representation.

4. Branching processes

The “Monte Carlo on Monte Carlo” property can be seen in the de-
cision formula (1.10). Consider a simulated path and a point (S(T ), t)
on that path. In order to decide whether to exercise at that point, one
must evaluate the expectation in (1.9). This in turns requires continu-
ation from (S(T ), t) on many paths. Therefore this direct Monte Carlo
simulation of the American option requires a set of continuously branch-
ing paths, which is computationally intractable.

Broadie and Glasserman [5] consider a Bermudan option; i.e., an op-
tion in which exercise can occur at any one of a discrete number d + 1
times t0, . . . , td. They constructed two branching processes, each with
b branches at each exercise time. The first process provides an upper
estimate Fu and the second a lower estimate F`, on average; i.e.

E[F`] ≤ F ≤ E[Fu]. (1.19)

In addition, both processes converge to the correct price as the branching
number b and the number of paths N increase; i.e.

lim
b→∞, N→∞

F` = lim
b→∞, N→∞

Fu = F. (1.20)

On the other hand, this construction is computationally complex with
CPU time that scales like O(Nbd).

In both processes the price is determined by “rolling-back” on the
branched paths. At the final time, exercise is determined by whether
the payout is positive or not. Consider a time tk before the final time
and suppose that the price has been found for all times tm with m > k.
The price Fk at a point (Sk, tk) is determined as in (1.10). Set

F̃ ′

k = E′

Sk,tk
[e−r(tk+1−tk)u(Sk+1, tk+1)] (1.21)
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and then

Fk = max(u(Sk, tk), F̃k). (1.22)

In (1.21), the expectation is the empirical average over a chosen set of
branches that continue from (Sk, tk).

The difference between the upper and lower processes is in which
paths are used in the expectation of (1.21). In the upper process all of
the branches are used. Since the early exercise decision uses knowledge
of the future for the finite set of branching paths, then the price estimate
Fu is biased high. This gives the upper estimate in (1.19).

For the lower process, at each decision points, one of the branches
is designated to be the continuation branch. The average in (1.21) is
determined using the other b − 1 branches. The value of this empirical
average is independent of the continuation branch, but since the average
is approximate, the resulting exercise decision is suboptimal. There-
fore the resulting price estimate F` is biased low. This gives the lower
estimate in (1.19).

As stated in [5], it seems quite likely that there is no unbiased, con-
vergent Monte Carlo estimator of the American option price. Their
construction shows that this should be true because correlations with
the future lead to upward bias and independence of the future leads to
non-optimal early exercise causing downward bias.

5. Martingale optimization

Rogers [29] derived a formula for the American option price that is
dual to the formula in (1.8):

F (0) = min
M

E′[ max
0<t′<T

(

e−rt′u(t′) − M(t′)
)

] (1.23)

in which the minimum is taken over all martingales for which M(0) = 0.
Similar formulas were derived by Anderson and Broadie [2] and Kogan
and Haugh [17].

By insertion of a (non-optimal) martingale M into (1.23), one gets a
upper bound on F . This has been carried out for various choices of M
in [2, 17, 18, 29]. Chaudhary [9] has used this to form an approximate
method for hedging the American option.

In this method, it is difficult to determine the accuracy of the upper
bound, because it is difficult to quantify the degree of non-optimality
for the martingale that is used in (1.23) in order to generate the upper
bound. The following characterization of the optimal Martingale may be
a starting point for determining the degree of optimality. The optimal
martingale M ∗(t) is the one coming from the American itself, for which



Monte Carlo Simulation for American Options 9

(using the Martingale decomposition of F (t))

M∗(t) = e−rtF (t) − F (0) + A(t) (1.24)

in which A(t) is a nondecreasing process with A(0) = 0. As shown by
Rogers [29],

F (0) ≤ E[sup0<t<T (e−rtu(t) − M ∗(t))]

= F (0) + E[sup0<t<T

(

e−rt(u(t) − F (t)) − A(t)
)

] (1.25)

Since both −u(t) + F (t) and A(t) are nonnegative, they must both be
0; i.e.

sup0<t<T (e−rtu(t) − M ∗(t)) = F (0). (1.26)

One can also show that (1.26) uniquely characterizes the correct price
F (0).

