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Abstract. This work is concerned with analysis and refinement for a class of island dynamics
models for epitaxial growth of crystalline thin films. An island dynamics model consists of evolution
equations for step edges (or island boundaries), coupled with a diffusion equation for the adatom
density, on an epitaxial surface. The island dynamics model with irreversible aggregation is confirmed
to be mathematically ill-posed, with a growth rate that is approximately linear for large wavenumbers.
By including a kinetic model for the structure and evolution of step edges, the island dynamics model
is made mathematically well-posed. In the limit of small edge Péclet number, the edge kinetics model
reduces to a set of boundary conditions, involving line tension and one-dimensional surface diffusion,
for the adatom density. Finally, in the infinitely fast terrace diffusion limit, a simplified model of
one-dimensional surface diffusion and kink convection is derived and found to be linearly stable.
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1. Introduction. Epitaxy is the growth of a thin film on a substrate in which
the crystal properties of the film are inherited from those of the substrate. Since
an epitaxial film can (at least in principle) grow as a single crystal without grain
boundaries or other defects, this method produces crystals of the highest quality. In
spite of its ideal properties, epitaxial growth is still challenging to mathematically
model and numerically simulate because of the wide range of length and time scales
that it encompasses, from the atomistic to the continuum.

Burton, Cabrera, and Frank [2] developed the first detailed theoretical descrip-
tion for epitaxial growth. In this “BCF” model, the adatom density solves a diffusion
equation with an equilibrium boundary condition (ρ = ρeq), and step edges (or island
boundaries) move at a velocity determined from the diffusive flux to the boundary.
Modifications of this theory were made, for example, in [8, 9, 12, 13] to include addi-
tional effects such as curvature of the boundary, but these are all for near equilibrium.
Numerical simulation of island dynamics, using a level set method, was implemented
in [4,5,10,14]. A fully nonequilibrium modeling approach was formulated in [3] using
an atomistic, kinetic model for the structure and the evolution of a step edge (island
boundary). These are “island dynamics” models, since they describe an epitaxial
surface by the location and evolution of the island boundaries and step edges. They
employ coarse graining in the lateral directions, but they retain atomistic discreteness
in the growth direction.

The present article is concerned with the analysis and refinement of island dy-
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namics models. The models are developed here in the context of step-flow growth
for an epitaxial surface consisting of a periodic step train, and their stability and
asymptotic properties are analyzed.

Several assumptions are employed in this analysis to simplify the results and re-
duce the number of parameters: Asymmetric step-edge attachment due to the Ehrlich–
Schwoebel barrier is not included, partly because it is believed to be absent from many
semiconductor systems. The hopping rate to a step from a terrace is set equal to the
hopping rate along the terrace, and the hopping rate from a step to a terrace is set
equal to the hopping rate along the step. The assumptions on the hopping rates corre-
spond to the rates in an “ES-EN” KMC model [6]. The epitaxial surface is assumed to
consist of an infinite train of parallel steps, with orientation close to a crystallographic
direction. Finite lattice spacing corrections are omitted from these models, since their
effect on the results here is small. The lattice size correction and equality of hopping
rates on a terrace and to a step would imply that the kinetic coefficient in the adatom
boundary condition is infinite (see [18, Chapter 10], and [20]); i.e., the diffusive flux
term Dn · ∇ρ would be absent in the boundary conditions on ρ. Nevertheless, this
correction would not significantly change the results of our analysis. Desorption and
nucleation are omitted from this analysis, since their effect is small for many systems.
Any of these restrictions are easily removed to generalize the results of this analysis.

The first and simplest island dynamics model involves irreversible aggregation.
The corresponding boundary condition is that the adatom density vanishes on island
boundaries or step edges. This follows from the assumption that an adatom sticks
irreversibly to a boundary immediately after it hits the boundary. This model is
mathematically equivalent to the BCF model, since ρBCF −ρeq satisfies the equations
of this model.

As expected, we find that the island dynamics model with irreversible aggrega-
tion is mathematically ill-posed and that a Mullins–Sekerka-type dendritic instability
occurs in the motion of step edges for large wavenumbers [15, 16]. The instability is
weak, since the growth rate in the dispersion relation is asymptotically linear as a
function of wavenumber, and it has a small coefficient due to two-sided attachment.

The next model is the island dynamics model with edge kinetics. It involves
not only the island boundaries and the adatom density but also the density of edge-
atoms—atoms that diffuse along island boundaries—and the density of kinks along
island boundaries. Both the attachment and detachment of adatoms to and from the
boundaries are included in the model. The underlying equations include a diffusion
equation for the adatom density together with a mixed-type boundary condition, a
diffusion equation for the edge-atom density, and a convection equation for the kink
density.

For the linear stability analysis of the island dynamics model with edge kinetics,
we consider only the steady and quasi-steady systems. This is justified by the large
magnitude of terrace adatom diffusion constant DT for most practical applications.
In the range of realistic parameters, both systems are linearly stable, with decay
rate proportional to l2, for both small and large wavenumbers l. The constants of
proportionality are solely characterized by the “edge Péclet number” PE , an input
parameter that is proportional to both the constant deposition flux rate and the step
width but inversely proportional to the edge diffusion constant DE . In fact, for small
edge Péclet numbers, both systems are stable for all wavenumbers. Note that the
Bales–Zangwill-type instability of a step edge [1] is not present due to the exclusion
of asymmetry in boundary attachment and the inclusion of edge-atom diffusion and
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kink convection in the model.
The edge kinetics model can be directly solved in the limit of small edge Péclet

number to yield new formulas for the normal velocity and for the boundary conditions
on the adatom density. These include line tension and one-dimensional surface dif-
fusion (i.e., surface diffusion along the step edge) terms of the usual Gibbs–Thomson
type, but with parameters that come from a kinetic steady state rather than from a
thermodynamic driving force. To our knowledge, this is the first derivation of line
tension and surface diffusion from a kinetic, atomistic approach. Stability analysis for
the resulting system is contained in [8, 12,13].

Alternatively, in the infinitely fast terrace diffusion limit, the island dynamics
model with edge kinetics reduces to a simplified model that involves only the edge-
atom density and kink density on a step edge (but not the adatom density on the
terraces). We find that the dispersion relation for the original island dynamics model
with edge kinetics is qualitatively recaptured by this simplified model.

Most related works on island dynamics models start from a coarse-grained or
thermodynamic description, as opposed to the atomistic description that is the basis
for our analysis. For example, Pierre-Louis [17] formulates a model that is similar to
our island dynamics model with edge kinetics, but his model comes from a free energy
that already contains the Gibson–Thomson term. Similarly, the derivation of surface
diffusion outlined in [11] includes a Gibbs–Thomson term in the adatom boundary
condition and is similar to our approach. The review article of [19] describes different
forms of the diffusion coefficient that are appropriate for a coarse-grained description
of rough growth in various regimes.

