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Theory of strain relaxation in heteroepitaxial systems
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We introduce a general approach to calculating the morphological consequences of coherent strain relaxation
in heteroepitaxial thin films based on lattice statics using linear elasticity. The substrate and film are described
by a simple cubic lattice of atoms with localized interactions. The boundary conditions at concave and convex
corners that appear as a result of this construction, those along straight interfacial segments, and the governing
equations are obtained from a variational calculation applied to a discretized form of the total elastic energy.
The continuum limit of the equations and the boundary conditions along straight boundaries reproduces
standard results of elasticity theory, but the boundary conditions at corners have no such analog. Our method
enables us to calculate quantities such as the local strain energy density for any surface morphology once the
lattice misfit and the elastic constants of the constituent materials are specified. The methodology is illustrated
by examining the strain, displacement, and energies of one-dimensional strained vicinal surfaces. We discuss
the effects of epilayer thickness on the energy of various step configurations and suggest that coupling between
surface and substrate steps should affect the equilibration of the surface toward the bunched state.
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I. INTRODUCTION

The structural and compositional integrity of heteroe
taxial films is central to the fabrication of all quantum he
erostructures. The morphology of these films is determi
by a number of factors, including the manner in which str
is accommodated if the materials have different lattice c
stants, the surface and interface energies of the materials
any effects associated with alloying and segregation. T
modynamic arguments based on interfacial free energies
often used to provide a classification scheme for theequilib-
rium morphology of thin films.1 But while such consider-
ations undoubtedly play an important role in providing t
overall driving force for the morphological evolution of thi
films, they neglect a number of inherently kinetic effec
The interplay between thermodynamics and kinetics is es
cially germane to heteroepitaxial systems where, for
ample, variations in growth conditions~substrate tempera
ture, flux, substrate misorientation! and annealing are used t
manipulate the spatial and size distributions of thr
dimensional~3D! coherent islands that appear during t
Stranski-Krastanov growth of lattice mismatched semic
ductors for quantum dot applications.2

Strain relaxation in heteroepitaxial systems has been
subject of an abundance of theoretical studies, but ther
yet no general methodology with the versatility of th
Burton-Cabrera-Frank theory,3 rate equations,4 or kinetic
Monte Carlo simulations5 which captures the essence of th
film evolution in the presence of lattice misfit. There are tw
main reasons for this. The rates of atomistic processes
strained surfaces are not determined solely by the local
vironment of the atoms, as in the case of homoepitaxy,
may depend on nonlocal features such as the height
terrace above the initial substrate, the size and shape of
0163-1829/2003/67~7!/075316~14!/$20.00 67 0753
-

d
n
-
nd
r-
re

.
e-
-

-

-

e
is

on
n-
ut

a
o-

and three-dimensional islands,6,7 and their local
environment.8 This is further complicated by the competitio
between different strain relaxation mechanisms~e.g., alloy-
ing, misfit dislocation formation, surface profile modul
tions!, each of which has a characteristic signature in
morphology of the substrate.9 Additionally, any general the-
oretical approach must incorporate long-range elastic in
actions, which are best treated within a continuum fram
work, and atomistic effects such as step-adatom interacti
alloying, and possibly reconstruction changes during grow

The theoretical description of the formation of heterog
neous interfaces falls into one of three broad categories~i!
the minimization of energy functionals, including thermod
namic potentials, of various levels of sophistication to det
mineequilibriumatomic positions as a function of the lattic
mismatch,6,10,11 ~ii ! kinetic Monte Carlo simulations, both
lattice-based7,12 and off lattice,13 where the hopping rules ar
modified to account for the effects of strain on diffusion a
adatom attachment and detachment at step edges, and~iii !
classical elasticity theory applied to the evolution of t
growth front profile of continuous films.14,15These studies al
require a compromise between a realistic description of
teratomic interactions and the mesoscopic effects of st
relaxation due to lattice misfit.

The approach we describe in this paper is based on c
sical elasticity, but with the substrate and film composed
an atomistic grid, as in the method of lattice statics.16–18The
lattice mismatch and the difference in elastic constants
tween the film and the substrate enter explicitly into th
theory. This representation of the growing film is capable
including both atomistic and continuum elastic aspects
morphological energetics and kinetics. At the atomistic lev
this includes the effect of strain on adatom diffusion,19 and
the kinetic6,7 and thermodynamic10,20,21 stability of islands.
©2003 The American Physical Society16-1
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Over larger length scales, there are interactions due to
strate distortion, which lead to a repulsive interaction b
tween islands10,22 and other surface species.23,24 While such
long-range effects are directly amenable to a descrip
within continuum elasticity with suitably chosen materia
parameters, more localized effects can be modeled with
pirical or first-principles methods, especially where a dir
connection between the atomistic and continuum formu
tions can be established.25 Our approach can be made co
sistent with atomistic models cast in a valence force fi
representation. This allows us the flexibility to incorpora
atomistic effects where needed while remaining within
general framework of linear continuum elasticity.

