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Abstract. A meromorphic solution to the Burgers equation with complex viscosity is analysed.
The equation is linearized via the Cole–Hopf transform which allows for a careful study of the
behaviour of the singularities of the solution. The asymptotic behaviour of the solution as the
dispersion coefficient tends to zero is derived. For small dispersion, the time evolution of the
poles is found by numerically solving a truncated infinite-dimensional Calogero-type dynamical
system. The initial data are provided by high-order asymptotic approximations of the poles at the
critical time ts for the dispersionless solution via the method of steepest descents. The solution
is reconstructed using the pole expansion and the location of the poles. The oscillations observed
via the singularities are compared to those obtained by a classical stationary phase analysis of
the solution as the dispersion parameterε → 0+. A uniform asymptotic expansion asε → 0+
of the dispersive solution is derived in terms of the Pearcey integral in a neighbourhood of the
caustic. A continuum limit of the pole expansion and the Calogero system is obtained, yielding
a new integral representation of the solution to the inviscid Burgers equation.

AMS classification scheme numbers: 35A20, 35A40, 35B40, 35Q53, 41A60

1. Introduction

Many nonlinear dispersive systems exhibit rapid oscillations in their spatial–temporal
dependence in the regime of small dispersion. Examples include partial differential equations
(PDEs) such as the Korteweg–de Vries (KdV) equation, the nonlinear Schrödinger equation
[16, 17, 24], and finite-difference equations such as the Lax–Wendroff method (see also
[25]). Although a fascinating mathematical phenomenon, these oscillations are generally
quite difficult to describe and control and are an obstacle to the efficiency of numerical
and analytical methods. A complete analysis of oscillations would include a slowly varying
description of their shape, amplitude, wavelength and phase. However, these features have
been successfully analysed only for a few completely integrable systems such as the KdV
equation.

The Burgers equation with an imaginary ‘viscosity’ coefficientν = iε, given by

∂ψ
∂t

+ ψ
∂ψ
∂x

= iε
∂2ψ
∂x2 , ε > 0 (1.1)

was first described by Dobrokhotovet al in [15]. It is perhaps the simplest example of a
nonlinear dispersive equation but has received surprisingly little attention. This equation
has the same linear part (ψt − iεψxx) as the Schr̈odinger equation, and as such can be
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referred to as the Schrödinger equation with convective nonlinearity. We do not know of
any applications in which this equation arises, and it does not seem to have a Hamiltonian
structure. Moreover, the system is nonlinearly ill posed at least for certain complex values
of ν, since singularities can occur in finite time. Nevertheless, we believe that this equation
is an interesting mathematical prototype for dispersive (imaginaryν) or mixed dissipative–
dispersive systems (complexν). In particular, this work demonstrates the coexistence of
concentration and oscillations in the dispersive dynamics. Such phenomena were seen in
numerical simulations of the ID focusing nonlinear Schrödinger equation [22] but the validity
of those numerics could not be established. For an introductory discussion on dispersive
phenomena, see [33].

In this paper, we present a numerical and analytic study of solutions to (1.1) for complex
values ofν. The solution to equation (1.1) can be solved using the Cole–Hopf nonlinear
transform which yields an integral representation involving the heat kernel. For small
|ν| = ε, the resulting formula forψν can be approximated using thestationary phase
method. A new method used to compute the solution is found throughpole dynamics.
This method is based on obtaining the time-dependent locations of the complex poles of the
functionψν by solving an infinite system of coupled ordinary differential equations (ODEs).
The solutionψν is then found by computing its Mittag–Leffler expansion which involves
the position of the poles. One can also computeψν directly through afinite-difference
method, at least for times before a pole hits the real axis. Finally, in the zero-dispersion (or
zero-viscosity limit)ν → 0, the poles coalesce onto a branch cut, and the zero-dispersion
solution is described bybranch-cut dynamics.This method may be of general interest as a
new (to the best of our knowledge) method for solving the inviscid Burgers equation.