In section 2, the general framework of the island dynamics models is formulated.
Section 3 contains the linear stability analysis for the island dynamics model with
irreversible aggregation. In section 4, the island dynamics model with edge kinetics
and its linear stability are described. Section 5 describes the limit of small edge Péclet
number, including boundary conditions and normal velocity that involve line tension
and surface diffusion terms. In section 6, a simplified model of surface diffusion
and kink convection is derived under the assumption of the infinitely fast terrace
diffusion, and its linear stability is analyzed. In section 7, conclusions of our analysis
and comparison of the different models are presented. Finally, various details are
gathered in four appendices.

2. Island dynamics models. This section provides a general formulation of an
island dynamics model applied to step-flow growth of an epitaxial thin film.

Consider a simple cubic crystal with lattice spacing a and with crystallographic
directions parallel to the x, y, and z axes. For notational convenience, nondimension-
alize spatial coordinates (x, y, z), diffusion coefficient D, number density per area ρ,
and number density per length φ as

(x, y, z)→ (x/a, y/a, z/a) spatial coordinate,(2.1)

D → D/a2 diffusion coefficient,(2.2)

ρ → a2ρ two-dimensional density,(2.3)

φ → aφ one-dimensional density.(2.4)

This is equivalent to measuring all distances in units of a or to setting a = 1.
Assume that the crystal surface consists of a periodic sequence of step edges that

are approximately straight and parallel to the y-axis, as in Figure 2.1. Each step is
one atomic layer lower than the preceding one to its left, and the steps move to the
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Fig. 2.1. The geometry of periodic step-flow growth of a crystal.

right during crystal growth. These step edges are represented as

x = X(y, t) + (2j + 1)L, j = 0,±1, . . . ,
in which X(y, t) is a smooth function and L > 0 is half of the step width. For each
point (X(y, t), y) on a step edge, let θ = θ(y, t) denote the signed angle between the
tangent of the step edge and the y-axis; i.e.,

tan θ = −∂yX, −π/2 < θ < π/2.(2.5)

The curvature κ = κ(y, t), the unit normal n = n(y, t) pointing from the upper terrace
into lower terrace, and the normal velocity v = v(y, t) of the step edge are given by

κ = ∂sθ, n = (cos θ, sin θ), v = (∂tX) cos θ,(2.6)

in which ∂s is the tangential derivative in the y-direction. Note that the sign of θ has
been changed from that used in [3] to avoid a minus sign in the definition of curvature
κ. From (2.5) and (2.6), the formulas for n and v are

n =
1√

1 + (∂yX)2
(1,−∂yX) and v =

∂tX√
1 + (∂yX)2

.(2.7)

Epitaxial growth involves deposition, diffusion, and attachment of adatoms on
the surface. Deposition is from an external source, such as a molecular beam. The
adatoms on the surface can be described by an adatom density function ρ = ρ(x, y, t),
which is assumed to be periodic in x with period 2L. Adatom diffusion on the epitaxial
surface is described by a diffusion equation of the form

∂tρ−DT∇2ρ = F for X(y, t)− L < x < X(y, t) + L,(2.8)
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in which DT and F are the terrace diffusion constant and the deposition flux rate,
respectively, after spatial nondimensionalization as in (2.1)–(2.4). For simplicity, we
have left out desorption and nucleation terms on the right-hand side of (2.8). At-
tachment of adatoms to the step edges and the resulting motion of the step edges are
described by boundary conditions at the step edges for the diffusion equation and a
formula for the step-edge velocity v.

Denote the restriction of any function w to the step edge from upper and lower
terraces as w+ and w−, respectively, as indicated in Figure 2.1. The net flux to the
step edge from upper and lower terraces is denoted as f+ = f+(y, t) and f− = f−(y, t),
respectively, in which

vρ+ +DTn · ∇ρ+ = −f+ at x = X(y, t) + L,(2.9)

vρ− +DTn · ∇ρ− = f− at x = X(y, t)− L.(2.10)

The total flux is f = f+ + f− given by

f = −v[ρ]−DT [n · ∇ρ],

in which the square bracket [ ] is defined as the difference across the step; i.e., for any
w

[w] = w+ − w−.

The principal dimensionless parameters for epitaxial growth are the ratios of flux
and diffusive coefficients, which we refer to as “Péclet numbers” by analogy with fluid
mechanics. In steady state the flux to an edge and the edge velocity are f0 = 2FL
and v0 = f0. Let PT be the terrace Péclet number and PE be the edge Péclet number,
defined as

PT = v0/DT = 2FL/DT ,(2.11)

PE = 2FL/DE ,(2.12)

in which DE is the edge diffusion constant. An additional frequently used dimension-
less parameter is

R = F/DT = PT /2L.

Different island dynamics models are distinguished by having different diffusive
boundary conditions and different normal velocity. The following is a summary of the
four island dynamics models that are analyzed in this paper, of which the fourth does
not involve an adatom density:

1. The island dynamics model with irreversible aggregation (section 3):

ρ = 0 at x = X(y, t)± L,

v = f.

2. The island dynamics model with step-edge kinetics (section 4):

f+ = DT ρ+ −DEφ at x = X(y, t) + L,

f− = DT ρ− −DEφ at x = X(y, t)− L,

v = k w cos θ,
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in which f± are defined by (2.9) and (2.10), DE is the (spatially nondimen-
sionalized) diffusion coefficient for both edge diffusion and edge detachment,
φ and k are the densities of edge-atoms and kinks, and w is the kink velocity,
defined in section 4. The velocity law given in the last equation above was
first derived in Appendix A of [9].

3. The island dynamics model with line tension and surface diffusion (section
5):

f+ = DT (ρ+ − ρ∗)− µκ at x = X(y, t) + L,

f− = DT (ρ− − ρ∗)− µκ at x = X(y, t)− L,

v = DTn · [∇ρ] + βρ∗yy + (µ/DE)κyy,

in which κ is curvature and ρ∗, β, and µ are defined in section 5.
4. The infinitely fast terrace diffusion limit (section 6):

v = l1DEφk cos θ,

in which l1 is a constant defined in section 6.

3. Island dynamics with irreversible aggregation. The island dynamics
model with irreversible aggregation for the periodic step-train problem consists of the
following diffusion equation, boundary conditions, and velocity law:

∂tρ−DT∇2ρ = F for X(y, t)− L < x < X(y, t) + L,(3.1)

ρ = 0 at x = X(y, t)± L,(3.2)

v = −DTn · [∇ρ] ,(3.3)

in which the adatom density ρ = ρ(x, y, t) is assumed to be periodic in x with period
2L, and v is the normal velocity defined in (2.6). For simplicity, the term v[ρ] in the
flux f is omitted, since it is small for large values of DT /F that typically occur in
molecular beam epitaxy (MBE).