In this paper, we formulate the elasticity equations a
boundary conditions for discrete substrates and films. In c
trast to the situation for continuous films, where the bou
aries are smooth curves,14 the boundaries of our discrete sy
tems are piecewise constant, and this requires a sep
treatment. Accordingly, we derive the elasticity equatio
and boundary conditions from a variational calculation a
plied to the total elastic energy of a discretized system wh
respects the local symmetries of all points. The equati
obtained for the interior region and along straight segme
of the boundary lead, in the continuum limit, to the usu
equations and boundary conditions, respectively, of lin
elasticity. But at corners, the boundary conditions are b
understood in quasiatomistic terms as a constraint on
local displacement. We illustrate our method by calculat
the interactions between steps on one-dimensional stra
vicinal surfaces, which is relevant to the step-bunching ins
bility on such surfaces. We examine qualitatively and qu
titatively the strain and displacement fields that arise fr
the model and compare and contrast these results to kn
results from continuum elasticity. We also examine the infl
ence of the thickness of the epilayer and the difference
the elastic properties between the film and the substrate
discuss the implications of these on the evolution toward
bunched state.

The outline of this paper is as follows. The basic equ
tions of linear elasticity are reviewed briefly in Sec. II. Th
details of our model are then presented in Sec. III, where
describe our variational formulation of the discretized eq
tions and boundary conditions. The complete set of equat
describing the boundary conditions are compiled in the A
pendix. In Sec. IV we describe some results of our mo
including a comparison between step-step interactions
continuum elasticity and those calculated within our mod
We also present results obtained from the application of
model to vicinal surfaces that are relevant to the st
bunching instability on a one-dimensional strained vicin
surface. In particular, we discuss the likely influence of e
ilayer thickness and lattice mismatch of the substrate
epilayer on the evolution of the film toward the bunch
state. Finally, in Sec. V we summarize our results and out
future applications of our approach.

II. CLASSICAL ELASTICITY

The following discussion presumes that the system is
dimensional~i.e., that the substrate is one dimensional!, but
07531
b-
-

n

-
t
-

d

e

d
n-
-

ate
s
-
h
s

ts
l
r

st
e

g
ed
-
-

wn
-
in
nd
e

-

e
-

ns
-
l

in
l.
r
-
l
-
d

e

o

the extension to a 3D system~i.e., a two-dimensional sub
strate! is straightforward. Letuk , wherek51,2, denote the
Cartesian components of the displacement vector. For lin
elasticity in an isotropic material, the components of t
strain tensorS and stress tensorT are given in terms of the
displacement vector by26

Skl5
1

2
~]kul1] luk!, ~1!

Tkl5ldklSnn12mSkl , ~2!

where]1[]/]x,]2[]/]y andl,m are the Lame´ constants.
Repeated indices imply summation from 1 to 2. For t
heteroepitaxial growth of a film with lattice constantaf on a
substrate with a lattice constantas , the normalized lattice
mismatch is

e5
af2as

as
. ~3!

The strain tensor for the film is given by

Skl8 5
1

2
~] luk81]kul8!, ~4!

where the prime denotes quantities associated with the fi
Using Eq.~3!, S8 can be expressed in terms of displaceme
with respect to the substrate lattice positions as

Skl8 5Skl1dkle. ~5!

Accordingly, the corresponding stress tensorT8 for the film
is

Tkl8 5l8dklSnn1m8Skl2~2l81m8!dkle. ~6!

In mechanical equilibrium the forces inside any volum
V vanish,

¹•T50, ~7!

and the force on the boundary]V equals the external pres
sure~in the absence of external tractions which in the case
vacuum is zero!, leading to

n•T50, ~8!

wheren5(n1 ,n2) is the vector normal to the surface. Add
tionally, at the interface between the film and the substr
the normal component of the stress is continuous:

n•T5n•T8. ~9!

For a continuous film, Eqs.~7!, ~8!, and ~9! completely
specify the distribution of stress within the system. For t
purpose of the discussion in the next section, it is usefu
point out here that the above boundary conditions can
derived from a variational principle applied to the total ela
tic energy. The elastic energy densityE of the strained sub-
strate is given by the tensor contraction1

2 S:T. In terms of
Cartesian components
6-2
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E5
1

2
S:T5

1

2
l~]nun!21

1

2
m@~]kul !

21] luk]kul # ~10!

so that the total elastic energy is

EE5E
V
E dx. ~11!

The force balance equations and boundary conditions
each point then follow from setting the variation of the ela
tic energy with each of the displacements equal to zero:

dEE

dukl
50, ~12!

whereukl5] luk .