These methods will be formulated in general, but they will be numerically evaluated
for a special choice of initial data, namely the cubic polynomial

ψ(x, 0) = 4x3 − x/t∗ (1.2)

which is chosen for its generic features for the inviscid equation [3, 18, 29]. In these initial
data,t∗ is positive and corresponds to the time of first singularity formation for the inviscid
problem. The cube root singularity found at the origin att = t∗ is known to be a generic
singularity for the inviscid Burgers equation. It is due to the coalescence of two conjugate
branch points of order two in the complex plane [3, 4, 8, 18]. Moreover both casesν = 0
and ν 6= 0 can be completely analysed and, in the caseν 6= 0, there is an instantaneous
generation att > 0 of a countable set of complex spatial simple poles. For these initial
data, the small-dispersion (ε → 0+) stationary phase approximation of the solution and its
zeros can be evaluated rather explicitly, at least fort = t∗.

There are three main points to this work. First, in the purely dispersive case in whichν

is imaginary and small, the solutionψν of (1.1) develops rapid oscillations. Second, these
oscillations are caused by the presence of complex poles inψ which have moved close to the
real axis. This result, which is clearly demonstrated below through comparison of the pole
dynamics with the solution on the real axis, is important in providing a tangible cause for
the formation of the oscillations. Third, the branch-cut dynamics provide a slowly varying
but incomplete description of the pole locations. Although we have not yet succeeded in
deriving a slowly varying description of the oscillations themselves, we believe that the
branch-cut dynamics represent a promising start.

In order to investigate the positions of the poles, we derive a Calogero-type infinite-
dimensional dynamical system by replacing the pole expansion of the solution into the
PDE (see [10, 11] for the origin of such a method). We then solve numerically a truncated
version of this system, where the initial data are generated by asymptotic and numerical
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approximations of the poles at the inviscid pre-shock timet∗.
The numerical resolution of the stationary solution of a Calogero dynamical system has

previously been used [31] to obtain the stationary positions of the poles of the solution to a
flame front equation. In the caseν > 0, the poles are fixed to the imaginary axis and move
towards the origin untilt ≈ t∗, after which they turn around and move away ast increases
[29, I]. When dispersion is added, i.e.θ = argν 6= 0, the poles are no longer confined to the
imaginary axis and evolve in the complex plane describing intricate motions. Whenν = iε
(ε > 0) is a purely dispersive coefficient, the poles spiral around the real axis. The proximity
of the poles to the real axis generates oscillations which are observed by reconstructing the
solution numerically via the pole expansion and the pole dynamics. Another approach for
tracking complex singularities based on spectral methods can be found in [30].

2. Integral representation, pole expansion and pole dynamics forν > 0

We recall some results that have been derived in [29]. In this case we letψν = uν to
be consistent with the familiar notation that is used in the classical Burgers equation (see
[6, 7]). For ν > 0, the Cole–Hopf transformuν = −2ν ∂x log(φν) linearizes equation (3.1)
into the diffusion equation forφν (see [12, 21]). Thus the solution is given by

uν(x, t) = x

t
− 2ν ∂x log

(
Eν(x, t)

)
, (2.1a)

Eν(x, t) =
∫ ∞

−∞
exp

{
w(z, x)

2ν

}
dz, (2.1b)

wherew(z, x) is the phase function defined by

w(z, x) =
∫ z

0

(
x

t
− η

t
− u0(η)

)
dη = x

t
z + αz2 − z4,

andα = (t − t∗)/(2t t∗) ∈ R. The functionEν(x, t) has the following properties for fixed
t, ν > 0:

(i) It is an even entire function ofx.
(ii) Its order λ = 4/3.
(iii) Its genush = 1.
(iv) It has infinitely many conjugate and opposite zeros on the imaginary axis.
(v) The order of convergence of the zeros is the orderλ = 4/3, i.e. ∀ε > 0,∑

n 1/|an|λ+ε < +∞.