A steady planar solution of (3.1)–(3.3) is given by

X0(y, t) = v0t,(3.4)

v0 = 2FL,(3.5)

ρ0 = b0 + b1x̃+ b2e
−PT x̃,(3.6)

x̃ = x− v0t,(3.7)

in which

b0 = (1/2) coth(PTL), b1 = − (2L)−1
, b2 = − (2 sinh (PTL))

−1
.

Next we perform linear analysis for perturbations of this planar solution. Set

X = X0 + εX1, ρ = ρ0 + ερ1, n = n0 + εn1, v = v0 + εv1,

where ε is a parameter small in magnitude. By (2.7), the unit normal is n1 =
(0,−∂yX1) and the normal velocity is v1 = ∂tX1. The linearized equations for
ρ1 = ρ1(x̃, y, t) are

∂tρ1 − v0∂x̃ρ1 −DT∇2ρ1 = 0 for − L < x̃ < L,(3.8)

ρ1 +X1ρ
′
0 = 0 at x̃ = ±L,(3.9)

∂tX1 = −DT [∂x̃ρ1]−DTX1 [ρ
′′
0 ] ,(3.10)
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where the jumps are defined using the limiting values at ±L. These equations are
derived using perturbation theory for a free boundary, as described in Appendix A.

Principal mode solutions (X1, ρ1) have the form

X1 = X̂1e
ωt+ily and ρ1 =

(
ρ̂+eD̂T +x̃ + ρ̂−eD̂T −x̃

)
eωt+ily,

where l is the wavenumber and X̂, ρ̂+, ρ̂−, D̂T +, D̂T−, and ω are all constants. For
these solutions, (3.9) and (3.10) are equivalent to

ρ̂+eD̂T +L + ρ̂−eD̂T −L + X̂1ρ
′
0(L) = 0,

ρ̂+e−D̂T +L + ρ̂−e−D̂T −L + X̂1ρ
′
0(−L) = 0,

ωX̂1 = −2DT

(
D̂T +ρ̂+ sinh(D̂T +L) + D̂T−ρ̂− sinh(D̂T−L)

)
−DT X̂1 (ρ

′′
0(L)− ρ′′0(−L)) ,

which imply

∣∣∣∣∣∣
eD̂T +L eD̂T −L ρ′0(L)

e−D̂T +L e−D̂T −L ρ′0(−L)

−2DT D̂T+ sinh(D̂T+L) −2DD̂T− sinh(D̂T−L) −DT (ρ′′0 (L) − ρ′′0 (−L)) + ω

∣∣∣∣∣∣ = 0.

This is equivalent to

{
coth(D̂T +L)− coth(D̂T−L)

}
{DT (ρ

′′
0(L)− ρ′′0(−L)) + ω}(3.11)

+DT

(
D̂T− − D̂T +

)
· (ρ′0(L) + ρ′0(−L))

+DT (ρ
′
0(L)− ρ′0(−L))

{
D̂T + coth(D̂T−L)− D̂T− coth(D̂T +L)

}
= 0.

Similarly, insertion of ρ1 into (3.8) leads to

DT D̂T
2

+ + v0D̂T + − (
ω +DT l

2
)
= 0,(3.12)

DT D̂T
2

− + v0D̂T− − (
ω +DT l

2
)
= 0.(3.13)

Equations (3.11)–(3.13) determine D̂T + = D̂T +(l), D̂T− = D̂T−(l), and the growth
rate ω = ω(l).

Proposition 3.1. For the island dynamics with irreversible aggregation, the
growth rate ω = ω(l) satisfies

ω = ω0l + o(l) as l → ∞,(3.14)

where

ω0 = DT (ρ
′
0(L) + ρ′0(−L)) > 0.

Proof. Observe from (3.11) that ω = ω(l) is of order not greater than O(D̂T±(l)).
However, by (3.12) and (3.13), D̂T + and D̂T− are the two roots of the same quadratic
equation. Hence,

D̂T + + D̂T− = − v0

DT
and D̂T +D̂T− = −ω +DT l

2

DT
.
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Consequently, both D̂T + and D̂T− have the leading order terms l and −l, respectively.
By examining the leading order term in (3.11), we obtain the desired asymptotic
expansion (3.14) by a series of calculations. Finally, a direct verification using (3.4),
(3.5), and (2.11) leads to

ρ′0(L) + ρ′0(−L) =
PTL cosh(PTL)− sinh(PTL)

L sinh(PTL)
> 0.

The proof is complete.
Our analysis shows that the irreversible aggregation model of island dynamics is

mathematically ill-posed. However, the instability of the step-edge motion predicted
by the model is weak, since the growth rate ω depends on the wavenumber l linearly
up to the leading order, and since the coefficient, ω0, of the leading order term can be
shown to be v0

(
PTLv0/3 +O((PTL)

3)
)
in the small terrace Péclet number asymptotic

expansion. In fact, for the quasi-steady system—the system obtained by dropping
the term ∂tρ in (3.1)–(3.3)—one can show easily that the growth rate is ω = 0. In
section 5, we propose more physically acceptable boundary conditions derived from
the step-edge kinetics to replace the irreversibility condition in this model.

4. Island dynamics with the kinetic edge model.

4.1. The kinetic edge model. The kinetic edge model of island dynamics was
first developed in [3]. It involves a statistical description of the crystalline structure
of a step edge, including the edge-atom density φ = φ(y, t) and the kink density
k = k(y, t). Edge-atoms are atoms with a single in-plane neighbor along the step;
kinks are atoms with two in-plane neighbors. Kinks are of two types—right-facing
kinks and left-facing kinks—the densities of which are denoted by kr and k�. The
total kink density and the relation between the kink density and the normal angle are

kr + k� = k,(4.1)

kr − k� = tan θ,(4.2)

as determined by [2].
The kinetic edge model consists of a diffusion equation for the edge-atom density

φ and a convection equation for the kink density k

∂tφ−DE∂2
sφ = f+ + f− − f0,(4.3)

∂tk + ∂s(w(kr − k�)) = 2(g − h).(4.4)

In (4.3), DE is the edge diffusion coefficient, f± are the net fluxes to the edge from
terraces as defined in (2.9) and (2.10), and f0 is the net loss term due to the attachment
of edge-atoms to kinks. In (4.4), w is the kink velocity, and g and h represent,
respectively, the creation and annihilation of left-right kink pairs. Note that left-
facing kinks and right-facing kinks move in opposite directions with velocity w and
−w, respectively.