III. MODEL

In this section we describe a discrete atomistic model
strain, designed to agree with continuum elasticity in tho
regions where continuum theory has a natural discretiza
~namely, in the bulk and at straight boundaries!. For our sys-
tem, we have used an approach to formulating the equat
of elasticity, based on lattice statics, that is especially app
priate for epitaxial systems. This methodology is explain
in detail in Ref. 27. Here we outline the general structure
the method; mathematical details are included in the App
dix. The general approach is not to discretize Eq.~12! di-
rectly. Instead, we construct a discrete version of the ela
energy density Eq.~10!, and then define the total energy as
sum of this energy density over lattice points

ET5S i , jE~ i , j !. ~13!

At each point (i , j ) of the grid, the energy contributionE( i , j )
only involves terms from the nine point stencil~nearest and
next-nearest neighbors! centered at (i , j ). The energy contri-
bution per siteE( i , j ) is written in its most general form in
the Appendix, as are specific cases of interest.

The principal virtue of this formulation is that it combine
atomistic and continuum approaches. If the computatio
grid is the same as the underlying atomistic lattice, then
discrete version of the energy may be considered purely
mistic. This correspondence is equivalent to imposition
the Cauchy-Born hypothesis, that the atomistic lattice d
placement equals the macroscopic elastic displacement.
advantage of the atomistic interpretation is that it allows
to tailor the energy density to suit specific atomistic geo
etries where continuum elasticity fails to inform us as
what discrete equations to use. In particular, we have use
here to derive numerical boundary conditions at the sh
corners at the top of the film, and to derive equations at
film/substrate interface.

Using the discrete version of Eq.~10!, the discretized
force balance laws come from minimizing the total ener
ET . The resulting equations are

]ET

]uk~ i , j !
50, ~14!
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which is the discrete analog of Eq.~12!. These discrete equa
tions are formally equivalent to discretizations of the clas
cal elasticity equations. In particular, at interior points E
~14! is a discretization of Eq.~7!, and at flat edges it is a
discretization of Eq.~8!. At corners and at material inter
faces, however, these equations are new and do not adm
continuum interpretation.

The boundary conditions that arise from performing
variation on the discrete energy have the effect of regula
ing the singularities that exist in continuum theory at, e.
interior corner points. This regularization is not complete
artificial; since our discretization is at the atomic scale, it
performed at the appropriate length scale. In a real mate
the singularities present in continuum elasticity are, in fa
regularized by the atomic lattice. This regularization cou
be done in a more controlled fashion, entirely within o
framework, by using an appropriately parametrized atomi
bond model for the energy at these singular points. This
beyond the scope of the present work, however, and we
pect that qualitatively correct results for step equilibrium a
dynamics can be obtained with the present form of the
ergy.

Our method for treating elasticity should be placed
context with an alternative approach,28,29 which is based on
the use of Green’s functions. This approach makes use o
analytic expression for the half-space Green’s function t
describes the displacement at any pointx in the bulk due to
a unit force acting at another pointx8. Then, assuming tha
the bulk is homogeneously strained, a multipole expansio
the force distribution caused by a step can be made. Mu
plying each term in the expansion by the appropriate der
tive of the Green’s function, the displacement at any po
due to the presence of a step can be obtained as well a
force on one step due to another. This is a powerful a
appealing approach, but has several serious limitations.
use of the half-space Green’s function implies not only t
the epilayer is homogeneously strained, but also that the
ilayer thickness is much greater than the step height. Furt
more, the distance between steps must be sufficiently la
that the step interactions can be approximated by only a
terms in the multipole expansion. Finally, if the material sy
tem is inhomogeneous, then depending on the geometry
elastic parameters, the Green’s function approach may
either difficult or impractical to implement.

These restrictions cause problems if the issue to be
dressed is the interaction between steps on very thin ep
ers on a vicinal substrate, or the interaction between isla
on the first few epilayers on a singular surface. In many ca
of practical interest, heteroepitaxial layers are tunnel barr
or quantum wells whose thickness is often no more tha
few layers. On a vicinal surface, the presence of steps on
substrate causes the assumption of homogeneity of the
ayer strain to be violated. Even on nominally singular s
faces, the epilayers can easily be thin enough to violate
assumption that the step height is much smaller than
epilayer thickness. The initial nucleation of quantum dots
of intense interest and also occurs in a regime where
Green’s function is not valid. The epilayer is thin in th
nucleation phase and island distances may be small eno
6-3
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A. C. SCHINDLERet al. PHYSICAL REVIEW B 67, 075316 ~2003!
to violate the assumptions of the multipole expansion. O
approach suffers from none of these restrictions and, ass
ing that linear elasticity holds down to length scales of a f
lattice spacings, as has been observed,30,31 our only approxi-
mations are in the treatment of the atomistic effects relev
very near the step edges and at the surface. Even thes
fects can be accommodated with some additional effor
described in Sec. V.