The fact that the zeros are imaginary has been proved by Pólya [27]. Combining
these properties,Eν(x, t) has an infinite product representation in terms of its zeros which
we denote byx = ±an = ±iβn. Since these zeros satisfy the convergence criteria∑

n β−2
n < +∞ and

∑
n β−1

n = +∞, we have

Eν(x, t) = Cν(t)

∞∏
n=1

(
1 + x2

β2
n(t, ν)

)
(2.2a)

Cν(t) = Eν(0, t) =
∫ +∞

−∞
e

1
2ν

(αy2−y4)dy =
√

α

2
e

α2

16ν K1/4

(
α2

16ν

)
, (2.2b)

whereCν(t∗) = ν1/42−3/40(1/4), Kq(z) is the modified Bessel function of the second kind
(see [1] for the definition ofKq(z)), andK1/4(z) = O(z−1/4) asz → 0. After logarithmic
differentiation ofEν , using (2.1a) and (2.2a), the singular part of the solution being the ratio
of two entire functions with zeros is meromorphic. Thus we find an infinite pole expansion
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of Mittag–Leffler type for the solution which converges uniformly on compact sets forx

away from the polesx = ±iβn:

uν(x, t) = x

t
− Uν(x, t)

t
= x

t
−

∞∑
n=1

4νx

x2 + β2
n(t, ν)

, (2.3)

whereUν(x, t) is the spatially singular part of the viscous solution defined by

Uν(x, t) = x − t uν(x, t) = t

∞∑
n=1

4νx

x2 + β2
n(t, ν)

. (2.4)

Note thatuν can be expressed in a more symmetric way as

uν(x, t) = x

t
− 2ν

∞∑
n=−∞
n6=0

1

x − iβn(t, ν)
, (2.5)

where we use the convention thatβ−n = −βn. Let

∀n ∈ N∗ = N\{0}, β̇n = dβn

dt
, (2.6)

then we replace the full Mittag–Leffler (pole) expansion found in (2.3) in the PDE
ut + u ux = ν uxx . Using partial fraction expansions, we find (see [29] for more details)

β̇n = βn

t
+ ν

βn

− 2ν

∞∑
l=1
l 6=n

2βn

β2
l − β2

n

. (2.7)

Similarly to (2.5), there is a more symmetric formulation to the dynamical system (2.7)
given by

β̇n = βn

t
− 2ν

∞∑
l=−∞
l 6=n,0

1

βl − βn

. (2.8)

Note that the pole expansion (2.5) and the dynamical system (2.8) represent a general
solution to the Burgers equation which is independent of the initial data.

Multiplying (2.7) by βn and introducing the variable

γn(t, ν) = β2
n(t, ν)

ν
, (2.9)

we have
∑

n γ −1
n < +∞, and system (2.7) becomes independent ofν:

∀n ∈ N∗,
γ̇n

2
= γn

t
+ 1 − 4γn

∞∑
l=1
l 6=n

1

γl − γn

. (2.10)

3. Integral representation, pole expansion and pole dynamics forν∈C+

In the analysis that follows, we take advantage of the complete integrability of the Burgers
model of a one-dimensional fluid and allow for the viscosity coefficientν to take complex
values of the formν = εeiθ , ε > 0 and|θ | 6 π/2. Thenψ = ψν(x, t) satisfies

∂ψ
∂t

+ ψ
∂ψ
∂x

= ν
∂2ψ
∂x2

, x ∈ R, t > 0, ν ∈ C+, (3.1)

where

C+ ≡ {ν ∈ C s.t. |ν| > 0 and| argν| 6 π/2} = {ν | <ν > 0, ν 6= 0}. (3.2)
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We can express this complex PDE as a system of two real coupled PDEs. Letψ = ψR + iψI

whereψR = <ψ andψI = =ψ; then (3.1) becomes

∂t

(
ψR

ψI

)
+

(
ψR −ψI

ψI ψR

)
∂x

(
ψR

ψI

)
= ε

(
cosθ − sinθ

sinθ cosθ

)
∂xx

(
ψR

ψI

)
. (3.3)

