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Level-set method for island dynamics in epitaxial growth
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A level-set model for the simulation of epitaxial growth is described. In this model, the motion of island
boundaries of discrete atomic layers is determined by the time evolution of a continuous level-set functionw.
The adatom concentration is treated in a mean-field manner. We use this model to systematically examine the
importance of various fluctuations in the submonolayer and multilayer regimes. We find that, in the submono-
layer regime for large values ofD/F, the dominant fluctuations are associated with the spatial seeding of
islands. We also show how different microscopic mechanisms can be included into this formalism. In the
multilayer regime, our model exhibits surface roughening.
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I. INTRODUCTION

Epitaxial growth and many other phenomena of practi
interest in materials sciences occur on time and length sc
that span many orders of magnitude. The most basic phys
processes that occur during epitaxial growth occur on
atomic scale, i.e., on length scales of the order of Ångstro
and time scales that reflect the typical atomic vibration f
quencies~i.e., 10213 s). On the other hand, a typical opto
electronic device might be up to several microns in size,
its growth can take minutes or even hours. Thus, mode
epitaxial growth presents an enormous challenge to theo
ical physicists and material scientists. Moreover, some of
phenomena that occur during epitaxial growth are inhere
stochastic in nature, and an ideal model would seamle
combine the different time and length scales, but inclu
only the neccessary fluctuations.

The models that are typically used to describe epita
growth are either completely stochastic or completely de
ministic. Mean-field rate equations that were introduced
this problem1 almost 30 years ago are a set of coupled or
nary differential equations. They are easy to formulate a
easy to solve. The density of adatomsn1 and of islands of
sizes, ns , are given by equations of motion of the form

dn1

dt
5F22Ds1n1

22Dn1(
s.1

ssns , ~1!

dns

dt
5Dn1~ss21ns212ssns! for all s.1, ~2!

where F is the deposition flux,D is the surface diffusion
constant, and thess are the so-called capture numbers f
islands of sizes. However, these equations contain no spa
information, and thus do not readily yield information o
surface morphology. Moreover, the physical meaning of
input parameters in terms of the underlying atomistic p
cesses is often unclear. In spite of these drawbacks, se
results of nucleation theory have been successful in eluci
ing basic aspects of epitaxial growth. In particular, scal
results derived from nucleation theory can, under the app
0163-1829/2002/65~19!/195403~13!/$20.00 65 1954
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priate circumstances, be used to deduce microscopic pa
eters such as diffusion constants from experimen
measurements.2 But it has also been shown that the simpli
ity of such a model together with the lack of spatial inform
tion has also led to some incorrect interpretations of exp
mental data.3

Continuum models based on partial differential equatio
~PDE’s! are appropriate mainly at large time and leng
scales.4,5 By construction, features on the atomic scale a
neglected, so they are poorly suited to describe growth
this scale. However, since continuum models as well as
equations, are based on differential equations, they are a
nable to analytic treatments that can elucidate, e
asymptotic or stability properties.

An alternative to the completely analytic approaches
atomistic models that explicitly take into account the s
chastic nature of each microscopic process that may o
during epitaxial growth. They are typically implemented
the form of molecular-dynamics~MD! ~Ref. 6! or kinetic
Monte Carlo~KMC! ~Ref. 7! simulations. While MD simu-
lations are very useful for identifying relevant microscop
processes, their time and size limitations make them un
sible for studying epitaxial growth on technologically re
evant time and length scales. KMC simulations, on the ot
hand, have been used successfully to study qualitative, an
limited cases, quantitative, behavior of growth. They allo
for easy implementation of a large number of microsco
processes, whose rates are ideally obtained from fi
principles calculations.8 However, the occurrence of ver
fast rates~which is particularly relevant at higher temper
tures! ultimately limits the applicability of these methods
larger systems.

Previously, we have introduced a model to describe e
taxial growth,9,10 the island dynamics model, that might b
considered a hybrid model between continuum, PDE-ba
methods, and atomistic, stochastic methods. The nume
solution of the model is based on the level-set method,11,12

which is a general technique for simulating the motion
moving boundaries. This model allows us to describe epit
ial growth as continuous in the plane of the surface, ye
also allows us to discretely resolve each atomic laye13
©2002 The American Physical Society03-1
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Moreover, different sources of fluctuations can be isola
and studied individually.14 It is the aim of this paper to de
scribe in detail the model, justify its approximations, a
present results.

This paper is organized as follows. In Sec. II, the deta
of the model are presented. In particular, we will explain a
justify some of the approximations and choices that
made. In Sec. III, results for the submonolayer growth
gime will be discussed. We then describe how additio
atomistic processes can be included in our model in Sec
Results that pertain to the multilayer growth regime will
given in Sec. V. Finally, we will discuss the relevance of th
model and its implications for modeling epitaxial growth
Sec. VI.

II. THE MODEL

A. Equations of motion and boundary condition

The main component of our model is that a~zero thick-
ness! boundary curveGk , such as the boundary of an islan
of heightk11 can be represented by the setw5k, called the
level set, of a smooth functionw, called thelevel-set func-
tion. The boundaries of islands in the submonolayer reg
then correspond to the set of curvesw50. A schematic rep-
resentation of this idea is given in Fig. 1, where two islan
on a substrate are shown. Growth of these islands is
scribed by a smooth evolution of the functionw @cf. Figs.
1~a! and 1~b!#. The boundary curveG(t) generally has sev
eral disjoint pieces that may evolve so as to merge@Fig. 1~c!#
or split.