IV. RESULTS AND DISCUSSION

As an illustration of our method, we now consider st
relaxations and step-step interactions on strained vicinal
faces.

A. Step relaxations

We begin by examining the behavior of the displacem
and strain fields given by our model for steps on a strai
vicinal surface. Figure 1 shows the basic geometry that
be considered. The epilayer~shown in gray! consists of 40
layers of material with isotropic elastic constantsl51 and
m51 on a substrate~shown in black! of thickness 20, which
also has elastic constantsl5m51. The buried step on the
interface between substrate and epilayer is horizontally of
from the surface step to indicate a generic nonsymme
configuration. Although only one step is shown, ske
periodic boundary conditions are applied so that the mo
describes an infinite step train, not an isolated step.
lower boundary of the lattice necessarily also has a step
be consistent with the skew-periodic boundary conditio

FIG. 1. A vicinal surface with a single step consisting of
epilayer ofA-type atoms~shown in gray! on a substrate ofB-type
atoms~shown in black!.
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The atoms immediately on the lower boundary are held
zero displacement in all of the subsequent relaxation ca
lations, to approximate bulk behavior.

For clarity we will examine the effects of surface stress
a separate case from epilayer mismatch, with the knowle
that the effects can be combined if desired. For the cas
epilayer misfit with no surface stress, there is a lattice m
match of 1% between substrate and epilayer with sign s
that the epilayer is under compressive strain. For the a
nate case of surface stress with no epilayer misfit, the bo
between pairs of atoms on the epilayer-vacuum interface
modified to have a lattice constant 1% larger than the bu
giving a compressive stress for the surface layer only. In
latter case, the substrate and epilayer are indistinguisha
so that the system is effectively a layer of thickness 60 w
a step on the top and the bottom held at the ze
displacement bulk position.

Figure 2 shows thex and y components of displacemen
produced by the epilayer misfit model for this particular st
configuration and Fig. 3 shows the displacements for
surface-stress only case. In Fig. 3 the coupling of the h
zontal surface stress to vertical displacements is appa
The step edge breaks the planar symmetry of the surface
allows this coupling, since the two stresses on either side
the step produce a torque about the step edge.

Better qualitative appreciation of the results of the rela
ation can be gained from graphing the components of
strain tensor. Figure 4, for the compressed epilayer, cle
shows the distinct strain fields produced by the surface s
and the buried interface step. The lineary displacement no
longer dominates the image as it did in Fig. 2~b!, since the
strain only contains derivatives of the displacement. Of n
in the figure is the different ‘‘polarity’’ of thex andy strains
at the surface step vs. the interface step, and the struc
around each of the steps as the value of the strain compo
oscillates between positive and negative values as a func
of angle. Figure 5 shows the strains produced by surf
stress only. In this case, the buried step experiences no st
and the visible strain field is due to the surface step alo
The angular structure around the step in~a! and~c! is notice-
ably different from Fig. 4, suggesting more dominant high
multipole moments. In both Figs. 2 and 3, the lower boun
ary of the lattice is invisible since it has the same zero va
of strain as the vacuum.

Having discussed some of the qualitative features of s
relaxations produced by our model, we now turn to a m
quantitative analysis. In particular, we wish to show that
displacements due to surface steps produced by our m
are in quantitative agreement with predictions derived fr
continuum elastic theory in regimes where we expect
latter to be valid. The results from continuum elastic theo
we will compare to are for displacements due to an isola
step; our method, however, most naturally treats periodic
placed steps in a step train. In order to separate the effe
an isolated step from that of the periodic images, we perfo
a lattice sum of periodic multipole forces, which is then us
for evaluation of the multipole coefficients due to step d
placements.
6-4
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FIG. 2. Displacement fields due to the step from Fig. 1 on
compressively strained epilayer. The color of the vacuum a
above and below the lattice indicates the zero of the scale,
displacements are calculated with respect to the reference lattic
described in the Appendix. The bottom-most layer of atoms is fi
at zero displacement to approximate the bulk. Lighter shading
resents positive displacements and darker shading represents
tive displacements. Thex displacements are shown in~a! and they
displacements~with a different zero of the grayscale! are shown in
~b!. Because of the Poisson ratio of the material, there is an ov
increasingy displacement that visibly overwhelms the details oy
displacements due to the step itself.
07531
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FIG. 3. Displacement fields due to the step from Fig. 1 w
intrinsic surface stress in the material. The gray color in the vacu
region above and below the lattice represents the zero of the s
with lighter shading indicating positive displacement and dar
shading indicating negative displacement with respect to the re
ence lattice. The shading gradient is not to the same scale as F
since the absolute displacements from this surface stress effec
smaller. Thex displacements are shown in~a! and they displace-
ments are shown in~b!.
6-5
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FIG. 4. Components of the
strain field due to a step on a com
pressively strained epilayer, with
the same step geometry as prev
ous figures. In each sub-figure, th
shading of the vacuum region
above the lattice represents th
zero of the scale, with white rep
resenting positive values an
black representing negative va
ues. The components shown are
follows: ~a! xx component,~b! yy
component, ~c! xy component,
and~d! hydrostatic strain~trace of
strain tensor!.
di
e
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te
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The effect of a single isolated step in an~horizontally!
infinite domain is addressed by superposition in perio
boundary conditions. The computational domain, wh
skew-periodic boundaries are applied, is effectively infin
and is populated by an infinite number of equally spac
steps. The distortion fields produced by each of these s
linearly superposes, however, and may be summed. For
ample, a one-dimensional ‘‘dipole potential’’ term32 of
strengthm1 for an isolated step atx0,