When this coefficient is purely imaginary,ν = iε, ε > 0, (3.3) can be thought of as the
nonlinear Schr̈odinger equation with convective nonlinearity:

∂ψ
∂t

+ ψ
∂ψ
∂x

= iε
∂2ψ
∂x2

, x ∈ C, t > 0, ε > 0. (3.4)

From the integral definition ofEν(x, t) in (2.1b), one can extend theν domain of validity
to complex values ofν. Let ν = εeiθ ∈ C+ then

Eν(x, t) = Eεeiθ (x, t) =
∫ ∞

−∞
exp

{
e−iθ

2ε

(
x

t
y + αy2 − y4

)}
dy. (3.5)

It is straightforward that, in order for the integral (3.5) to remain convergent, we must have
<ν > 0, i.e. |θ | 6 π/2. This can be verified by using Jordan’s lemma and deforming the
contour of integration along the ray argy = θ/4 for 0 6 θ 6 π/2 so thatEν(x, t) can be
written as

Eν(x, t) = eiθ/4
∫ ∞

−∞
exp

{
1

2ε

(
x

t
ye−i3θ/4 + αe−iθ/2y2 − y4

)}
dy. (3.6)

Thus in the range 06 θ 6 π/2, the functionEν(x, t) is again an entire function ofx of
orderλ = 4/3, and as such it also has infinitely many zeros [2, 5]. Noticing the symmetry
relation

Eν(x, t) = Eν(x, t), (3.7)

we can extend the domain of validity of representation (3.6) to the range|θ | 6 π/2. The
even parity ofEν(x, t) as a function ofx is preserved so that

Eν(−x, t) = Eν(x, t). (3.8)

The zeros ofEν(x, t) therefore come in opposite pairsxn = ±an(t, ν), with the property
that, for each fixedt > 0 and fixedν ∈ C+,∑

n

1

|an| = +∞,
∑

n

1

|an|2 < +∞.

The infinite product representation ofEν is now

Eν(x, t) = Cν(t)

∞∏
n=1

(
1 − x2

a2
n(t, ν)

)
, (3.9)

so that the Mittag–Leffler (pole) expansion becomes

ψν(x, t) = x

t
− 9ν(x, t)

t
= x

t
−

∞∑
n=1

4νx

x2 − a2
n(t, ν)

, (3.10)

where the spatially singular part of the pole expansion is given by

9ν(x, t) = x − t ψν(x, t) = t

∞∑
n=1

4νx

x2 − a2
n(t, ν)

. (3.11)

As in (2.5),ψν can be expressed in a more symmetric way as

ψν(x, t) = x

t
− 2ν

∞∑
n=−∞
n6=0

1

x − an(t, ν)
. (3.12)
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Lettingβn = −ian in (2.7), one finds the associated Calogero dynamical system for arbitrary
ν ∈ C+. Let

ȧn = dan

dt
, a−n = −an

then

ȧn = an

t
− ν

an

− 2ν

∞∑
l=1
l 6=n

2an

a2
n − a2

l

, ∀n ∈ N∗. (3.13)

As in (2.8), one can express (3.13) in a more symmetric way as

ȧn = an

t
− 2ν

∞∑
l=−∞
l 6=n,0

1

an − al

, ∀n ∈ N∗. (3.14)

Note finally that the pole expansion (3.12) and the dynamical system (3.14) represent a
general solution to the Burgers equation which is independent of the initial data.