For a given boundary, the level-set functionw evolves
according to

]w

]t
1v•“w50, ~3!

wherev is the boundary velocity. The normal component
the velocityvn5n•v contains all the physical information o
the simulated system, wheren is the outward normal of the

FIG. 1. A schematic representation of the level-set formalis
Shown are island morphologies~left side!, and the level-set func-
tion w ~right side! that represents this morphology.
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moving boundary andv•“w5vnu“wu. The boundary veloc-
ity is computed by solving the diffusion equation for th
adatom concentrationr

]r

]t
5F1D¹2r22

dN

dt
, ~4!

where F is the deposition flux,D is the surface diffusion
constant, and the last term on the right-hand side is the
of nucleation of new islands on the surface. The velocity
the island boundaries is determined by the flux of adatom
the island boundaries, and is given by

vn5a2D~n•“r22n•“r1!. ~5!

The superscripts (1) and (2) label the contributions from
above and below the island boundary, anda is the lattice
constant. With expression~5! the shape of the islands is e
sentially circular, but it is easy to alter it to change the sha
of the islands. For example, it was shown that the veloc
can be modified to obtain square13 or triangular10 island
shapes to mimic an underlying cubic or triangular latti
structure. All the data shown in this paper are for circu
islands, but we have checked that they are essentially
same for square islands.15 Possible modifications to Eq.~5!
that effectively describe other microscopic processes suc
edge diffusion or detachment will be discussed later.

In order to solve the diffusion equation~4!, a boundary
condition needs to be specified. For the case of irrevers
aggregation, in which all atoms are adsorbed by the bou
ary, the standard continuum~absorbing! boundary condition
is

r~x,t !50 for all x with w~x,t !50,1,2, . . . . ~6!

We will show below, however, that this boundary conditio
is only valid in the limitD/F→`. Otherwise, it needs to be
corrected such thatr50 in a region around the islan
boundary that is~at least! one lattice constant wide.16 The
solution to the level-set function and the adatom concen
tion are both obtained on a numerical grid withn3n grid
points that represents a physical substrate of sizeL3L. De-
tails of the numerical implementation have been giv
elsewhere.13

B. Time dependence of island densities

For the case of irreversible aggregation, a dimer~consist-
ing of two atoms! is the smallest stable island, and the nuc
ation rate is

dNnuc

dt
5Ds1^r

2&, ~7!

where^•& denotes the spatial average ofr(x,t)2 and

s15
4p

ln@~1/a!^r&D/F#
~8!

is the adatom capture number.1,17 Please note that the nucle
ation densityNnuc is slightly larger than the island densityN,
and that the two only agree before coalescence. The pa

.
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LEVEL-SET METHOD FOR ISLAND DYNAMICS IN . . . PHYSICAL REVIEW B65 195403
eter a reflects the island shape, anda.1 for compact is-
lands. Expression~7! for the nucleation rate implies that th
time of a nucleation event is chosen deterministically. Wh
ever NnucL

2 passes the next integer value, a new island
nucleated. Numerically, this is realized by raising the lev
set function to the next level at a number of grid poin
chosen to represent a dimer. The choice of the location of
new island is described below.

We have tested carefully the validity of expression~7!
with KMC simulations. In our KMC model, adatoms a
allowed to diffuse over the surface with a diffusion consta
D. Once an adatom reaches an island edge, it can dif
along the island edge as long as it has only one nea
neighbor, but it is not allowed to detach again. This is do
to ensure compact island shapes. Thus, the rate for an
to move can be written asDedge5Dexp(2mEe/kBT), where
the environment-dependent parameterm50 for single ada-
toms, m51 for singly bonded step-edge atoms, andm5`
for higher coordinated atoms. This KMC model is also us
in this paper to validate certain level-set results. More det
of the KMC model are given in Refs. 18 and 19.

Figure 2 shows a comparison of the nucleation den
Nnuc obtained from KMC simulations with calculated islan
densities that were obtained from integrating Eq.~7! with
values forr as obtained from the simulation. The agreem
between the sets of two curves for different values ofD/F is
excellent. We note that we obtained best agreement wita
51.05 ~cf. below! in Eq. ~8! for s1.

C. Nucleation probability

While the time of nucleation is chosen deterministical
the model allows for a stochastic choice ofwhereto position
new islands. For a fixed geometry, the nucleation event
tistics are fully specified by the distribution functionP(x,t),
the probability density that the next island nucleates at p

FIG. 2. Nucleation densities as a function of coverage obtai
from KMC simulations. The dashed lines are island densities
tained by integrating the adatom density given by the simulati
using Eq.~7!, the solid lines are the actual number of islands. T
three sets of curves are forD/F5105 ~highest densities!, D/F
5106 ~intermediate! and D/F5107 ~lowest!. The simulation data
represents averages over eight lattices of sizeL51500.
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x at timet. If this distribution function were known for every
configuration of islands that arises in, e.g., a KMC simu
tion, then by selecting the next nucleation event prope
from this distribution in a level-set simulation, the ensemb
averaged island statistics would be exactly the same as t
produced by the KMC simulation. The problem, of course
that this distribution function is not known, and therefore
assumption must be made. There is a clear choice, howe
Because the adatom density is extremely low in
ensemble-averaged sense, we would expect the probab
of nucleation to be proportional tor(x,t)2, the square of the
local ~spatially dependent! adatom density that is determine
by Eq. ~4!. We refer to this nucleation scheme as probabi
tic seeding.

We have tested this assumption using KMC simulations
two artificial, but representative, geometries. The first geo
etry is a square lattice of sizeL with periodic boundary con-
ditions in one direction and a perfect sink for adatoms alo
the remaining two boundaries. The other geometry is
square lattice with periodic boundary conditions in all dire
tions and a perfect sink for adatoms at one site at the ce
of the lattice. This second situation is equivalent to a perio
array of point sinks for adatoms separated by the lattice
mensionL. The initial conditions are no adatoms on the la
tice at timet50 and a constant fluxF of adatoms for allt
.0. The two geometries correspond to the case of very la
~first case! and very small~second case! islands, with the
typical situation being in between.