V1
15

m1

x2x0
~15!
07531
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sums as

V1
`5 (

n52`

`
m1

x2x01nL
5m1

p

L
cotanS p

L
~x2x0! D , ~16!

whereL is the periodicity of the system. The summed dipo
force is found as the negative derivative of the potential:

f 1
`52

d

dx
V1

`5m1S p

L D 2

cosec2S p

L
~x2x0! D . ~17!
6-6
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FIG. 5. Components of the strain field due to a step with intrinsic surface stress in the material. In each subfigure, the shadi
vacuum region above the lattice represents the zero of the scale, with lighter shades representing positive values and dar
representing negative values. The components shown are as follows:~a! xx component,~b! yy component,~c! xy component, and~d!
hydrostatic strain~trace of strain tensor!.
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All higher order multipole terms may be summed ana
gously. The single step monopole potential term

V0
15m0 ln~x2x0! ~18!

cannot be directly summed and instead the correspon
force

f 0
152

d

dx
V0

15
m0

x2x0
~19!

is summed, and then integrated to give the lattice-summ
monopole potential

V0
`5m0 lnFsinS p

L
~x2x0! D G . ~20!

These periodic functions are best examined on a single
riod extending over theterrace between two steps~Fig. 6!,

FIG. 6. Displacements at the surface layer~from Fig. 2! for a
strained epilayer with no surface stress. Thex displacements~a! and
y displacements~b! are shown as a function of position from on
step to the next periodic image step. The dots are the displacem
produced by the model and the solid lines are fits to the func
described in the text, up to dipole order.~The first and last points
are left out of the fit.!
07531
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and not on a domain containing a pole, which would requ
fitting with an infinite discontinuity between left- and righ
hand sides.

The coefficientsm0 , m1 , m2, etc., of these lattice-
summed terms are identical to the coefficients of the isola
step continuum multipole expansion. This allows the coe
cients from a fit to our model on a terrace to be compa
directly to the coefficients derived from the continuu
theory for a single step.

Figure 6 shows thex andy displacements along a terrac
for the case of a uniformly compressed epilayer. Included
fits to the functional form described above to dipole ord
We also fit the data to a 12 term series and extract the
responding multipole coefficients of the isolated step; th
are shown in Fig. 7. We first note that the logarithmic mon
pole is dominant, and the falloff with increasing multipo
order is rapid and uniform. The dipole coefficient, for e
ample, is more than an order of magnitude smaller than
monopole coefficient. Dominance of the logarithmic mon
pole is also evidenced by the fact that using only the mo
pole and dipole terms results in the excellent fit shown
Fig. 6. The simplest continuum elastic theory predicts
existence of a monopole term only and should be valid in
limit of the step height small compared to the distance
tween steps in our model. That condition is reasonably w
satified for the case shown here, hence the relative do
nance of the monopole term. The existence of other mu
pole terms, though small, nevertheless shows that our m
is capturing some of the atomistic effects that are present
therefore goes beyond a purely continuum description.

Figure 8 shows the monopole coefficientm0x for the x
component of the displacement along the surface as a f
tion of lattice mismatche. For eache, m0x is calculated
from the simulation data for 16 different values of the elas
parametersl and m. These data are compared to the the
retical predictionm0x52(l12m)/e, which can be derived
either from continuum theory33 or from a discrete model.27,34

The agreement between the simulation data and the ana
expression is quite good, but not exact. This is again what
would expect since we are in a regime in which the atomis

nts
n

FIG. 7. Magnitude ofx and y displacement multipole coeffi-
cients for first 12 multipolesm0•••m11 for a strained epilayer with
no surface stress.
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effects captured by our discrete model are small, but
completely negligible. Thus, we have shown from this a
the preceding data that our model reproduces the expe
continuum results in the approriate limit, but with correctio
due to the discrete nature of the model that may be impor
in other regimes.