One can further simplify (3.13) by multiplying both sides byan and introducing the
variable

κn = a2
n

ν
. (3.15)

The corresponding system of ODEs (3.13) becomes free ofν so that

1

2

dκn

dt
= κ̇n

2
= κn

t
− 1 − 4κn

∞∑
l=1
l 6=n

1

κn − κl

, ∀n ∈ N∗. (3.16)

4. Exact pole locations att∗ for ν ∈ C+

At t = t∗, sinceα = 0, we have for|x| < ∞

Eν(x, t∗) = eiθ/4
∫ ∞

−∞
exp

{
1

2ε

(
x

t∗
e−i3θ/4y − y4

)}
dy. (4.1)

Thus using Ṕolya’s [27] theorem once more, the zeros ofEν(x, t∗) denoted by±an(t∗, ν) are
located on the ray argx = 3θ/4+π/2, with absolute value|an(t∗, ν)| = βn(t∗, ε) > 0, where
±iβn(t∗, ε) is thenth ordered zero ofEε(x, t∗) on the imaginary axis. Forν = εeiθ ∈ C+,
the zeros ofEν(x, t) are thus located at the complex positions

x = ±an(t∗, ν = εeiθ ) = ±ei3θ/4 iβn(t∗, ε), ∀n ∈ N∗. (4.2)

See figure 1 for the positions of the poles att = t∗.
Thus, in order to describe the asymptotic behaviour of the zeros ofEν(x, t∗), we place
ourselves on the ray argx = 3θ/4 + π/2, so that at the pre-shock timet∗, letting ν = εeiθ ,

Eεeiθ

(
ei3θ/4 iβ, t∗

) = eiθ/4
∫ ∞

−∞
exp

{
1

2ε

(
iβ

t∗
y − y4

)}
dy

= eiθ/4Eε(iβ, t∗)

= eiθ/4

(
β

4t∗

)1/3

F

(
1

2ε

(
β

4t∗

)4/3)
,

where we have used the change of variable

y →
(

β

4t∗

)1/3

z, (4.3)
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Figure 1. Inviscid branch point, branch cuts and viscous poles att = t∗ for ν = |ν|eiθ

(|θ | 6 π/2).

and the functionF(µ) is defined as

F(µ) =
∫ ∞

−∞
eµ(4iz−z4)dz. (4.4)

Once the zeros{µk}∞k=1 of F(µ) are found, the magnitudeβk of the zeros±iβk of Eε(iβ, t∗)
are given by the relation

β = βk(t∗, ε) = 4t∗(2εµk)
3/4. (4.5)

Thus, from (4.2), the zeros ofEν(x, t∗) are located at

x = ±ak(t∗, ν) = ±ei3θ/4iβk(t∗, ε) = ±ei3θ/4i4t∗(2εµk)
3/4. (4.6)

Using the method of steepest descents described in [13], it is shown in [28] that thekth
ordered large zeroµk of F(µ) is given as follows.

Property 4.1 Let

µ
(0)
k = 2π

3
√

3
(k − 1/3), k > 1,

and

G(µ) = µ + 7

432µ

(
1 − 1

6µ

(
1 + 7

72µ

(
1 − 5

12µ

(
1 + 53143

18900µ

))))
,

then

µk = G
(
µ

(0)
k

)
+ O

(
1

k6

)
ask → +∞.
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5. Asymptotic analysis ofΨν(x, t) for ν = iε, asε→ 0+, t > t∗

When ν = iε, ε > 0, we evaluate the asymptotic behaviour ofEν as ε → 0+ using the
stationary phase method. We find that all three saddle points are relevant within the caustic
|x| < |xs(t)| − δ/2, whereδ > 0 and where±xs(t) are the second-order branch points of
the inviscid solution [29, I]. For a discussion on such caustics, see [23, 26]. Whent > t∗,
x ∈ (−∞, −xs(t) − δ/2

) ∪ (
xs(t) + δ/2, ∞)

, ν = iε, ε → 0+, the same analysis holds and
one recovers the characteristic solution outside the caustic consisting of one relevant saddle
point. The transition from within the caustic to outside is not uniform as the asymptotic
behaviour at the causticx = ±xs(t) is degenerate (two saddle points have coalesced).