It is impractical to compute the full distribution functio
P(x,t), since this would require binning the nucleatio
events that occur at each lattice site in a time intervalDt that
is small in comparison to the temporal changes inP. Instead,
we have integrated out the time dependence for allt.0 to
obtain P(x). This is done by running simulations until th
time an island nucleates, then stopping. The position
which the island nucleated is recorded and an ensemble
erage of this quantity over independent simulations is th
performed to obtainP(x). This nucleation probability mus
then be compared to the time-dependent adatom density
is calculated from independent simulations in which the a
toms do not interact. This is equivalent to solving the diff
sion equation for the adatom density with the boundary c
ditions described above and corresponds exactly to
quantity that is calculated in the level-set simulations. W
compare the nucleation probability to the adatom density
the time that is assumed for the next nucleation event in
island dynamics model

DL2E
0

t

s1^r~x,t !&2dt51, ~9!

where^r(x,t)& is again the spatially averaged adatom de
sity.

Figure 3~a! shows the nucleation probability density plo
ted as a function of the adatom density for the line s
geometry. Each data point corresponds to the average o
nucleation and adatom densities at pointsx related by the
symmetry of the system. The solid lines are a fit to a q
dratic function. These data demonstrate clearly that
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C. RATSCHet al. PHYSICAL REVIEW B 65 195403
ensemble-averaged nucleation probability density is ind
proportional to the square of the local average adatom d
sity for all values ofD/F shown. Figure 3~b! shows the same
data for the point sink geometry, where similar agreemen
found. This indicates that the assumption being used for
placement of nucleated islands in our model is independ
of island geometry. Careful examination of the fits to a f
quadratic function~i.e., a function including a constant and
linear term! show small deviations from a pure quadra
@P(r)5Ar2# form. However, these deviations are smal
for larger D/F and also go to zero as the fit is done ov
successively smaller ranges ofr. This is not surprising since
a pure quadratic form is the expected mean-field result, v
in the limit of low adatom density. We have also compar
the nulceation probability to the adatom density at seve
different times other than the one given above and find
the quadratic dependence onr2 is, in fact, valid over nearly
the entire time in which significant nucleation occurs. A ve
similar methodology has recently been used20 to investigate
the nucleation probability as a function of adatom density
geometries and boundary conditions similar to those
scribed above as well as boundary conditions correspon
to an infinite step-edge barrier. Our results are identica
those found for the case of an adsorbing boundary condi
(r50). Castellano and Politi20 also found that for the case o
an infinite step-edge barrier, the correlation betweenr2 and
P(x) breaks down; the physical interpretation for this is n
yet clear, and more work would be required for extend
our methods to cases with large step-edge barriers.

FIG. 3. Nucleation probability as a function of adatom dens
for KMC simulations with~a! the line sink geometry and~b! the
point sink geometry, both with system sizeL550. Solid lines are
fits to a quadratic function. The data represent averages over
million configurations.
19540
d
n-

is
e
nt
l

r
r

id
d
al
at

r
-

ng
o
n

t
g

The first geometry described above allows for an analy
~stationary! solution in the large-L limit:

r~x!5
F

2D
x~L2x!. ~10!

This enables us not only to validate the procedure used
perform the corresponding KMC simulations, but also to e
amine how close the system is to steady state relative to
nulceation time@given by Eq.~9!# and relate this quantita
tively to the nucleation probability. Figure 4 shows the nuc
ation probability densityP plotted as a function of positionx
for the line sink geometry. Also shown~solid line! is P0(x)
obtained from squaring the steady-state adatom density@Eq.
~10!# and properly normalizing the distribution. As would b
expected,P0(x) is independent ofD/F and the simulation
data clearly show thatP(x) approachesP0(x) for largeD/F.
From this data we conclude that the nucleation probability
independent ofD/F asD/F→` and that the system is ver
close to the stationary regime forD/F larger than 106.

In addition to the probabilistic seeding style, we test
several other seeding styles. The two that have already b
discussed in detail in Ref. 14, we refer to as random a
deterministic seeding. During random seeding, the loca
of the new island is chosen completely randomly, witho
consideration of the value of the adatom concentration. T
seeding style might be relevant, for example, when nuc
ation occurs not because two atoms need to meet, but w
~randomly distributed! surface defects act as nucleation ce
ters. In contrast, during deterministic seeding, a new islan
always seeded at the position wherer has its maximum
value. One might refer to any seeding style as probabili
where the probability is weighted with the local value ofrp.
As p increases, the seeding style becomes progressi
more deterministic. Then random seeding corresponds tp
50, probabilistic seeding top52, and deterministic seedin

ne

FIG. 4. Nucleation probability as a function of positionx for the
line sink geometry and system sizeL550. The circles, squares, an
diamonds are simulation data forD/F values 105, 106, and 107,
respectively. The solid line is the analytic functionP0(x) as de-
scribed in the text. The simulation data represent averages ove
million configurations.
3-4
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LEVEL-SET METHOD FOR ISLAND DYNAMICS IN . . . PHYSICAL REVIEW B65 195403
to p5`. Results in the submonolayer regime, and in parti
lar results that compare the different seeding styles, will
given in Sec. III.