B. Step-step interaction energy

We now turn our attention to the interaction energy b
tween steps produced by our model. For a general lin
elastic material with a stepped surface, there are forces
tween steps even in the absence of misfit strain. In
Green’s function approach discussed above, these fo
separate~conceptually! into two types: a repulsive ‘‘dipole’’
interaction,33 which is due to the intrinsic surface stress
the steps, and a logarithmic repulsion between inequiva
steps in the form of a force ‘‘monopole,’’35,36which is due to
the elastic distortion of the surface.

In a film under an externally imposed strain, such as t
derived from coherent epitaxy to a lattice-mismatched s
strate material, there is an additional, attractive interac
between steps due to a force ‘‘monopole’’36 which is loga-
rithmic. The unstrained monopole force of the previous pa
graph is fundamentally different from this strained mon
pole, in that the presence or absence of the former dep
on relative step orientations, while the latter is present for
steps. In the calculations described below, all steps face
same direction, obviating any repulsive monopole.

The force f m on a single step at positionxm is approxi-
mated, to dipole order, by26,28,33

f m5 (
n

nÞm

S a1

~xn2xm!
2

a2

~xn2xm!3D , ~21!

wherea1 is determined by the elastic constants of the ma
rials and the lattice mismatch, anda2 is determined by the
elastic constants of the epilayer material and the intrin
surface stresses.

FIG. 8. Monopole coefficientm0x for the x component of the
displacement along the surface. Data is plotted as a functio
lattice misfit e for 128 values of elastic coefficientsl, m, ande.
Values from the simulation (h) and from theory (s) are plotted.
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In light of the above discussion, we now compare t
elastic energy due to step-step interaction obtained in
model to the predicted interaction. To calculate the total e
tic energy as a function of step distance, we use the geom
shown in Fig. 9, with skew periodic boundary conditions
appropriate for modeling an infinite step train. The two ste
are moved by equal amounts in opposite directions to c
serve the mass of the system, thereby preventing the un
trolled introduction of ‘‘background’’ bulk elastic energy i
the process. With the steps at each lattice position betw
configurationsA andB, we record the total elastic energy.

We expect that the relevant quantities determining
qualitative behavior of the system arem i /l i and ms /me ,
where the subscriptss and e are for substrate and epilaye
properties, andi P$s,e%. Every property that depends on la
tice mismatche does so linearly, so that scales out as we
For simplicity we calculate withl5m51, ande51%. For
Si, m/l'1.1; for Ge,m/l'1.2, andmSi /mGe'1.2, so the
qualitative results should hold for that physical system a
others with similar scaled elastic properties. In this comp
tation, the grid spacing was chosen such that each ato
lattice spacing is one numerical grid point across. The sys
has a lateral size of 40 lattice spacings, which would
equivalent to a physical size of approximately 22 nm fo
Si/Ge system.

The first case we consider has an epilayer thickness o
ML, large enough that we expect this case to behave as if
epilayer were uniformly strained. The results for the to
energy as a function of step separation are shown by
square data points in Fig. 10. The agreement between
data from our model and the solid line is excellent, indicati
that our model reproduces the expected logarithmic inte
tion between steps on a homogeneously strained epilaye
distances larger than one atom.

of

FIG. 9. Geometry used for calculating two-step interaction
ergy. Left and right boundaries are skew periodic. Steps are mo
from configurationA to configurationB in such a way that the tota
area remains constant~mass is conserved!.
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The circle data points in Fig. 10 show the total elas
energy for an epilayer thickness of only 5 ML. Note that t
behavior is qualitatively different than the thick epilay
case. There is a ‘‘dip’’ in the energy as the surface steps p
over the terrace midway between configurationsA and B.
This local minimum in energy becomes more pronounced
epilayers thinner than 5 monolayers. Figure 11 shows
hydrostatic strains for two of the configurations whose en
gies are plotted in the preceding figure. Note that there
significant elastic interaction between the epilayer steps
subsurface features at the epilayer-substrate interface.
interaction is what leads to the local minimum in ener
when the epilayer steps are moved with respect to the bu
steps, and is an effect not present in models assumin
homogeneously strained epilayer. In fact, this effect wo
be very difficult to capture with any Green’s function-bas
approach.

We expect this to have considerable implications for
dynamics of step bunching. Although only metastable, s
configurations that experience significant coupling to
substrate may be expected to slow or even completely
press the step bunching phenomenon normally expecte
vicinal surfaces even under annealing conditions. A full
vestigation of step dynamics using this elastic model coup
to an equilibrium model for step dynamics28 is in progress
will be reported on elsewhere.