6. Least squares Monte Carlo (LSM)

Longstaff and Schwartz [19] introduced a new approach to Monte
Carlo evaluation of American options by replacing the future expectation
by a least squares interpolation, based on earlier work of Tsitsiklis and
Van Roy [33]. The method starts with N random paths (Sk

n, tn) for
1 ≤ k ≤ N and tn = ndt. Valuation is performed by rolling-back on
these paths.

Suppose that F k
n+1 = F (Sk

n+1, tn+1) is known. For points (Sk
n, tn) set

X = Sk
n the current equity value and Y k = e−rdtF (Sk

n+1, tn+1) the value
of deferred exercise. Then perform regression of Y as a function of the
polynomials X,X2, . . . , Xm for some small value of m; i.e. approximate
Y by a least squares fit of these polynomials in X. Use this regressed
value as an approximation to F̃ in (1.9) and apply it in deciding whether
to exercise early.

In this method the least squares fit provides coupling between the
prices on different Monte Carlo paths. This coupling replaces the Monte
Carlo-on-Monte Carlo feature of direct Monte Carlo evaluation of Amer-
ican options, without the computational intractability of direct method.
On the other hand, the efficiency of the LSM method depends on only us-
ing a small number m of polynomials in the least squares fit. The strong
accuracy that is attained with such small degree for the polynomial fit
is remarkable.

Longstaff and Schwartz have applied this method to puts, Asian op-
tions, swaps, swaptions and other options with excellent results for small
m. A convergence proof for the LSM method has been constructed in
[32].
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7. Quasi-Monte Carlo for LSM

In their LSM paper, Longstaff and Schwartz [19] suggested that their
method might be improved by the use of quasi-random points. There
are two potential difficulties with this extension of the method: the
problem is high dimensional and the prices along different paths in the
LSM method are correlated, both of which can be problematic for quasi-
Monte Carlo.

7.1 Quasi-Monte Carlo

Quasi-random sequences [26, 14] are a deterministic alternative to
random or pseudo-random points. The distribution of quasi-random
points is much more uniform that than of random points, because of
correlations between the points that are designed to keep them from
clumping. As a result, Monte Carlo quadrature in d dimensions us-
ing N quasi-random points (i.e. quasi-Monte Carlo) can converge at a
rate N−1(log N)d, as opposed to convergence at rate N−1/2 for random
points. The uniformity of a quasi-random sequence is measured in terms
of its discrepancy, which is defined as the maximum error in the Monte
Carlo estimate of the volume of a rectangular set.

The exponent d for the log indicates that the advantages of the method
can breakdown for large dimension [23]. In addition, this convergence
rate is not attained for quasi-Monte Carlo quadrature on functions that
are not smooth [24]. Making effective use of quasi-random sequences
requires specially adapted techniques in order to avoid these limitations
on the method [6, 31], including smoothing of nonsmooth integrands
and reduction of effective dimension. Note, however, that when the
effectiveness of quasi-Monte Carlo is lost, its typical performance is the
same as that of standard Monte Carlo.

Examples of quasi-random sequences include the sequences of Hasel-
grove [13], Halton [12], Faure [11], Sobol [30] and Niederreiter [34]. Soft-
ware for generating quasi-random sequences can be found, for example,
in [4, 28].

A promising alternative acceleration of quasi-Monte Carlo is through
randomization of the quasi-random sequence [27] which gives conver-
gence rates of almost N−3/2 for quadrature of smooth functions.