D. Multilayer growth

We have extended the level-set model to multilay
growth, where the boundariesGk of islands of heightk11
are defined by the set of pointsx, wherew(x,t)5k @cf. Fig.
1~d!#. We emphasize that no additional input to the mode
needed to describe nucleation in higher layers. When isla
are small, the solution of the diffusion equation yields on
very small values for the adatom concentration on top
islands. Therefore, for small coverages in layerk, nucleation
in layer k11 is negligible. However, as a layerk grows and
nears completion, the adatom density on top of layerk in-
creases, leading eventually to nucleation of islands in la
k11. Results in the multilayer growth regime will be di
cussed in Sec. V. There are indications in the literature21 that
the nucleation rate for islands on top of islands might hav
different functional form. However, this seems to be relev
only in the presence of a~large! step-edge barrier. Moreove
our results shown below indicate that the nucleation r
used in our model is correct.

Snapshots of the results from a typical level-set simu
tion are shown in Fig. 5. Shown is the level-set function@Fig.
5~a!# and the corresponding adatom concentration obtai
from solving the diffusion equation~4! @Fig. 5~b!#. The is-
land boundaries that correspond to the integer levels of
5~a! are shown in Fig. 5~c!. Dashed~solid! lines represent the
boundaries of islands of height 1~2!. Comparison of Figs.
5~a! and 5~b! illustrates thatr is indeed zero at the islan
boundaries~wherew takes an integer value!.

III. RESULTS FOR SUBMONOLAYER GROWTH

All the quantitative results presented in this paper will
compared to results from a KMC simulation for irreversib
aggregation on a cubic lattice.18,19This KMC model includes
the same physical processes as the level-set model. Ad
deposition and diffusion are simulated with ratesF and D
that have the same physical meaning as described abov
addition, we included fast-edge diffusion in the KMC sim
lation, where singly bonded step edge atoms diffuse al
the step edge of an island with a rateDedge.

22 This process
has been included to obtain compact islands, since the le
set model leads to compact islands by construction.

A. Island densities

During growth of the first monolayer on a clean substra
it is possible to distinguish between the nucleation phase,
growth or aggregation phase, and the coalescence pha23

The regimes before coalescence are also often collecti
called the regime of submonolayer growth. The submo
layer growth regime has been the focus of a large numbe
studies. One reason is that it is simpler to study this gro
regime compared to the multilayer growth regime, as co
plications and additional effects due to coalescence
roughening are not relevant. Moreover, many morpholog
19540
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features of relevance in the multilayer growth regime a
connected to the morphology in the submonolayer grow
regime and atomistic processes reveal themselves in the
tistics of island sizes and morphologies.

We therefore start the discussion of the results of
level-set method by focusing on the submonolayer grow

FIG. 5. Snapshots of a typical level-set simulation. Shown ar
3D view of the level-set function~a! and the corresponding adatom
concentration~b!. The island boundaries as determined from t
integer levels in~a! are shown in~c!, where dashed~solid! lines
correspond to islands of height 1~2!.
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C. RATSCHet al. PHYSICAL REVIEW B 65 195403
regime. It is known1 that for irreversible aggregation, th
number density of islands scales according to

N.~D/F !21/3. ~11!

The island densityN is shown in Fig. 6 as a function ofD/F
obtained with our model with probabilistic seeding, as w
as with random and deterministic seeding. All data exh
the expected scaling behavior. While the data obtained w
random seeding is slightly larger, the probabilistic and de
ministic seeding style are essentially indistinguishable fr
each other. However, a detailed comparison of the time e
lution of the island densities reveals that there are system
differences between the different seeding styles. This ca
seen in Fig. 7, where the island densityN as a function of
coverageQ is shown forD/F5106. The qualitative depen
dence on the seeding style for different values ofD/F is
similar. During random seeding, the number of islands is

FIG. 6. Log-log plot of the island densityN as a function of
D/F for the different seeding styles in comparison with data o
tained from a KMC simulation.

FIG. 7. Time evolution of the island densitiesN obtained with
the different seeding styles forD/F5106.
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highest, while during deterministic seeding, the number
islands is the lowest. The explanation for this will becom
apparent below.

We also note that the island density is converged w
respect to the system size for surprisingly small system si
In Fig. 8, we show results of the time evolution of islan
densities forD/F5106 obtained with different system sizes
Clearly, the result is essentially unchanged for the island d
sities for systems of size larger than 90. This is very differ
than the behavior observed in KMC simulations, where c
vergence is only reached at much larger system sizes.24 We
speculate that this behavior is an effect of the mean-fi
treatment of the adatoms, which will be discussed in m
detail in Sec. VI. It justifies our choice of the relatively sma
lattice size ofL5180 for most of the results presented he

B. Island-size distributions

The island density discussed so far does not provide
spatial information. A quantity that provides a very use
measure of the spatial correlations on the surface is
island-size distribution. It has been shown in ma
theoretical25–27 and experimental28,29 studies that the island
size distribution scales according to

ns5
Q

sav
2 g~s/sav!, ~12!

wherens is the density of islands of sizes, sav is the average
island size, andg(x) is a scaling function.

We have shown in Ref. 14 that only the island-size dis
bution obtained with the probabilistic seeding style agre
with the one obtained from a KMC simulation, and wi
experimental data for Fe/Fe~001!.28 The size distribution ob-
tained with the random~deterministic! seeding style is sig-
nificantly broader~narrower!. As p increases, the size distri
bution becomes sharper and narrower. The reason is that
increasingp, the islands are seeded further apart from ea
other~there are fewer islands in ‘‘unfavorable’’ sites! and the
lattice is divided more efficiently. This is the reason why t

-

FIG. 8. Time evolution of the island densityN for different
system sizes withD/F5106.
3-6
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LEVEL-SET METHOD FOR ISLAND DYNAMICS IN . . . PHYSICAL REVIEW B65 195403
number of islands decreases as the parameterp increases~cf.
Fig. 7!. The observation in Fig. 4 that the nucleation pro
ability is always spatially broad, even for largeD/F, sup-
ports the conclusion that ‘‘deterministic’’ nucleation, whic
would correspond to a delta function forP(x), cannot lead to
the correct island size distribution.

