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Abstract. We formulate a reduced order model for multi-layer, epitaxial

growth of a thin film. The model describes layer-by-layer growth using three

bulk (i.e. scalar) quantities per layer: average coverage ψ, average island num-

ber density n and average adatom density ρ for each layer. The model relies on

simplifying assumptions on the geometry of the islands, as well as several ap-
proximations for the physical growth processes. We present analytical results
on scaling and the relation to rate equations, as well as numerical results com-
paring this bulk model to a solid-on-solid (SOS) model and an island dynamics
model.

1. Introduction

Existing models for epitaxial growth are of several types: Atomistic models,
such as the Solid-On-Solid model [11], describe growth through the dynamics of an
atomistic representation of the crystal using kinetic Monte Carlo. Island dynamics
models [1, 2] describe the describe the growth of each atomistic layer, using a
continuum description within the layer. Continuum models, including the Villain
equation [10], describe growth by a set of PDEs for various field quantities such as
adatom density. Bulk models (or rate equations) describe growth through a set of
scalar quantities, which are averages over the spatial domain.

The primary examples of a bulk model are cluster dynamics equations [9], since
they describe the growth through the number density ns for islands of size s. They
have enjoyed great success in describing the features of precoalescent growth of a
single layer and in providing qualitative information and understanding, such as
scaling properties of the growth.

Extension of cluster dynamics to multi-layer growth has been carried out by
Lagally and Kariotis [6]. They have used the resulting model to analyze the scaling
properties of rough growth. On the other hand, this extension is rather cumber-
some, since it involves many variables, i.e. many values of k for each layer, and
many unknown capture numbers.

A related generalized set of rate equations has been formulated by Stoyanov
and Markov [7] for the special case of mound growth.
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In this paper, we formulate a new bulk model for multi-layer growth which
involves only a small number (three) of variables for each layer, and has a small
number of coefficients. This model is suitable for application of control methods to
growth. A similar model using the same variables but a different set of equations,
without a formal derivation, has been presented in [8]. Cohen [3] and Engelmann [4]
have formulated even simpler models that captures many features of MBE growth
but do not have the scaling properties described below. To distinguish between
the different types of models, we refer to this class of models as ”bulk models” and
use the term ”rate equations” to refer to models of cluster dynamics, as in [6, 9],
although this nomenclature is not standard.

First, we present a preliminary model, describing the growth of a single layer,
in Section 2. Analytic properties of this model are discussed in Section 3. The
main subject of this paper is the multi-layer growth model that is formulated in
Section 4. Numerical solutions of this model are described in Section 5. These
include computational experiments showing the dependence on physical and nu-
merical parameters, as well as numerical investigation of the scaling with respect
to R = D/F . Section 6 contains some conclusions.

This paper is dedicated to Stanley Osher on the happy occasion of his 60th
birthday. His research and his friendship have been a great inspiration.

2. Bulk Model for Single Layer Growth

Consider epitaxial growth of a single layer including the following processes:
deposition and diffusion of adatoms, nucleation of islands through collisions of
adatoms, and attachment of adatoms to the islands leading to island growth and
coalescence. For simplicity, the attachment of adatoms from on top of the islands is
neglected at this point, but it will be included in the multi-layer models formulated
below.

We describe this single-layer process through three scalar (i.e. bulk) variables:
island coverage ψ, adatom density ρ and island number density n. Precise defi-
nitions are that ψ is the average island area per substrate area, ρ is the average
number of adatoms per uncovered area of the substrate, and n is the average num-
ber of islands per substrate area. The units of ψ, ρ and n are l0, l−2 and l−2,
respectively.

The model equations are

d

dt
{ψ + a2ρ(1− ψ)} = a2F (1− ψ)(2.1)

d

dt
ψ = (fq + 2m)a2(2.2)

d

dt
n = m− c(2.3)

in which a is the lattice constant, F is the deposition flux, q is the step edge density,
f is the average flux of adatoms to a step edge, m is the nucleation rate for new
islands and c is the coalescence rate for islands.

The first of these is just conservation of mass, under the assumption that there
is no attachment to the islands from the upper terraces so that the only relevant
source of adatoms is due to deposition flux F on the uncovered terrace of area
1 − ψ. The second equation says that total island area increases due to island
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growth and island nucleation. The critical island size is assumed to be 1, so that
a single nucleation adds an area of 2a2. The island growth is just the total flux to
the islands, which is the average flux f multiplied by the total perimeter (i.e. the
step edge density) q of the islands. Finally, the third equation says that the number
density of islands increase due to nucleation and decreases due to coalescence.