5.1. Asymptotic expansion within the causticx ∈ (−xs(t) + δ/2, xs(t) − δ/2
)
, δ > 0

The causticx = xs(t) corresponds to the envelope of the characteristics of the inviscid
Burgers solution and is also determined by the system of equations

0 = wz(z, x) = x/t + 2αz − 4z3,

0 = wzz(z, x) = 2α − 12z2,
(5.1)

wherew(z, x) is the phase function of the integrand in the definition ofEν(x, t). This system
represents the conditions for the phase functionw to have saddle points of multiplicity
two, thereby yielding a curve in the(x, t) plane on which two saddles of multiplicity one
coalesce into a saddle of multiplicity two. From the second equation in (5.1), we find
zcaustic(t) = ±√

α/6 and, from the first,

x = xcaustic = t
(
4zcaustic(t)

3 − 2αzcaustic(t)
) = ∓t

(
2α

3

)3/2

= ∓xs(t), (5.2)

wherexs(t) = i(3t∗)−3/2(t∗−t)3/2t−1/2 is the second-order branch point of the dispersionless
solution described in [29, I]. Here we are only concerned with the dominant behaviour of
Eiε , thus we retain only the first term:

Eiε(x, t) =
∑

s=0,1,2

√
−4π iε

wzz(zs, x)
exp

(
w

(
zs, x

)
2iε

)(
1 + O(ε)

)
, (5.3)

asε → 0+, with

w
(
zs(x, t), x

) = x

t
zs + αz2

s − z4
s = 3

4

x

t
zs + α

2
z2
s , (5.4a)

wz

(
zs(x, t), x

) = 0, wzz

(
zs(x, t), x

) = 2α − 12z2
s . (5.4b)

The values of the saddle pointszs = zs(x, t) of (3.6) are determined by the three roots of
the first equation in system (5.1), i.e. the first equation of (5.4b). They are specifically

z0 = ω A + ω2 B
z1 = ω2 A + ω B
z2 = A + B

(5.5)

with w = e2π i/3 and

A(x, t) = (8t)−1/3 3

√
x +

√
x2 − x2

s ,

B(x, t) = (8t)−1/3 3

√
x −

√
x2 − x2

s .

(5.6)
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Note that all three saddle points are real whenx, xs ∈ R and the discriminant1 = x2−x2
s <

0, that is|x| < |xs(t)|, and in this caseA = B [29, appendix B]. Therefore we havezs ∈ R,
w(zs, x) ∈ R, andwzz(zs, x) = 2α − 12z2

s ∈ R. Hence all three terms in the summation
signs are oscillatory and equally relevant. Note, however, that the expansion derived for
Eiε is only valid within |x| < |xs | and, in order to get an expansion uniformly valid across
x = ±xs one needs to derive a uniform expansion as presented in [15]. This analysis is
similar in spirit to the one of Jinet al [22 (section 2.2)] and that of [15]. The dominant
behaviour of the solutionψiε(x, t) is found from the Cole–Hopf representation, so that
within the caustic|x| < |xs | − δ/2, following the derivation presented in [29 (I, section 3)],
we find that

9iε(x, t) =
∑

s=0,1,2 zse
w(zs ,x)

2iε /
√

wzz(zs, x)∑
s=0,1,2 e

w(zs ,x)

2iε /
√

wzz(zs, x)
+ O(ε)

=
∑

s=0,1,2 zse
w(zs ,x)

2iε − i
2 arg(wzz(zs ,x))|wzz(zs, x)|−1/2∑

s=0,1,2 e
w(zs ,x)

2iε − i
2 arg(wzz(zs ,x))|wzz(zs, x)|−1/2

+ O(ε).

Since wzz(zs, x) ∈ R, we have that arg(wzz(zs, x)) = (π/2)(1 − sgn(wzz(zs, x))), and
therefore the small-dispersion behaviour of the solution is found from (3.10).