We have also tested the effect of the island shape on
size distribution. Figure 9 shows a comparison of the isla
size distribution obtained from simulations with circular- a
square-shaped islands. It is evident that the size distribut
are indistinguishable. The reason is that the distribution
the capture areas is not affected at all by the shape of
islands. As discussed in Ref. 14, it is the distribution of t
capture areas that determines the distribution of the isla
sizes.

C. Capture numbers

The level-set method as described above gives us an
way to calculate the capture numbersss that are needed in
the rate equations~1!, ~2!. More precisely, thess can be
computed by monitoring the rate of aggregation of adato
to that island. Consider an island of sizes with boundaryGs .
Growth of this island, as described by the velocityvn , is due
to the migration of adatoms toward this island~and subse-
quent capture!. The rate of aggregation of adatoms is th
equal to the rate of change in area, which is expressed e
in terms of the level-set function as*Gs

vndGs . Therefore,
the capture number of this island can be expressed as

ss5

E
Gs

vndGs

Dn1
. ~13!

We emphasize that in our approach each island is allowe
grow in its own environment, and that the spatial extent
the islands is properly taken into account. The results
tained for the capture numbers are shown in Fig. 10.

FIG. 9. Scaled island-size distribution for square-shaped
circular islands. Shown is data for a coverage ofQ50.2 ML and
D/F5106. The dotted line is a guide to the eye.
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observe scaling in coverageQ and in D/F for the capture
numbers as a function of island-size, scaled by their resp
tive averages.30 Our results suggest that the capture numb
have, as a first approximation, the functional formss5as2

1bs1c ~where we obtained the best fit witha50.134, b
50.484, andc50.353). The quadratic fit is shown as a so
line in Fig. 10. A similar form was also found in recent wo
by Amar et al.31 While the quadratic term is small, it is
rather important correction to the linear fit that was pre
ously published.30 A strict linear dependence ofss on s leads
to a singularity in the island-size distribution,32 but a small
quadratic correction avoids this singularity. A more detail
analysis of the exact form of the capture numbers can
found elsewhere.33,34

The capture numbers and the capture zones are re
by35

ss'
F

Dn1
As , ~14!

whereAs is the average area of the capture zones of isla
of size s. We have verified that thess as computed by Eq
~13! and as computed by Eq.~14! are indeed in excellen
agreement.30

One can now integrate the rate equations~1!, ~2! with the
capture numbers that are shown in Fig. 10. It was shown
Ref. 32 that the resulting island-size distribution is in exc
lent agreement with one obtained from the original level-
simulation. It is essentially indistinguishable from the o
shown in Fig. 9. Thus, our level-set approach provides so
important information that is needed in the quest for inc
porating spatial information in the parameters of a me
field approach that is based on rate equations.30

D. Atomistic effects in boundary conditions

At last, we would like to comment on the validity of th
boundary condition thatr50 at the edges of islands. Thi
boundary condition implies thatr is nonzero anywhere on
the surface, except along a one-dimensional line~with no
spatial extent! along the island boundaries. This does n
take into account that adatoms typically reside on an ads

d

FIG. 10. Capture numbersss as a function of island-sizes. The
solid line is a quadratic fit to the data witha50.134,b50.484, and
c50.353.
3-7
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C. RATSCHet al. PHYSICAL REVIEW B 65 195403
tion site that has the~lateral! size of the atomic lattice con
stanta. Thus, there cannot be an adatom next to the isl
boundary within a distancea, since this atom would be par
of the island. Neglecting the spatial extent of this bound
region is a reasonable approximation in a true continu
picture, where the width of such a boundary region is sm
compared to the larger features such as islands and terr
For growth on a singular surface under typical growth co
ditions, however, the average~lateral! size of an island is
only 1 to 2 orders of magnitude larger than an atom. Th
the spatial extent of the boundary region might not be n
ligible.

We have tested the effect of the discrete size of the bou
ary region by implementing a boundary condition, wherer
50 in a region around each island that has widtha.16 Atoms
that would be deposited within this boundary region a
added to the velocity of the island boundary~to ensure mass
conservation!. The width of the boundary region might eve
be larger thana, as there are kinks and defects along a s
edge. But a choice ofa is appropriate for very compact is
lands, which corresponds to the case of fast-edge diffus
The island density obtained from this model is shown in F
11 in comparison to the original model, and also in compa
son to results obtained from KMC simulations. The new
sults agree very well with those obtained from the KM
simulations. The absolute values forN are smaller with the
new boundary condition. The reason is that there is no
significant fraction of the surface wherer50. As a result,
the nucleation rate, and hence the island densityN, de-
creases.

These results indicate that under typical growth con
tions the size of the boundary region should not be negle
in quantitativestudies; forqualitativebehavior, however, the
original boundary condition as given by Eq.~6! and typically
used in continuum models is fine. The difference between
two boundary conditions becomes smaller asD/F increases.

FIG. 11. Island densityN for different values ofD/F for the
boundary condition that includes the discrete size of the ato
lattice constant, as described in the text~solid lines!. Data is shown
in comparison with KMC results~dashed lines! and results obtained
with the original boundary condition~dotted lines!.
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The reason is simply that the relative importance of
boundary region decreases, because the average island
increases. Thus, in the limit ofD/F→`, we reach the con-
tinuum limit where the effects of the discrete size of t
lattice constant can be neglected. We have also looked a
island-size distribution obtained with this improved boun
ary condition. It is not shown here, but is indistinguishab
from the one shown in Fig. 9.