In order to develop constitutive relations for f , q, m and c, we further define the
following: b is the average island radius, r is the average distance between islands, v
is the average normal velocity of boundary of a growing island. A simple definition
of r is that it is the average distance to the nearest island from a point outside the
islands. We propose the following constitutive equations for these quantities:

v = fa2(2.4)

f = Dρ(r−1 + b−1)(2.5)

m = Dρ2(1− ψ).(2.6)

c = vn/r(2.7)

b =
√

ψ/n(2.8)

q = nb =
√

ψn(2.9)

r = b(1/
√

ψ − 1)(2.10)

in which D is the diffusion coefficient for adatoms on a terrace.
The equations for b and q come from the simple relations

ψ = nb2(2.11)

q = nb.(2.12)

To derive the formula for r, note that ψ is the ratio of an average island area to the
average substrate area per island. The average islands area is b2 and the average
substrate area is (r+ b)2, so that ψ = (b/(r+ b))2 from which this equation follows.

The coalescence rate c can be calculated as the number density n of islands
multiplied by the rate at which a given island will coalesce with another island.
This rate is the inverse time between island collisions, which is the distance between
islands r divided by the island boundary velocity v. The rate c in 2.7 can also be
interpreted as a three particle interaction between two islands and an adatom,
as follows: During coallescence, the island radius b is larger than the inter-island
distance r, so that the flux f in 2.5 is approximately f = Dρ/r. Using 2.9 and
2.10, then 2.7 becomes c = a2Dρn2(1 −

√
ψ)−2. Except for the geometric factor

involving ψ, this is just the rate a2D for hopping times the joint probability ρn2

for an adatom and 2 islands to be together.
The nucleation rate per area of the uncovered terrace is just Dρ2, since the

critical size is assumed to be 1. Since m is defined as coalescence rate per substrate
area, then it has an extra factor of 1 − ψ. The normal velocity v of an island
boundary is just the flux f of adatoms to the multiplied by the area per atom.

Finally consider the flux f to the boundary. Since this flux is due to the adatom
diffusion, then (ignoring convective effects)

(2.13) f = Dn · ∇ρ

This is approximately equal to (ignoring the logarithmic corrections in 2D) Dρ/`
in which ` is a characteristic length. The natural characteristic length is the island
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radius b for small coverage and the inter-island distance r for large coverage. So we
approximate `−1 by 1/b+ 1/r to obtain the formula above.

3. Properties of the Solution

Here a number of analytic properties of the solutions are described.

3.1. Scaling Properties for the Single Layer Model.

Define the growth parameter R = D/F , which may be called the inverse Peclet
number and is typically very large (i.e. 104 < R). Also define the total coverage
variable θ = Ft.

The main growth regime is R−1/2 << θ. In this regime, one finds that

ψ = ψ(θ) ≈ 1− eθ(3.1)

n = R−1/3ñ(θ)(3.2)

ρ = R−2/3ρ̃(θ)(3.3)

Prior to this main growth period, there is an initial transient for θ << 1 in
which

ψ = ψ(θ) ≈ θ(3.4)

n = R−1/2n̄(R1/2θ)(3.5)

ρ = R−1/2ρ̄(R1/2θ).(3.6)

These scaling properties are same as those of rate equations. In fact as described
below, the single layer model is equivalent to rate equations for small coverage.

3.2. Comparison to Rate Equations.

Set nk = density of islands containing k atoms and use θ = Ft as time variable.
Rate equations are

ṅ1 = 1− 2Rσ1n
2
1 − n1

∑

k>1

Rσknk(3.7)

ṅk = Rσk−1n1nk−1 −Rσkn1nk(3.8)

For capture numbers of σk = σ̄, these simplify to

ρ̇ = 1− 2Rσ̄ρ2 −Rσ̄ρn(3.9)

ṅ = Rσ̄ρ2(3.10)

in which ρ = n1 and n =
∑

k>1
nk.

The reduced order model is approximately equivalent to these rate equations
for small coverage θ, i.e. in the pre-coalescent regime.

4. Bulk Model for Multi-Layer Growth

The single layer model described above can be extended to a multi-layer model
by defining the variables separately for each layer. The primary variables are cover-
age ψk, number density nk and adatom density ρk. To be precise these are defined
as follows: ψk is the area of the kth layer per unit substrate area, nk is the number
of islands on top of the kth layer (i.e. of height k + 1) per unit substrate area,
and ρk is the density of adatoms per unit area on the terrace of height k− 1. This
distinction between normalization by substrate area for ψk and nk and terrace area
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for ρk is natural and usually implicit, but it is important to get the correct scaling
below.