The quantities f+, f−, f0, w, g, h, and v are determined by the following consti-
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tutive relations:

f+ = DT ρ+ −DEφ,(4.5)

f− = DT ρ− −DEφ,(4.6)

f0 = v (φκ+ 1) = v(1− φXyy),(4.7)

w = l1DEφ+DT (l2ρ+ + l3ρ−) = l123DEφ+ l2f+ + l3f−,(4.8)

g = φ (m1DEφ+DT (m2ρ+ +m3ρ−)) = φ(m123DEφ+m2f+ +m3f−),(4.9)

h = krk� (n1DEφ+DT (n2ρ+ + n3ρ−)) = krk�(n123DEφ+ n2f+ + n3f−),(4.10)

Xt = v = wk cos θ,(4.11)

where DT is the (diffusion) hopping rate of an adatom on a terrace, DE is the (diffu-
sion) hopping rate of an edge-atom along or off an edge, and all li,mi, ni (i = 1, 2, 3)
are nonnegative numbers. The geometric parameters li,mi, ni count the number of
paths from one state to another; cf. [3] for details. Here, these parameters are general-
ized to include a factor relating the macroscopic density ρ or φ to the local density of
adatoms or edge atoms at a specific site. For convenience, we have used the notation

qij = qi + qj and qijk = qi + qj + qk

for q = l,m, or n. The constitutive laws (4.5)–(4.10) have been simplified by omission
of terms that are insignificant for the kinetic steady-state solutions of relevance to
step-flow growth. The neglected terms are physically important, however, since they
are necessary for detailed balance and for equilibrium solutions; they are included in
the more complete analysis of [3].

The relations (4.5), (4.6), and (4.8)–(4.10) are determined by a mean field theory
[3]. Equation (4.7) is derived from the conservation of mass [3], and (4.11) comes
from counting adatoms as part of the crystal once they have attached to a kink;
cf. Appendix A in [9]. Note that for simplicity a number of physical effects have
been neglected. They include the desorption of adatoms into vapor, the nucleation
of islands on steps, and the Ehrlich–Schwoebel effect [7,21,22]. In [3] the parameters
li, mi, and ni are fixed to be (l1, l2, l3) = (2, 2, 1), (m1,m2,m3) = (2, 4, 2), and
(n1, n2, n3) = (2, 3, 1), which follow from a simple geometric counting argument, but
in the present work they are allowed to be arbitrary parameters.

4.2. Quasi-steady island dynamics with the kinetic edge model. For
simplicity in the subsequent analysis, consider the “quasi-steady” island dynamics
model consisting of the kinetic edge model (4.1)–(4.11), combined with quasi-steady
adatom diffusion equation

−DT∇2ρ = F for X(y, t)− L < x < X(y, t) + L,(4.12)

DTn · ∇ρ+ = −f+ at x = X(y, t) + L,(4.13)

DTn · ∇ρ− = f− at x = X(y, t)− L.(4.14)

We also consider the “steady” island dynamics model that is obtained by replacing
(4.3) and (4.4) in the quasi-steady system by

−DE∂2
sφ = f+ + f− − f0,(4.15)

∂s(w(kr − k�)) = 2(g − h).(4.16)

In the steady system, dynamics is retained only in the equation for the step-edge
position X.
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4.3. Planar steady-state solution. Let X0(y, t) = v0t define the step-edge
position, where v0 > 0 is a constant. The corresponding angle, curvature, and normal
are θ0 = 0, κ0 = 0, and n0 = (0, 1), respectively. Assuming that the adatom density
ρ0 is independent of y and that both the edge-atom density φ0 and the kink density
k0 are constants, we obtain then from (4.3)–(4.14) the following steady-state solution:

X0(y, t) = v0t,(4.17)

v0 = 2FL,(4.18)

ρ0(x, t) = − F

2DT

(
(x− v0t)

2 − L2
)
+

DEφ0 + FL

DT
(4.19)

for |x− v0t| < L,

f00 = 2f+0 = 2f−0 = 2FL,(4.20)

k0 =
2FL

w0
,(4.21)

w0 = l123DEφ0 + l23FL,(4.22)

g0 = φ0(m123DEφ0 +m23FL),(4.23)

h0 =
1

4
k2
0(n123DEφ0 + n23FL),(4.24)

g0 = h0.(4.25)

Note that the last equation determines φ0.
In [3], the solution of these equations was found to scale with ε defined as

ε = P
1/3
E(4.26)

in which PE is the edge Péclet number defined in (2.12). This is described more
precisely in the following proposition, the proof of which is presented in Appendix B.

Proposition 4.1. Suppose l123 
= 0 and m123 
= 0. Then

φ0 =

(
n123

4l2123m123

)1/3

ε2 +O(ε3) as ε → 0,(4.27)

k0 =

(
l123n123

4m123

)1/3

ε+O
(
ε2
)

as ε → 0.(4.28)

Suppose l23 
= 0, m23 
= 0, and n23 
= 0. Let

σ0 =
n23

l223m23
and σ1 = 2σ

2
0

(
n1

n23
− m1

m23
− 2l1

l23
− 2

)
.(4.29)

Then

φ0 → σ0 and k0 → 2/l23 as ε → ∞.(4.30)

Moreover, if σ1 < 0, then φ0 is a strictly increasing function of ε in (0,∞); if σ1 > 0,
then there exists a value ε0 > 0 such that φ0 is a strictly increasing function of ε for
0 < ε < ε0.

We remark that the case where l23 = m23 = n23 = 0 is included in our simplified
model in section 6 below; cf. (6.4). In Figure 4.1, we plot the graph of φ0 and k0

as functions of ε = P
1/3
E with (l1, l2, l3) = (2, 2, 1), (m1,m2,m3) = (2, 4, 2), and

(n1, n2, n3) = (2, 3, 1), which are the parameters used in [3] and satisfy σ1 < 0.
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Fig. 4.1. The steady-state edge-atom density and kink density as functions of ε = P
1/3
E with

(l1, l2, l3) = (2, 2, 1), (m1,m2,m3) = (2, 4, 2), and (n1, n2, n3) = (2, 3, 1). The corresponding top
and bottom plots differ only by scales.