Finally, we would like to make the following observation
In order to get best agreement in a comparison of the ac
island density with the integrated island density~cf. Fig. 2!,
we chosea51.05 in Eq.~8!. A physical interpretation ofa
can be found in Ref. 17, where the radius of an island and
square root of its size are related througha. This correction
that leads to an effective radius was introduced to mim
anisotropic island shapes. For an island with radius 20a, a
51.05 implies that an effective island boundary is offset
a, the atomic lattice constant. ForD/F5106 the average
interisland spacing is approximately 20a in the precoales-
cence regime. Thus, an alternative interpretation of the ef
tive radius introduced in Ref. 17 is the atomic size effe
described in this section.

IV. ADDITIONAL ATOMISTIC PROCESSES

The model and the results discussed so far are valid
irreversible aggregation. In particular, it has been assum
that only one effective microscopic parameter is need
which is the surface diffusion constantD. This surface dif-
fusion constant might simply be the rate of hopping of
atom from one lattice site to a nearest-neighbor site. It mig
however, also be an effective parameter that describes d
sion due to different, competing mechanisms, such as h
ping and exchange. As the temperature increases, other
croscopic mechanisms might become relevant, which
easily be incorporated into our level-set framework. Here,
discuss briefly three mechanisms referred to as edge d
sion, diffusion over a step edge~often called Ehrlich-
Schwoebel barrier36!, and detachment of atoms from a ste
edge.

In a discrete, atomistic method, single~‘‘complete’’! at-
oms are attached to selected sites at certain time steps. I
absence of edge diffusion, this attachment of isolated s
edge atoms creates an instability, which is then the origin
fractal-like growth. In such atomistic models, and for ma
real systems, it can be surpressed by edge diffusion. M
precisely, edge diffusion surpresses the onset of an instab
until the length of a step edge is comparable to an e
diffusion length. This is in contrast to our model, where
fraction of an atom is attached to every site along the isla
boundary at every time step. Without island-island corre
tion, and without numerical effects, an island would, the
fore, never become unstable and grow ‘‘fingers.’’ Thus, t
mean-field treatment of the adatoms in our level-set met
can be interpreted as effectively capturing edge diffusion
practice, our model also develops instabilities that lead
fingering because of numerical instabilities and island-isla
correlations. But these instabilities develop on a very diff
ent time and length scale than in a discrete, atomistic mo

ic
3-8
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LEVEL-SET METHOD FOR ISLAND DYNAMICS IN . . . PHYSICAL REVIEW B65 195403
In particular, the size of the fingers and the time when th
start developing is determined by the numerical resolut
n/L of the physical system, while in an atomistic model t
width of the fractal fingers is intimately connected to t
atomic size and the value of edge diffusion.

However, there is no mechanism in our model that p
vides for smoothing of the island edges after the coalesce
of islands. It has been shown in a number of studies that e
diffusion has a pronounced effect on the roughening tra
tion in the multilayer growth regime.37,38Therefore, it is im-
portant to incorporate edge diffusion into the model, and
modified the expression for the velocity in our model to

vn5a2D~n•“r22n•“r1!1Dedge~k2kav!, ~15!

whereDedgerelates to the edge diffusion rate, andk andkav
are the local and average curvature of the island. We wo
like to note that we chose a dependence onk2kav instead of
a dependence on the second derivative ofk because of nu-
merical efficiency. The expression we chose is conserva
and we believe that during growth it captures the main
fects of edge diffusion. The effect of edge diffusion is p
ticularly pronounced in the multilayer growth regime. R
sults obtained with Eq.~15! for the velocity will, therefore,
be discussed below.

Atoms that diffuse toward a step edge might have a b
rier for incorporation into the step edge that is different th
the diffusion barrier, and also different depending on whet
the atom is coming from the terrace above or below the s
edge. We note that such an additional step-edge barrier
in principle, also be included into our model through a mo
fication of the boundary condition, but such a modificati
has not been considered here.

An atom that attaches to an island boundary gains a
tain amount of bond energy. However, if the activation te
perature is sufficiently high, it can also detach again from
island boundary. This process is described by a microsc
rate that might be called the detachment rate. Thus, in o
to describe within our model epitaxial growth at higher te
peratures, or processes close to equilibrium such as is
ripening, the detachment rate has to be included into
model. This can be done by adding a~negative! detachment
velocity term to the normal velocityvn . Probably the most
important consequence of this process is an eventual bre
of very small clusters~i.e., dimers!. The stochastic nature o
such breakup events can be accounted for by defining a p
ability for breakup that is also determined by the detachm
rate. A number of additional numerical and modeling ch
lenges need to be considered. Details and results on t
extensions will be presented elsewhere.39

V. EXTENSION TO MULTILAYER GROWTH

In ideal layer-by-layer growth, a layer is completed befo
nucleation of a new layer starts. In this case, growth on s
sequent layers would essentially be identical to growth
previous layers. In reality, however, nucleation on higher l
ers starts before the previous layer has been completed
the surface starts to roughen. This roughening transition
pends on the growth conditions~i.e., temperature and depo
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sition flux!, and the material system~i.e., the value of the
microscopic parameters!. At the same time, the average la
eral feature size increases in higher layers, which we w
refer to as coarsening of the surface. This roughening
coarsening can be measured by studying quantities suc
the surface roughness, step-edge density, or island de
per layer, which will be the focus of this section.