The equation

(d/dt)ψk = (qk(f−k + f+

k ) + 2mk)a2(4.1)

(d/dt)nk = mk − ck(4.2)

(d/dt)(a−2ψk + ρk(ψk−1 − ψk)) = F (ψk−1 − ψk) + qkf
+

k − qk−1f
+

k−1
(4.3)

in which, on the terrace of level k, qk is the step edge density for islands (of height
k + 1), mk is the nucleation rate, and ck is the coalescence rate. Each of these is
defined per unit substrate area. For the boundary of an island on the kth terrace
(i.e. separating terraces of height k and the k + 1) the flux to the boundary from
the lower terrace is f−k and the flux from the upper terrace is f+

k .
As in the single layer model, for each layer k define the average normal velocity

vk of an island, the average island radius bk and the average interisland distance rk.
The constitutive equations for these quantities are the following, whose derivation
is similar to that for the single layer model:

vk = (f−k + f+

k )a2(4.4)

f+

k = Dρk+1(
r̄+
rk+1

+
b̄+
bk

)(ψk − ψk+1)(4.5)

f−k = Dρk(
r̄
−

rk
+
b̄
−

bk
)(ψk−1 − ψk)(4.6)

mk = D(ψk−1 − ψk)ρ2
k(4.7)

ck = 2c̄vknk/rk(4.8)

bk =
√

ψk/nk(4.9)

qk =
√

nkψk(4.10)

rk = bk(
√

ψk−1/ψk − 1).(4.11)

Here we assume that there is jumping up or down; i.e. attachment to an edge
from adatoms on both the upper and lower terraces adjacent to the edge. Set a = 1.
For an edge separating level k and level k+1, denote the flux from lower terrace to
the edge as fk and from upper terrace to the edge as gk+1. One can easily show the
constants F,D, r̄+, r̄−, b̄+, b̄−, c̄ are the only parameters that need to be assigned
in the model. Any other parameters could be absorbed into the definitions of the
variables. The latter five of these parameters are dimensionless.

This is a set of 3 ODEs for each level that is simulated. If the coverage ψk is
0 then there is terrace of height k, and if ψk is 1 then the k-th layer is complete.
The dynamics of the k-th layer only occur when 0 < ψk < 1, so that a layer with
ψk close to 0 or 1 is said to be inactive. We expect that there will be something
like 3 active layers at any one time.

5. Numerical Results

5.1. Multi-Layer Solutions.
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We have performed a series of computations for the multi-layer model. Typical
results are shown in Figure 1, in which we plot the ψk, nk, qk, ρk and q̄ defined by

(5.1) q̄ =

M
∑

k=1

qk.

The most instructive results are those for the total step edge density, which is
approximately equal to the intensity of a RHEED signal. Figure 1 (lower left) shows
rapid growth of q̄, followed by a series of oscillations which mark the initiation and
completion of each layer.

This description is confirmed by the plots of ψk and nk in Figures 1.

5.2. Dependence on Numerical Parameters.

There are three difficulties in numerical solution of these equations. The first
is that the system is extremely stiff, since the parameter D/F is very large. This
is easily handled using a standard stiff ODE solver such as ODE23s in Matlab.

The second difficulty is that the system has to be truncated at a finite value
of M = max k. At the top layer, the dynamics must be changed. We have done
this in the following way, which is artificial but no more so than any other method
we could propose: Treat the top layer just like the single layer equations; i.e. for
k = M set f+

M = 0 so that there is no attachment from adatoms on the layer above
layer M . The results show that the treatment of the top layer affects the layer just
below it, but does not extend much further than that.

The third difficulty is that the system has singularities near the initiation and
the completion of a layer; i.e., for ψk << 1 and for ψk−1 − ψk << 1. These
singularities make the system challenging to use in feedback control design and
simulation, and we are still investigating this. However, see [5] for some preliminary
results. We have tried various methods for controlling these singularities, and the
most effective is to cutoff the dynamics in these two regions. Set two numerical
desingularization parameters ψ̄ and λ and truncate the equations in the following
way: If ψk−1 − ψk << ψ̄, replace the system by

(d/dt)ψk = 0(5.2)

(d/dt)nk = −λnk(5.3)

(d/dt)ρk = 0(5.4)

In addition, for this k, set

(5.5) f+

k−1
= 0

i.e. do not allow any flux from layer k to layer k − 1. The reason for including the
artificial decay term λnk in the equation for nk is to ensure that nk and qk go to 0
as the layer completes. In addition if ψk << ψ̄, set

(5.6) f+

k = 0

Computational experiments show that the results, such as the total step edge den-
sity q̄ (defined in 5.1) are approximately independent of the parameters ψ̄ and λ
over a reasonable range .00001 < ψ̄ < .01 and 1 < λ < 20. This is illustrated in
the following three figures.