4.4. Linear stability analysis for island dynamics with the kinetic edge
model. Consider a perturbation around the steady planar solution, defined as

(X, ρ, φ, k, θ, κ,n, v, f±, f0, w, g, h)

= (X0, ρ0, φ0, k0, θ0, κ0,n0, v0, f±0, f00, w0, g0, h0)

+ ε(X1, ρ1, φ1, k1, θ1, κ1,n1, v1, f±1, f01, w1, g1, h1),

where ε is a parameter small in magnitude. Equations (2.5), (2.6), (4.1), and (4.2)
imply

θ1 = −∂yX1, κ1 = ∂sθ1, n1 = (0, θ1), v1 = ∂tX1,(4.31)

k�kr =
1

4

(
(k� + kr)

2 − (k� − kr)
2
)
=
1

4

(
k2 − tan2 θ

)
=
1

4
k2 +O

(
ε2
)
.(4.32)

Now, inserting all the above expansions into (4.3)–(4.14), and using (4.17)–(4.25),
(4.31), and (4.32), we obtain the following linearized system:

∇2ρ1 = 0 for |x− v0t| < L,(4.33)

DT∂xρ1+ − FX1 + f+1 = 0 at x = v0t+ L,(4.34)

DT∂xρ1− − FX1 − f−1 = 0 at x = v0t− L,(4.35)

∂tφ1 −DE∂2
yφ1 = f+1 + f−1 − f01,(4.36)

∂tk1 − w0∂
2
yX1 = 2(g1 − h1),(4.37)
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with the constitutive relations

f+1 = DT ρ1+ −DEφ1 − FLX1,(4.38)

f−1 = DT ρ1− −DEφ1 + FLX1,(4.39)

f01 = −v0φ0∂
2
yX1 + ∂tX1,(4.40)

w1 = DT (l2ρ1+ + l3ρ1−) + l1DEφ1 + (l3 − l2)FLX1,(4.41)

g1 = DTφ0(m2ρ1+ +m3ρ1−) + (m1DEφ0 + g0/φ0)φ1(4.42)

+ (m3 −m2)FLφ0X1,

h1 =
1

4
DT k

2
0(n2ρ1+ + n3ρ1−) +

1

4
n1DEk2

0φ1 +

(
2h0

k0

)
k1(4.43)

+
1

4
(n3 − n2)FLk2

0X1,

∂tX1 = w0k1 + k0w1,(4.44)

where ρ1+ and ρ1− denote the restriction of ρ1 at x = v0t + L and x = v0t − L,
respectively.

The linearized system for the steady system (4.5)–(4.16) is the same, except that
the two time derivative terms ∂tφ1 and ∂tk1 are dropped from (4.36) and (4.37),
respectively.

Dispersion relation. We seek solutions to the linearized system (4.33)–(4.44)
of the form

ρ1 = (r̂1 cosh(lx) + ŝ1 sinh(lx)) e
ωt+ily,(4.45)

(X1, φ1, k1) = (X̂1, φ̂1, k̂1)e
ωt+ily,(4.46)

where l is the wavenumber and r̂1, ŝ1, X̂1, φ̂1, and k̂1 are constants. Here, ω is
the growth rate, which depends on wavenumbers l. This dependence—the dispersion
relation ω = ω(l)—is determined by a cubic equation for the quasi-steady case and
a linear equation for the steady case; cf. (C.1) and (C.2). So there are three growth
rates ω (possible complex values) for the quasi-steady case. The dispersion relation
for both cases is analyzed in Appendix C. In particular, its asymptotic behavior for
large and small wavenumbers is described as follows.

Asymptotic analysis. Denote for each wavenumber l ≥ 0 by ω = ω(l) the
growth rate (i.e., the root of the linear equation (C.2)) for the steady case and by
ω1 = ω1(l), ω2 = ω2(l), and ω3 = ω3(l) the growth rates (i.e., the three roots of the
cubic equation (C.1)) for the quasi-steady case. Assume that ω1(l) is always real and
that ω1(0) = 0.

Proposition 4.2. For the steady system, we have

ω(l) = −v0φ0l
2 +O

(
l4
)

as l → 0,(4.47)

ω(l) = −v0w0

4h0
l2 +O (1) as l → ∞.(4.48)

For the quasi-steady system, we have

ω1(l) = −v0φ0l
2 +O

(
l4
)

as l → 0,(4.49)
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and

ω1(l) = −DEl2 +O(l),

ω2(l) = R0 + iw0l +O
(
l−1

)
,(4.50)

ω3(l) = R0 − iw0l +O
(
l−1

)
,

as l → ∞, where i =
√−1 and

R0 =
1

4
DEk0 ((l3 − l2 − n23)PE − 2n123φ0 − 2l1PEφ0) .(4.51)

Moreover, R0 < 0 for small edge Péclet number PE. A sufficient condition for R0 < 0
for all PE > 0 is that

l3 − l2 − n23 ≤ 0,(4.52)

and a necessary condition for R0 < 0 for all PE > 0 is that

(l3 − l2 − n23)l
2
23m23 − 2l1n23 ≤ 0.(4.53)

The proof of these results is given in Appendix D.

5. Kinetic derivation of line tension and one-dimensional surface dif-
fusion. As shown below, the kinetic edge model in the limit of small edge Péclet
number yields a theory that is nearly as simple as the irreversible aggregation model.
The asymptotic assumptions that underline this derivation are mathematically rather
than physically based; i.e., they come from a “distinguished limit” rather than from
a characterization of the size of the external sources that drive the problem.

5.1. Asymptotic expansion for small Péclet number. Consider the limit-
ing adatom densities ρ±, the fluxes f±, and the curvature κ = −Xyy to be parameters
that are determined away from the boundary. Then the main equations are (4.3),
(4.4), and (4.11) for φ, k, and v, respectively. In the scaling detailed below, the angle
θ is of size ε3/2 so that cos θ ≈ 1; for simplicity, this approximation will be used from
the beginning. Use the relations (4.5)–(4.10) to eliminate ρ±, f0, w, g, and h, and
write the resulting equations as

f+ + f− − v = vφκ+ φt −DEφyy,(5.1)

2m123DEφ2 − 1

2
n123DEk2φ = −2φ(m2f+ +m3f−) +

1

2
k2(n2f+ + n3f−)

+ kt −
((v

k

)
Xy

)
y
,(5.2)

v − l123DEφk = k(l2f+ + l3f−).(5.3)

From the steady-state solution of section 3, the governing parameters in this

system are ε = P
1/3
E , as defined in (4.26), and f̄ = 2LF . The steady-state solution

from section 4 shows that

(k, φ, v, f±) = (εk′, ε2φ′, f̄v′, f̄f ′
±).

As shown below, the distinguished limit is

κ = ε2κ′,

Y = ε−1/2Y ′.
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Since κ = −Xyy, this implies that X = εX ′ and also that θ = O(ε3/2) as stated
earlier. In addition, the dispersion relation from Proposition 3.1 shows that the time
scale is T = ω−1 = (−vφ22)−1 = (−f̄v′ε2φ′Y −2)−1 = O(f̄−1ε−3); i.e.,

T = f̄−1ε−3T ′.