A. Step-edge density

The step-edge density is a good measure to describe
quality of the layer-by-layer growth. Moreover, it is believe
to be a good representation of the intensity of the spec
reflection high-energy electron-diffraction spot, which is
very commonin situ sensor during epitaxial growth. In Fig
12 ~upper panel! we show the time evolution of the step-edg
densityq for different values ofD/F, whereq is defined as
the total length of all the island edges divided by the latt
size. It is evident thatq exhibits oscillations, where the pe
riod relates to the layer completion time. The absolute va
of q depends onD/F, and is highest for lower values o
D/F. The reason is that for lower values ofD/F, the number
of islands on the surface increases~while their size de-
creases!, and as a result the total perimeter of all islan
increases. Moreover, we observe that the oscillations de
faster for lower values ofD/F. This means that the surfac
roughens faster for lower values ofD/F, as expected.

The values obtained with a corresponding KMC simu
tion @cf. Fig. 12 ~lower panel!# show the same trend as
function of D/F, but the absolute values are 20% to 30
higher than the level-set results. The reason for this is
following. In a KMC simulation, the atomic roughness alon
a step edge is resolved, while step edges in our island
namics model are smooth. For example, for an island of s
535 that is arranged as a perfect square, there are 20
sites. Introduction of just one defect along one step e
~where an atom is removed from a step edge to create a
pair, and attached somewhere else along the step as a s

FIG. 12. Oscillations of the step-edge density for different v
ues ofD/F obtained with the level-set method~upper panel! and a
corresponding KMC simulation~lower panel!.
3-9
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C. RATSCHet al. PHYSICAL REVIEW B 65 195403
step-edge atom! would then contribute four more step-edg
sites, which is an effect of 20%.

B. Layer resolved island density

A more meaningful quantitative comparison that is n
sensitive to atomic scale roughness along the step edge
comparison of the island densities per layer. This is show
Fig. 13 for two different values ofD/F. The KMC results
were obtained with a value for the edge diffusion that
1/100 of the surface diffusion constant. There is no mic
scopic justification for this value. It was chosen becaus
provides the best agreement, and because it is known f
earlier work that it guarantees essentially smooth s
edges.19 The island density decreases as the film height
creases. This and the fact that the maximum roughness
creases very little~it essentially does not exceed 0.5 f
Dedge50; cf. Fig. 15 and the following section! implies that
the film coarsens. This is also evident in Figs. 14~a! and
14~c!, where we show typical snapshots of the island m
phology after 0.25@Fig. 14~a!# and 20 layers@Fig. 14~c!# are
deposited.

C. Surface roughness

We now focus on the evolution of the surface roughn
w, which is defined as

w25^~hi2^h&!2&, ~16!

where the indexi labels the lattice site. In particular, we wi
study the effect of edge diffusion, as introduced in Eq.~15!,
on the roughness evolution. There have been a numbe
recent atomistic studies37,38 that show edge diffusion pro
duces an uphill current toward islands, and, as a result, e
diffusion enhances the roughening of the surface. This
havior is somewhat surprising, since one would initially e
pect that the overall effect of edge diffusion is a smooth
of the surface. It was argued that the underlying mechan

FIG. 13. Island densitiesN on each layer forD/F5106 ~lower
panel! and D/F5107 ~upper panel! obtained with the level-se
method and KMC simulations. For each data set there are 20 cu
in the plot, corresponding to the 20 layers.
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for the roughening is an uphill current that is due to an asy
metry at corners along the step edge. Recent results19 based
on a KMC simulation indicate that there might be an alt
native explanation for the enhanced roughening: Faster e
diffusion leads to more compact island shapes, and as a
sult the residence time of an atom on top of compact isla
is extended. This promotes nucleation at earlier times on
of higher layers, and, thus, enhanced roughening. It was
gested that this mechanism is independent of an asymm
along the step edge.

In Ref. 19 there are still corners and thus asymmetr
present along step edges. The level-set method grows sm
step edges, however, so that no corner asymmetries
present in this simulation. Thus, an enhanced roughen
with increasing edge diffusion obtained with the level-s
method would unambiguously show that the longer reside
time of atoms on top of compact islands can lead to
hanced surface roughening. The time evolution ofw for dif-
ferent values ofDedgeis shown in Fig. 15. We clearly see tha

es

FIG. 14. Snapshots of a typical island dynamics simulation a
coverage of 0.25 monolayer@~a! and ~b!#, and after 18 layers have
been deposited@~c! and ~d!#. Shown are results withDedge50 ~left
side! and withDedge5100 ~right side!.

FIG. 15. Time evolution of the surface roughnessw for different
values of edge diffusionDedge.
3-10
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LEVEL-SET METHOD FOR ISLAND DYNAMICS IN . . . PHYSICAL REVIEW B65 195403
the surface roughness increases dramatically as edge d
sion increases. This unexpected behavior is also eviden
Fig. 14. Figures 14~b! and 14~d! show a typical surface mor
phology with the incorporation of edge diffusion at the sa
times as Figs. 14~a! and 14~c!. At early times, there is almos
no difference@Figs. 14~a! and 14~b!#. However, at later times
@Figs. 14~c! and 14~d!# there are clearly more layers expos
on the surface, in agreement with a larger surface roughn

We also note that a careful analysis of Fig. 13 reveals
the island densities at higher layers start deviating from z
at earlier times as the film thickens. This also is an indicat
that the system progressively moves away from the layer
layer growth regime, and that the film roughens.