V. SUMMARY AND FUTURE APPLICATIONS

We have presented a new method to study the influenc
elastic interactions in strained one-dimensional systems
ing an approach based on lattice statics using linear elast
theory. An application is the problem of step relaxations a
step-step interactions on vicinal surfaces. We have exam
in detail the behavior of our model for this particular pro
lem and found the step relaxations to be consistent with
predictions of continuum elastic theory in the limit where t

FIG. 10. Total system energy for a step moving from config
ration A (s50) to configurationB (s520), for both a 30 atom
thick epilayer ~squares, left axis! and a 5 atom thick epilaye
~circles, right axis!. Both calculations are on a 30-layer substra
The solid line is a logarithmic fit to the thick epilayer data, and t
inset is the central portion of the thin epilayer data with 203 ver-
tical exaggeration.
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continuum theory would be expected to hold~the thick epil-
ayer limit!. We have also demonstrated, however, that
discrete nature of the model allows us to capture many
fects that are essentially atomistic in nature. When consi
ing step-step interactions, we found that there is a signific
influence of perturbations of the elastic field on the surfa
due to buried substrate morphologies. These may well lea
long relaxation times for very thin epilayers, where the a
tual critical thickness depends on the misfite as well as on
the elastic constants of the two involved materials. Up
increase of the epilayer thickness, we observe a decay o
substrate influence until at epilayer heights of roughly 30–
monolayers the effects of the initial substrate configurat
vanish.

We expect this general methodology to have wide ap
cability to problems involving strain in epitaxial growth
Here, the method was formulated for a simple cubic lattice
2D, but it is easily extendible to noncubic lattices and 3D.
addition, the atomistic nature of our formulation makes
applicable to including surface and step edge effects, p
vided that a suitable description of the local energy at th
sites is available. At the atomistic level, our model is
example of a valence force field model. Valence force fi
models, such as the Keating model, have been validated
bulk elastic properties of many real materials.37–39 Valence
force field models accurately describing the energy of ato
configurations at surfaces and step edges are not gene
available, but there are no fundamental obstacles to deve
ing and validating such models.

One of the main motivations for this work is our intentio
of incorporating elastic effects into the level-set method40 for
describing the morphological evolution of epitaxial films.41

This technique is based on the representation of the mo
growth front ~the step edges! in terms of an auxiliary func-
tion ~the level set function! which permits a straightforward
solution of the associated Stefan problem and handles
natural way the topological changes associated with
nucleation of islands and their coalescence. By treating
x-y variables as continuous, but thez direction as discrete
this method is ideally suited both to coupling continuo
fields to island motion and to describing abrupt atomis
effects associated with the initial stages of heteroepita
growth, such as the 2D-3D transition during Strans
Krastanov growth.42 The coupling of the adatom diffusion
field to island-boundary motion has already be
accomplished,43 so we now turn to the effect of elasticity o
the motion of island boundaries.

The new method opens up a vast field of possible ap
cations. Beginning with the most fundamental aspects
growth, we can examine the effect of strain on adat
hopping,44 nucleation, and island stability,45 as well as inves-
tigate the issue of kinetic versus equilibrium effects in t
island statistics.46,47 These factors, in turn, impact upon th
extent of lateral2 and vertical ordering48,49 of 2D and 3D
islands. Growth phenomena on patterned substrates is
easily within the scope of this method.50
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FIG. 11. Hydrostatic strain for sample configurations from the Fig. 10 calculation. The top two subfigures~a!, ~b! are a 30-monolayer film
and the bottom subfigures~c!, ~d! are a 5-monolayer film. The subfigures on the left~a!, ~c! are fors50 and those on the right~b!, ~d! are
for s5L/2520.
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APPENDIX: ELASTIC ENERGY

For a two-dimensional cubic lattice with lattice constanh
and lattice coordinatesi5( i 1 ,i 2), denote the reference pos
tion as x5(x1 ,x2), the elastically deformed position asX
5(X1 ,X2), and the displacement asu5(u1 ,u2)5X2x. De-
07531
e
-
-

-

fine the translation operatorsTk
6 and finite-difference opera

tors Dk
6 ,Dk

0 as follows:

Tk
6 f ~ i!5 f ~ i6ek!, ~A1!

Dk
1 f ~ i!5h21~Tk

121! f ~ i!,

Dk
2 f ~ i!5h21~12Tk

2! f ~ i!, ~A2!

Dk
0f ~ i!5~2h!21~Tk

12Tk
2! f ~ i!,

in which ek is the unit vector in thekth direction for k
51,2. Define the bond displacementdk6 at the pointi as
6-11
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dk6~ i!5~d1
k6 ,d2

k6!5Dk
6u~ i!2eek . ~A3!

As discussed in Sec. II, the lattice mismatch parametere in
the epilayer is the relative difference between the equilibri
lattice constant and the lattice constant imposed on the e
ayer by the substrate.

The discrete strain components at a pointi are defined as

Skk
6 5dk

k6 ,

Skl
pq5~dk

lq1dl
kp!/2 ~A4!

in which the values ofk and l are 1 or 2 and the values ofp
andq are1 or 2. The strain componentSkk

6 corresponds to
a bond in the6ek direction from the pointi; the component
Skl

pq corresponds to two interacting orthogonal bonds in
pek andqel directions from the pointi.