Dividing (5.1) and (5.3) by f̄ , and dividing (5.2) by DEε4 = f̄ ε, we obtain

f ′
+ + f ′

− − v′ = ε4v′φ′κ′ + ε5φ′
t′ − φ′

y′y′ ,

2m123φ
′2 − 1

2
n123k

′2φ′ = −2εφ′(m2f
′
+ +m3f

′
−) + ε

1

2
k′2(n2f

′
+ + n3f

′
−)

+ ε3k′t′ −
((v

k

)
X ′

y′
)
y′
,

v′ − l123φ
′k′ = εk′(l2f ′

+ + l3f
′
−).

Notice that cos θ = (1 + tan2 θ)−1/2 = (1 +X2
y )

−1/2 = 1 + O(ε3). It follows that, to
leading order (i.e., ignoring terms of size O(ε)), v′, k′, and φ′ are given by

v′ = f ′
+ + f ′

− + φ′
y′y′ ,(5.4)

k′ = (l123φ′)−1v′,(5.5)

2m123φ
′2 − n123

2l2123
φ′−1

v′2 = −((l123φ′)X ′
y′)y′ .(5.6)

The result is more transparent if X ′ = O(δ) and Y ′ = O(1/δ) (i.e., X = O(δε)
and Y = O(δ−1ε−1/2)), in which ε � δ � 1, so that the previous equations (5.4)–
(5.6) can be linearized, but additional terms of size O(ε) from above are not required.
Then φ′ and v′ are given by

φ′ =
(

n123

4m123l2123

)1/3

(f ′
+ + f ′

−)
2/3 − l123

6m123
X ′

y′y′ ,(5.7)

v′ = f ′
+ + f ′

− + φ′
y′y′ .(5.8)

5.2. Boundary conditions and velocity with line tension and one-
dimensional surface diffusion. The boundary conditions for ρ from the kinetic
edge model are (cf. (4.13)–(4.14), (4.5), and (4.6))

−DTn · ∇ρ+ = DT ρ+ −DEφ,

DTn · ∇ρ− = DT ρ− −DEφ.

From these equations, we then obtain the new boundary conditions from (5.7) and
the interface velocity from (5.8), after returning to the unprimed variables, as

−DTn · ∇ρ+ = DT (ρ+ − ρ∗)− µκ,(5.9)

DTn · ∇ρ− = DT (ρ− − ρ∗)− µκ,(5.10)

v = (f+ + f−) + βρ∗yy + (µ/DE)κyy,(5.11)
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where

ρ∗ =
(

n123

4m123l2123

)1/3
DE

DT
(f+ + f−)

2/3
,

µ =
l123
6m123

DE ,

β =
DT

DE
,

κ = −Xyy.

The boundary conditions (5.9) and (5.10) with a reference density ρ∗ and a line
tension term µκ are of Gibbs–Thomson form, and the velocity formula (5.11) has
the surface diffusion term (µ/DE)κyy. Note, however, the ρ∗ is a steady-state value
from [3], rather than the equilibrium value ρeq = a−2(DK/DT ) in which DK is the
hopping rate from a kink [2,3]. The coefficient µ comes from a transition barrier energy
and is unrelated to the thermodynamic value µeq = D−1

T ρeqΓ [18] with Γ = γa2/(kBT )
in which γ is step stiffness, kB is Boltzmann’s constant, and T is temperature. The
term βρ∗yy in the velocity formula (5.11) includes the effect of edge diffusion. To
the best of our knowledge, this derivation, of Gibbs–Thomson form in the adatom
boundary conditions and the surface diffusion term in the velocity, is the first that is
based on microscopic (i.e., atomistic) dynamics, rather than thermodynamics.

6. The infinitely fast terrace diffusion limit. Assume that the adatoms
diffuse infinitely fast and attach uniformly to step edges. Then the adatom density is
ρ = 0 on steps, and the total flux to a step edge is

f = f+ + f− = 2FL.

Assume also that there is no detachment of atoms from an edge or a kink to a step.
Then the original island dynamics model with step-edge kinetics is simplified to the
following model—the simplified model of one-dimensional surface diffusion and kink
convection with infinitely fast terrace diffusion limit

∂tφ−DE∂2
sφ = 2FL− v (φκ+ 1) ,(6.1)

∂tk − l1DE∂s(φ∂yX) = 2m1DEφ2 − 1

2
n1DEφk2 +

1

2
n1DEφ(∂yX)

2,(6.2)

v = l1DEφk cos θ,(6.3)

where DE is the edge diffusion constant and the coefficients l1, m1, and n1 are positive
constants. This system involves only a moving step edge represented by the curve
x = X(y, t), the edge-atom density φ(y, t), and the kink density k(y, t).

The steady-state solution for this system is given by

X0(y, t) = v0t, v0 = 2FL, φ0 =
n1

4m1
k2
0, k0 =

(
4m1

l1n1
PE

)1/3

.(6.4)

The linearized system around this steady-state solution is given by

∂tφ1 −DE∂2
yφ1 + ∂tX1 − v0φ0∂

2
yX1 = 0,(6.5)

1

2
n1DEk2

0φ1 − ∂tk1 − n1DEφ0k0k1 + l1DEφ0∂
2
yX1 = 0,(6.6)

l1DEk0φ1 + l1DEφ0k1 − ∂tX1 = 0.(6.7)
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The existence of a nontrivial periodic solution (X1, φ1, k1) of the form (4.46) leads to
the dispersion relation ω = ω(l) that is determined by

(ω/DE)
3
+ (l2 + n1PE/l1 + l1k0) (ω/DE)

2

+
(
(PEn1/l1 + P 2

E + l21φ
2
0)l

2 + (3/2)n1PEk0

)
(ω/DE)

+ ((3n1/2l1)P
3
El2 + l21φ

2
0l

4) = 0.(6.8)

If we drop the terms ∂tφ and ∂tk in (6.1) and (6.2), respectively, we obtain the
corresponding steady system

−DE∂2
yφ = 2FL+ v (φ∂yθ − 1) ,(6.9)

−l1DE∂y(φ∂yX) = 2m1DEφ2 − 1

2
n1dφk

2 +
1

2
n1DEφ(∂yX)

2,(6.10)

v = l1DEφk cos θ.(6.11)

This system has the same steady-state solution as that for the unsteady system (6.1)–
(6.3); cf. (6.4). The corresponding linearized system can be obtained by dropping the
two terms ∂tφ1 and ∂tk1 in (6.5)–(6.7). The dispersion relation in this case can be
obtained explicitly as

ω(l) = − l1DEφ0l
2
(
2l1l

2 + 3n1PEk2
0

)
n1k0 (2l2 + 3l1k0)

.(6.12)

Notice that the dispersion relation for both the steady and unsteady systems of
this model is of the form

ω = DET (PE , l)

with T a function of two variables.
Denote for each wavenumber l ≥ 0 by ω1 = ω1(l), ω2 = ω2(l), and ω3 = ω3(l)

the three roots of the cubic equation (6.8). Assume that ω1(l) is always real and that
ω1(0) = 0. The following proposition gives the asymptotics of the dispersion relation
for both small and large wavenumbers; its proof is similar to and much simpler than
that for Proposition 4.2, and it is therefore omitted here.