When using quasi-random sequences in Gaussian random variables
[22], one must use the inverse of the normal CDF (see [16] for an algo-
rithm) rather than the Box-Muller method (e.g. [20]).
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7.2 The Brownian bridge method

The standard discretization of a random walk is to represent the po-
sition b(t + ∆t) in terms of the previous position b(t) by the formula

b(t + ∆t) = b(t) +
√

∆t ν (1.27)

in which ν is an N(0, 1) random variable. Using a sequence of indepen-
dent samples of ν we can generate the random walk sequentially by

y0 = 0, y1 = b(∆t), y2 = b(2∆t), . . . (1.28)

Evaluation of path integrals, such as the risk-neutral expectation for the
price of a path-dependent security, using this representation for Brow-
nian motion results in a high dimensional integral, for which the effec-
tiveness of quasi-Monte Carlo is lost.

The effectiveness of quasi-Monte Carlo for path integrals will be re-
gained using an alternative representation of the random walk, the Brow-
nian Bridge Discretization, which was first introduced as a quasi-Monte
Carlo technique by [25]. This representation relies on the following
Brownian bridge formula [15] for b(t + ∆t1) knowing b(t) and b(T =
t + ∆t1 + ∆t2):

b(t + ∆t1) = ab(t) + (1 − a)b(T ) + cν (1.29)

in which

a = ∆t2/(∆t1 + ∆t2)

c =
√

a∆t1. (1.30)

Using this representation, the random walk can be generated by succes-
sive subdivision. Suppose for simplicity that M is a power of 2. Then
generate the random walk in the following order:

y0 = 0, yM , yM/2, yM/4, y3M/4, . . . . (1.31)

The significance of this representation is that it first chooses the large
time steps over which the changes in b(t) are large. Then it fills in the
small time steps in between, in which the changes in b(t) are quite small.
The advantage of this representation is that it concentrates the variance
into the early, large time steps. A similar, more general but slower,
approach was developed in [1] using principal component analysis.

Although the actual dimension of the problem is not changed, in some
sense the effective dimension of the problem is lowered, so that quasi-
Monte Carlo retains its effectiveness. To make this statement quantita-
tive, suppose that at some given value of N , the discrepancy is of size
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N−1 for dimension d (omitting logarithmic terms for simplicity), but is
of size N−1/2 for the remaining dimensions. We expect that the integra-
tion error is roughly of the size of the variance times the discrepancy.
Using the Brownian bridge discretization, the variance over the first d
dimensions is σ0, which is about the same size as the original value of σ;
whereas the variance over the remaining M − d dimensions is σ1, which
is much smaller; i.e.,

σ1 << σ0 ≈ σ (1.32)

Denote εs and εbb to be the errors for quasi-Monte Carlo using the stan-
dard discretization and the Brownian bridge discretization, respectively.
Then approximately

εs = σN−1/2

εbb = σ0N
−1 + σ1N

−1/2. (1.33)

The ordering (1.32) then implies that

εbb << εs. (1.34)

This shows that the Brownian bridge discretization can provide a sig-
nificant improvement in quasi-Monte Carlo integration for path integral
problems.

7.3 Application to the LSM method

Chaudhary [8] implemented a Brownian bridge construction for the
paths in the LSM method. As described above, this can reduce or remove
the high dimensionality difficulty for quasi-Monte Carlo quadrature of
path dependent securities. In addition, the Brownian bridge method
shows that the memory requirements of the LSM method can be signif-
icantly reduced. The potential difficulty with correlations between the
paths did not turn out to be much of a problem, perhaps because the true
correlations are via the early exercise boundary which is deterministic.

8. Conclusions

Our intention in writing this paper is to describe the difficulties in-
volved in applying Monte Carlo evaluation to American options, as well
as several recent methods that are quite promising for overcoming these
difficulties. Here are some directions that we believe to be promising for
future research.

The singularity in the early exercise boundary at the final time has
been well characterized by Keller and co-workers [10], at least for call
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and put options. The information in these asymptotic results could be
valuable in improving Monte Carlo simulations.

For Martingale optimization, there is not yet a good method for choos-
ing the Martingale in order to get a good approximation. In particular,
one might hope to find an iterative method, in which an approximate
Martingale would be modified at each step in order to improve the ap-
proximation over that of the previous step.

The LSM method with random or quasi-random sequences has been
shown to work well on a good selection of examples, but it still needs
to be validated for more complicated examples, such as American Asian
options with the average taken over a moving window.
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