VI. DISCUSSION

We have described the application of the level-set met
to a model for epitaxial growth and illustrated our metho
ology for the submonolayer and multilayer regimes. This
proach provides a semianalytic alternative to KMC simu
tions and is ideally suited to the study of epitax
phenomena. The main advantages of our method stem
the level-set treatment of boundary motion and, in particu
the topological changes associated with creation~nucle-
ation!, motion~growth!, and merging~coalescence! of island
edges. Moreover, because the lateral coordinates (x,y) are
continuous, while the growth direction~z! is discrete, the
method can be applied to systems that are large on a la
scale~up to 1 mm), but are only a few atomic layers thick

There are three main physical ingredients in our appro
that warrant discussion:~i! the implementation of nucleation
~ii ! the mean-field description of the adatom field, and~iii !
the inclusion of fluctuations. The main input into the leve
set equation is an expression for boundary motion. For i
versible aggregation this has two contributions: a sou
term ~i.e., nucleation! and a velocity~i.e., growth!. With our
treatment of the adatom diffusion field~see below!, deter-
mining the velocity is a straightforward matter, and the res
is given in Eq.~5!. Nucleation of new islands, however, is
more delicate matter as it requires specifying both thetimes
and locationsof these events. As described in Sec. II, nuc
ation times are accounted for by an expression derived f
rate equations. But the location of new islands represen
degree of freedom in our approach in that any prescrip
can be applied, since the resulting spatial distribution of
lands is self-consistently accommodated by the correspo
ing changes in the adatom population. This, in turn, affe
the distribution of island-sizes, so the correct choice, as
termined by comparisons with KMC simulations or expe
ments, can be made by varying the nucleation seeding st
We find that a probabilistic seeding style, weighted by
local value ofr2, provides the best agreement. This cho
also has implications for the importance of fluctuations in
submonolayer regime, as will be discussed below.

The density of adatoms is described within a mean-fi
approximation as the solution of a diffusion-type equat
with absorbing boundary conditions at island edges. In
sense, our method is intrinsically ‘‘multiscale,’’ in that atom
istic information about attachment and detachment is inc
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porated into the boundary conditions at island edges for
continuous adatom field. The validity of our treatment of t
adatom diffusion field rests on there being sufficient adat
mobility in comparison to the deposition flux that a coar
graining of the discrete adatom density, as obtained from
ensemble of KMC simulations, is appropriate. Thus, this
effectively an approximation that becomes more accurate
D/F increases, despite the fact that the adatom density
creases accordingly. In the regimeD/F→0, which corre-
sponds to the dominance of flux over adatom diffusion, o
approach breaks down as growth occurs mainly by the di
attachment of deposited atoms to island edges.

The preceding discussion highlights how different flu
tuations enter into our treatment of various processes. In
ticular, our results suggest that in the largeD/F limit, the
only important fluctuations in the submonolayer regime
due to the spatial seeding of islands. Other sources of fl
tuations have no effect on the island-size distribution. T
result has a number of important implications. Most appar
is that, since the dominant fluctuations are associated w
the spatial arrangement of islands, there is no mean-fi
theory that can capture the form of the distribution of isla
sizes asD/F becomes large. In other words, the limit o
large D/F corresponds to an inherently fluctuatio
dominated regime. Moreover, our results show that the
ture of these fluctuations influences the form of the distrib
tion function, so the solution to our equations is not uniq
The selection of the ‘‘correct’’ solution occurs in the nucl
ation phase which, asD/F→`, collapses to an infinitesima
interval neart50, so this effectively corresponds to an ‘‘in
tial condition.’’ This effect is completely beyond the scope
any mean-field approach.

Our final topic on the role of fluctuations concerns t
deposition flux. We treat this flux in a mean-field manner th
is analogous to that of the adatoms, i.e., a spatially and t
porally uniform source for the adatom diffusion field. A
though, in the largeD/F limit, the fluctuations in the depo
sition flux are expected to be unimportant in th
submonolayer regime of growth, their role in the multilay
regime cannot be neglected. The reason is due to the
nomenon of kinetic roughening.40 Renormalization-group
calculations of the asymptotic roughening of models for e
itaxial growth41,42 indicate that fluctuations in the depositio
flux represent a ‘‘relevant’’ variable. Thus, the depositi
fluctuations eventually dominate the diffusion flux. In th
calculations described in Sec. IV, kinetic roughening is o
served, but the exponents associated with the surface ro
ness are expected to be those due to diffusion fluctuat
alone,41 rather than those due to fluctuations in the deposit
flux.42 Physically, the reasons for the observed differen
are as follows. In our model, kinetic roughening occurs
the random nucleation of islands according to the rules
scribed above. This is a ‘‘conservative’’ process, in that
total mass on the surface does not change, and occurs
rate proportional to the local value ofr2. However, fluctua-
tions in the deposition flux can also cause nucleation by
rect impingement onto an adatom. This is a ‘‘nonconser
tive’’ process, since the mass on the surface increases,
3-11
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occurs at a rate proportional to the local flux and local ad
tom densityFr.

We conclude with a discussion of extensions of our a
proach. We have described a basic model for homoepit
on an isotropic substrate. Anisotropy in the substrate can
readily included at the level of surface diffusion and in th
attachment rates, the latter through the velocity function10

Moreover, the coupling to other external continuous fiel
can also be carried in this general framework. At every tim
step, the velocity of all island boundaries is calculated fro
the integration of a global field. In the work described he
this global field is the adatom diffusion field. The same a
proach is appropriate, for example, to an elastic field, wh
can be applied to modeling the strain relaxation in heteroe
taxial systems. More substantial modifications to our ba
method may be required to account for the presence of m
tiple diffusing species. The simplest case, where the effec
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the additional species can be subsumed by solving a sep
diffusion equation and, possibly, vertical ordering~i.e., a
ABAB••• layer structure!, can be treated within our curren
framework. However, if there is a lateral ordering with com
peting phases~e.g., the coexistence of multiple reconstru
tions on certain semiconductor surfaces! then one must in-
troduce separate level-set functions and correspon
velocity functions for each phase.
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