Proposition 6.1. For the steady system, we have

ω(l) < 0 ∀l > 0

and

ω(l) = −v0φ0l
2 +O

(
l4
)

as l → 0,

ω(l) = −v0w0

4h0
l2 +O (1) as l → ∞.

For the unsteady system, we have

ω1(0) = 0, Re (ω2(0)) < 0, Re (ω3(0)) < 0,

ω1(l) = −v0φ0l
2 +O

(
l4
)

as l → 0,

and

ω1(l) = −DEl2 +O(1),

ω2(l) = r0 + iw0l +O
(
l−1

)
,

ω3(l) = r0 − iw0l +O
(
l−1

)
,
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as l → ∞, where i =
√−1 and

r0 = −1
2
DEPE

(
PE +

n1

l1

)
< 0.

By comparing Propositions 4.2 and 6.1, we see that the linear stability for both
the original island dynamics model with step-edge kinetics and the simplified model
with the infinitely fast terrace diffusion limit are similar. In particular, the dispersion
relations for both of the corresponding steady systems are exactly the same in the
limits of large and small wavenumber l. The origin of these similarities is that (C.1),
which determines the growth rate ω for the edge kinetic model, does not contain the
terrace diffusion constant DT ; cf. the first five equations in Appendix C. This is due
to the omission of the kinetic asymmetry and the use of the diffusion constant DT as
the attachment rate in the model.

7. Conclusions. We have rigorously analyzed four island dynamics models for
step-flow growth. The irreversible aggregation model is linearly unstable, but the
instability is weak. Since this model has the simplest boundary conditions, it can
be used in combination with numerical stabilization techniques [5] for simulation of
epitaxial growth. The edge kinetic model includes more physics, such as the edge dif-
fusion and kink convection, and therefore is more complicated. But our analysis shows
that it is linearly stable and that, in the large Péclet number limit, it leads to the
Gibbs-Thompson term in the adatom boundary condition and the one-dimensional
surface diffusion term in the step-edge velocity. These boundary conditions and veloc-
ity, together with the adatom diffusion equation, form an improved island dynamics
model. Finally, a simplified model for the step-edge dynamics that does not involve
the adatom density is derived from the kinetic edge model in the limit of infinitely fast
terrace diffusion. The linear stability analysis of the new model confirms our analysis
for the more complicated edge kinetic model.

Appendix A. Perturbation for free boundaries. In the analysis above,
perturbation solutions are found for PDEs involving free boundaries. The method for
this analysis is briefly described here. Consider a function

u = u(x, t, ε) = u0 + εu1 + · · ·
satisfying u = 0 at

x = X(t, ε) = X0 + εX1 + · · · ,
where ε is a parameter small in magnitude. This boundary condition is then

0 = u(X(t, ε), t, ε) = u0(X0(t), t) + ε (u1(X0(t), t) +X1∂xu0(X0(t), t)) + · · · .
It follows that the equations for u0 and u1 are

u0(X0(t), t) = 0,

u1(X0(t), t) = −X1∂xu0(X0(t), t).

Appendix B. Proof of Proposition 4.1. Set for a fixed PE (i.e., fixed ε =

P
1/3
E )

H(ξ) = ξ(2m123ξ +m23ε
3)(2l123ξ + l23ε

3)2 − ε6(2n123ξ + n23ε
3) ∀ξ ∈ R.
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It follows from (4.21)–(4.25) that

H(φ0) = 8D
−3
E w2

0(g0 − h0) = 0.

However, one easily verifies that H(0) < 0, H(ξ) → +∞ as ξ → ∞, and H ′′(ξ) > 0
for all ξ ∈ R. Hence, φ0 is the unique positive solution of H(ξ) = 0 for a fixed ε.
Since φ0 depends only on ε, we deduce from the steady-state solution (4.17)–(4.25)
that k0, w0/DE , g0/DE , and h0/DE also depend only on ε. In particular, we have
by (4.21) and (4.22) that

k0 = 2ε
3(2l123φ0 + l23ε

3)−1.

Direct calculations based on the fact that H(φ0) = 0 for each ε > 0 lead to the
small ε asymptotics (4.27) and (4.28), and the following large ε asymptotics:

φ0 = σ0 + σ1ε
−3 +O

(
ε−6

)
as ε → ∞,(B.1)

k0 =
2

l23
− 4l123σ0

l223
ε−3 +O

(
ε−6

)
as ε → ∞,(B.2)

where σ0 and σ1 are defined in (4.29). Equations (B.1) and (B.2) imply (4.30).
Set ξ = φ0 as a function of ε. Differentiating both sides of the equation H(ξ) = 0

with respect to ε, we have by a series of calculations that

ε

3ξ
ξ′(ε) =

n23ε
9 − l223m23ε

9ξ + 4l123(2l23m123 + l123m23)ε
3ξ3 + 16l2123m123ξ

4

n23ε9 + 2l23(l23m123 + 2l123m23)ε6ξ2 + 8l123(2l23m123 + l123m23)ε3ξ3 + 24l2123m123ξ4
.

Consequently, ξ′(ε) > 0 if ξ ≤ σ0. Moreover, if σ1 < 0, then ξ′(ε) > 0 for large
ε. Otherwise, if σ1 > 0, then ξ′(ε) < 0 for large ε. These properties, together with
(4.30), imply the rest of the proposition.