1. Micromechanical model

The elastic energy used here has a micromechanical in
pretation as consisting of nearest neighbor springs, diag
springs, and bond bending terms. For nearest neighbor li
springs and linearized bond bending springs, in which
spring constants area and b, respectively, the energy at
point is

Ennbb5
1

2
a (

p56,k51,2
~Skk

p !21
1

2
b (

p56,q56
~S12

pq!2.

~A5!

In order to retain maximal locality, we use ‘‘virtual’’ diagona
spring with spring constantc, defined for example between
point (0,0) and the average of its nearest neighbors (1,0)
(0,1), for which the energy is

E115
1

2
c~e11e2!• H @u~1,0!1u~0,1!#Y22u~0,0!J 2

5c~S11
1 1S22

1 12S12
11!2/8. ~A6!

More generally forp56,q56 define

Epq5c~S11
p 1S22

q 12pqS12
pq!2/8. ~A7!

The energy densityE is a combination of these four virtua
diagonal springs; i.e.,

E5 (
p56,q56

Epq. ~A8!

Add and rearrange Eqs.~A5! and ~A8!, to obtain the result-
ing energy

E5a (
p56,k51,2

~Skk
p !21 (

p56,q56
$2b~S12

pq!21gS11
p S22

q %

~A9!

in which

a5~a1c!/25C11/4,

b5~b1c!/25C44/4,
07531
il-

e

er-
al
ar
e

nd

g5c/85C12/4, ~A10!

andCi j are the Voigt constants. The energy density~A9! is
the discrete analogue of the continuum energy for elasti
with cubic symmetry. For isotropic elasticity, as in Sec.
the coefficients should be chosen as

a5~l12m!/4,

b5m/4,

g5l/4, ~A11!

i.e., a5m2l, b5m/222l, c52l.
The discrete energy density~A9! has been chosen to b

maximally localized; so that the energy densityE at a pointi
is a quadratic function of displacementu at the five point
stencil consisting of the pointi and its nearest neighbors, an
the corresponding force balance equations involve only
nine point stencil consisting of the pointi and its nearest and
next-nearest neighbors.

2. Interfaces

For problems in which the underlying lattice has cub
symmetry but the material geometry includes interfaces,
generalize the energy in Eq.~A9! by only keeping bond in-
teractions that are consistent with cubic symmetry but
imposing a symmetry constraint on the strength of the in
actions. The resulting energy has the form

E5 (
p56,k51,2

ak
p~Skk

p !21 (
p56,q56

bpq~S12
pq!21gpqS11

p S22
q .

~A12!

Each coefficientak
p , as well as the lattice mismatch pa

rametere, corresponds to a bond between two atoms; e
of the coefficientsbpq andgpq corresponds to the interactio
of two bonds in orthogonal directions from a central poi
which defines a square ‘‘cell.’’ We assume that the values
ak

6 ande (bpq andgpq) depend only on the material type o
the two ~four! atoms at the endpoints of the correspondi
bond ~cell!.

Consider a system consisting of two materials with elas
parametersam,bm,gm,em for m51,2. Denote a cell or bond
to be ‘‘pure’’ if all of its vertices are of a single material typ
and ‘‘mixed’’ otherwise. For maximal simplicity, we mak
the following assumptions, which could easily be gener
ized.

~1! For pure bonds~pure cells! in materialm, ak
p5am and

e5em, (bpq5bm andgpq5gm).
~2! For mixed bonds~mixed cells! in a two-material sys-

tem, ak
p5 1

2 (a11a2) and e5 1
2 (e11e2) @bpq5 1

2 (b11b2)
andgpq5 1

2 (g11g2)].
~3! For a bond~cell! in which one of the vertices is in the

vacuumak
p50 (bpq5gpq50).

3. Force balance equations

Assumptions~1!–~3! provide an algorithm by which the
elastic coefficients and elastic energy can be determined
6-12
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any material configuration involving two materials~i.e., a
substrate and an epilayer! and a vacuum. Once the energyE
is determined, the force balance equations at each pointi are
the minimization conditions

]E/]u~ i!50. ~A13!

For the quadratic energy described above, the derivativ
rs

A

N

o

og

lid

.
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pl
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.
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in

Eq. ~A13! is a linear function ofu( i8) over values ofi8 that
are equal to, nearest neighbors of, or next-nearest neigh
of i. The coefficients can be exactly determined as a fin
difference ofE with respect tou( i) andu( i8). Then a linear
equation solver is used to findu by solving Eq.~A13!. This
procedure does not require analytic determination of
force balance equation, which is an advantage because
analysis has many different cases.27
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