We have also examined the dependence on other parameters in the model.
Figure 2 shows that the results are independent of the number N of layers used in
the model, at least for the values of k with k < N/2.
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Figure 3 shows that the results are independent of the cutoff parameter ψ̄ for
a range sufficiently small values

Figure 4 shows that the results are independent of the parameter λ which is
used to artificially cutoff the nk.

The density ρk is the quantity that is most sensitive to the numerical parameters
discussed above. On the other hand, the density could be omitted from most of
the computation, since adatoms nearly go directly from deposition to attachment.
In fact, a related model including only ψk and nk provides almost the same results
as the model discussed here. It only fails when a layer is initiating. Also, we have
included ρ for comparison to rate equations.

5.3. Dependence on Physical Parameters.

Figure 5 shows the dependence on the parameter c̄ which multiplies the coales-
cence rate c. This shows that the shape of the oscillations becomes more pointed
as c̄ increases.

Figure 6 shows the dependence on the parameters b̄m which multiplies the 1/b
term in the flux rate fm. This shows that the amplitude of the oscillations is smaller
for larger values of b̄m.

Figure 7 shows the dependence on the parameters b̄p which multiplies the 1/b
term in the flux rate fp. This shows that the amplitude of the oscillations is larger
for larger values of b̄p.

Figure 8 shows the dependence on the parameters r̄m which multiplies the 1/r
term in the flux rate fm. This shows that the amplitude of the oscillations is smaller
for larger values of r̄m.

Figure 9 shows the dependence on the parameters r̄p which multiplies the 1/r
term in the flux rate fp. This shows that the amplitude of the oscillations is larger
for larger values of r̄p.

5.4. Scaling Properties for the Multiple Layer Model.

We have performed a series of computations of the multi-layer model for values
of R ranging from 103 to 108. Figure 10 (upper) presents the total step edge density
q̄ as a function of time t for different values of R on a semi-logarithmic plot. Note
that the shape of the curves is nearly independent of R except for a shift. For each
time t, we approximate q̄ by a power law function cR−α, using a least square linear
fit to log(q̄), in which c = c(t) and α = α(t). The resulting power α as a function of
time t is plotted in Figure 10. Its value is approximately 1/6 for most t, but near
the completion of each layer it is approximately 1/5. The value 1/6 is in agreement
with rate equations. The validity of the fit is demonstrated in Figure 10, in which
we plot q̄/cR−α, for each value of R.

6. Conclusions

The single layer and multi layer models formulated above have been shown
to provide qualitative agreement with results from simulation of epitaxial growth.
This model is much simpler than a full PDE model, such as island dynamics,
but it naturally extends to multiple layers. On the other hand, so far we have not
succeeded in obtaining the coarsening and roughening that accompanies multi-layer
growth.
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Figure 1. Results from multi-layer model with physical param-
eters F = .25, D = 106F , r̄+ = b̄

−
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= b̄+ = 1/16,

c̄ = 1 and with desingularization parameters λ = 10 and ψ̄ = .001.
Plotted are island coverage ψk(upper left), island number density
nk(upper right), step edge density qk(middle left), total step edge
density q̄ (middle right), adatom density ρk(lower left) and island
radius bk (lower right).
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−
= b̄+ = 1/16.
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Figure 6. Total step edge density vs. t from multi-layer model,
for various values of b̄m. The other parameters are held fixed at
r̄+ = r̄

−
= b̄+ = .1 and c̄ = 1.
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Figure 7. Total step edge density vs. t from multi-layer model,
for various values of b̄p. The other parameters are held fixed at
r̄+ = r̄

−
= b̄

−
= .1 and c̄ = 1.
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Figure 8. Total step edge density vs. t from multi-layer model,
for various values of r̄m. The other parameters are held fixed at
b̄
−

= r̄
−

= b̄+ = .1 and c̄ = 1.
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Figure 9. Total step edge density vs. t from multi-layer model,
for various values of r̄p. The other parameters are held fixed at
r̄+ = b̄

−
= b̄+ = .1 and c̄ = 1.
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Figure 10. Total step edge density q̄ vs. t from multi-layer model,
for various values of R = D/F . Linear (upper left) and semilog
(upper right) plots of q vs. t; exponent α vs. t in power law
fit q̄ ≈ cRα (middle left); q̄/(cRα) vs. t as a test of power law
fit(middle right); linear fit to log q̄ for t = 28.34 which is the time
of the best fit (lower left) and for t = 26.68 which is the time of
the worst fit (lower right). The other parameters are held fixed at
F = 0.25, r̄+ = b̄

−
= 1/8, r̄

−
= b̄+ = 1/16 and c̄ = 1.