Appendix C. Dispersion relation. Inserting the expressions (4.38)–(4.43),
(4.45), and (4.46) into (4.34)–(4.37) and (4.44), we get by a series of calculations that

DT (l cosh(lL) + sinh(lL)) ŝ1 − F (1 + L) X̂1 = 0,

DT (l sinh(lL) + cosh(lL)) r̂1 −DEφ̂1 = 0,

2DT cosh(lL)r̂1 −
(
2DE +DEl2 + ω

)
φ̂1 +

(−v0φ0l
2 − ω

)
X̂1 = 0,

DTGr cosh(lL)r̂1 +DTGs sinh(lL)ŝ1 +Gφφ̂1 + (Gk − ω)k̂1 +
(
GX − w0l

2
)
X̂1 = 0,

DTVr cosh(lL)r̂1 +DTVs sinh(lL)ŝ1 + Vφφ̂1 + Vkk̂1 + (VX − ω) X̂1 = 0,

where

Gr = 2m23φ0 − 1

2
n23k

2
0,

Gs = 2(m2 −m3)φ0 − 1

2
(n2 − n3)k

2
0,

Gφ = 2m1DEφ0 +
2g0

φ0
− 1

2
n1DEk2

0,

Gk = −4h0

k0
,

GX = 2(m3 −m2)FLφ0 − 1

2
(n3 − n2)k

2
0FL,
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and

Vr = l23k0,

Vs = (l2 − l3)k0,

Vφ = l1DEk0,

Vk = w0,

VX = (l3 − l2)k0FL.

Thus, there is a nonzero solution (X1, ρ1, φ1, k1) of the given form if and only if the

determinant of the coefficient matrix of the above linear system for (r̂1, ŝ1, φ̂1, k̂1, X̂1)
vanishes.

Notice that this determinant is zero if l = 0. Assume l 
= 0. After factoring
DT cosh(lL) and DT sinh(lL) from the first and second columns of the determinant,
respectively, the condition that the determinant is zero becomes

∣∣∣∣∣∣∣∣∣∣

0 l coth(lL) + 1 0 0 −F (1 + L)
l tanh(lL) + 1 0 −DE 0 0

2 0 − (
2DE +DEl2 + ω

)
0 −v0φ0l

2 − 1ω
Gr Gs Gφ Gk − ω GX − w0l

2

Vr Vs Vφ Vk VX − ω

∣∣∣∣∣∣∣∣∣∣
= 0.

(C.1)

This determines the dispersion relation ω = ω(l) for l 
= 0 for the quasi-steady system.
For the steady system, the dispersion relation ω = ω(l) for l 
= 0 is determined

similarly by

∣∣∣∣∣∣∣∣∣∣

0 l coth(lL) + 1 0 0 −F (1 + L)
l tanh(lL) + 1 0 −DE 0 0

2 0 − (
2DE +DEl2

)
0 −v0φ0l

2 − ω
Gr Gs Gφ Gk GX − w0l

2

Vr Vs Vφ Vk VX − ω

∣∣∣∣∣∣∣∣∣∣
= 0.(C.2)

A simple manipulation of the above determinants using the fact that all v0/DE ,
w0/DE , φ0, and k0 depend only on the edge Péclet number PE shows that these
dispersion relations are of the form

ω(l) = DES (L,PE , l) ,

where S is a function of three variables. In particular, the dispersion relation is
independent of the adatom hopping rate DT for both the steady and quasi-steady
systems. This results from the exclusion of the Ehrlich–Schwoebel effect [7, 21, 22] in
our assumption.

Appendix D. Proof of Proposition 4.2. Consider first the steady system.
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By (C.2) we have ω(l) = A(l)/B(l), where

A(l) =

∣∣∣∣∣∣∣∣∣∣

0 l coth(lL) + 1 0 0 −F (1 + L)
l tanh(lL) + 1 0 −DE 0 0

2 0 − (
2DE +DEl2

)
0 −v0φ0l

2

Gr Gs Gφ Gk GX − w0l
2

Vr Vs Vφ Vk VX

∣∣∣∣∣∣∣∣∣∣
,

B(l) =

∣∣∣∣∣∣∣∣∣∣

0 l coth(lL) + 1 0 0 0
l tanh(lL) + 1 0 −DE 0 0

2a 0 − (
2DE +DEl2

)
0 1

Gr Gs Gφ Gk 0
Vr Vs Vφ Vk 1

∣∣∣∣∣∣∣∣∣∣
.

By expanding A(l) and B(l) along the first row and the last column, respectively, we
get that

A(l) = v0φ0q0l
2 +O(l4) and B(l) = −q0 +O(l2) as l → 0,

where

q0 =

∣∣∣∣∣∣
1 −DE 0
Gr Gφ Gk

Vr Vφ Vk

∣∣∣∣∣∣ = 4l123DEh0 + 2m123DEφ0w0 +
1

2φ0
n23k

2
0w0FL > 0,

and that

A(l) = DEw2
0l

6 +O(l4) and B(l) = DEGkl
4 +O(l2) as l → ∞.

These imply (4.47) and (4.48).
Consider now the quasi-steady system. Notice first that ω1(l) → ω1(0) = 0 as

l → 0. By a series of calculations, we get from (C.1) that

q0
(
ω1(l) + v0φ0l

2
)
+O

(
l4
)
+O

(
l2ω1(l)

)
+O

(
ω1(l)

2
)
= 0 as l → 0,

implying (4.49).
Observe from (C.1) that |ω(l)| → ∞ as l → ∞. A simple manipulation of the

determinant (C.1) leads to

∣∣∣∣∣∣
− (
2DE +DEl2 + ω

)
0 −v0φ0l

2 − ω
Gφ Gk − ω GX − w0l

2

Vφ Vk VX − ω

∣∣∣∣∣∣+O(l|ω|) +O
(|ω|2/l) = 0

for large l. Consequently,

ω3 +DEl2ω2 + (2DE + Vφ −Gk − VX)ω
2 +

(
w2

0 −DEGk −DEVX + Vφv0φ0

)
l2ω

+DEw2
0l

4 +O(l|ω|) +O
(|ω|2/l)+O

(
l2
)
= 0 as l → ∞.(D.1)

It then follows immediately that there exist constants c1 > 0 and c2 > 0 such that

c1l ≤ |ω(l)| ≤ c2l
2 for large l.
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If |ω(l)|/l2 is bounded below by a positive constant for large l, then (D.1) implies that
ω(l) = −DEl2 +O(l) as l → ∞.(D.2)

If, on the other hand, up to a subsequence of {l}, ω(l)/l2 → 0 as l → ∞, then we
must have that ω(l) = O(l), for otherwise we would have a contradiction to (D.1).
Therefore, the highest order terms in (D.1) are those of l2ω2 and l4. Consequently,
we have

ω(l) = R(l) + iσw0l as l → ∞,(D.3)

where R(l) is a bounded function of l and σ = 1 or −1. If we plug the above expression
back into (D.1), we then have

R(l) = R0 +O
(
l−1

)
as l → ∞,(D.4)

where R0 is defined by (4.51). Now, (4.50) follows from (D.2)–(D.4).
Finally, the fact that R0 < 0 for small edge Péclet number PE follows from (4.27)

and (4.28). The condition (4.52) is obviously sufficient for R0 < 0 for all PE . The
necessary condition (4.53) follows from (4.30).
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