Property 5.1 As ε → 0+ for x ∈ (−xs(t) + δ/2, xs(t) − δ/2
)
, δ > 0, t > t∗, the spatially

singular part of the solution to the Burgers equation is approximated by

9iε(x, t) =
∑

s=0,1,2 zse− i
2ε

w(zs ,x)+ iπ
4 sgn(wzz(zs ,x))|wzz(zs, x)|−1/2∑

s=0,1,2 e− i
2ε

w(zs ,x)+ iπ
4 sgn(wzz(zs ,x))|wzz(zs, x)|−1/2

+ O(ε).

The asymptotic behaviour of the solution is then found from the relation

ψiε(x, t) = x

t
− 9iε(x, t)

t
.

Thus the presence of three competing oscillatory terms in the asymptotic behaviour of9iε

is reminiscent of the oscillations observed in the solutionψiε . Such oscillations are also
seen in the pole dynamics in section 7.2.

5.1.1. Long-time asymptotics of the stationary phase solution within the causticIn this
section we approximate the stationary phase formula in property 5.1 for small values of
δ = x/t and find the approximate pole positions for large time. First we claim that the
stationary phase formula is valid in a complex neighbourhood ofx = 0 independent of
ε = |ν|. A full extension of this formula to the complex plane is difficult to determine
because of the possibility of Stokes lines [26]. Across a Stokes line a stationary point loses
its accessibility, i.e. the ability to deform the integration contour to the steepest descent path
through the stationary point is lost. The pointx = 0 does not lie on a Stokes line, however,
so that all three stationary points are accessible in a neighbourhood ofx = 0.

Now we can expand the three solutionsy = y0, y+, y− of wy = 0, and the corresponding
values ofw andwyy , in powers ofδ = x/t for fixed value ofα = (t − t∗)/(2t t∗) asδ → 0:

y0 = − δ

2α
+ O(δ3)

y+ =
√

α

2
+ δ

4α
− δ2

α5/2

3

32
√

2
+ O(δ3)

y− = −
√

α

2
+ δ

4α
+ δ2

α5/2

3

32
√

2
+ O(δ3)

(5.7)
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w0 = − δ2

4α
+ O(δ3)

w+ = α2

4
+ δ

√
α

2
+ δ2

8α
+ O(δ3)

w− = α2

4
− δ

√
α

2
+ δ2

8α
+ O(δ3)

(5.8)

w0yy = 2α + O(δ2)

w+yy = −4α − 3δ

√
2

α
+ O(δ2)

w−yy = −4α + 3δ

√
2

α
+ O(δ2)

(5.9)

The stationary phase formula is much more sensitive to the value ofw than to the value of
wyy , and its leading order form is determined by the terms up to O(δ) in w and up to O(1)

in wyy . In particular the leading order form for the denominatorD is (for ν = iε)

D =
∑

s=0,+,−

√
− ν

wsyy

ews/2ν

=
√

i

ε

{ − i|w0yy |−1/2e− iw0/2ε + |w+yy |−1/2e−iw+/2ε + |w−yy |−1/2e−iw−/2ε
}

= 1

2

√
iε

|α|
{
−i

√
2 + e−iw+/2ε + e−iw−/2ε

}
= 1

2

√
iε

|α|
{
−i

√
2 + 2 cos

(
δ

2ε

√
α

2

)
e−iα2/δε

}
.

The zeros ofD, i.e. the poles for the Burgers solution, are solutionsδ = x/t of the equation

cos

(
δ

2ε

√
α

2

)
= i√

2
eiα2/δε . (5.10)

Note that, ifδ is a solution of (5.10), then so is−δ andδ + εα1n with

α1 = 4πt

√
2

α
. (5.11)

The solutions of (5.10) are

δ = δ±
n = ±ε

(
(x0 + iy0)

√
8

α
+ nα1

)
(5.12)

and(x0, y0) are a particular solution of the equations

√
2 cos(x0) coshy0 = − sin

(
α2

8ε

)
,

√
2 sin(x0) sinhy0 = − cos

(
α2

8ε

)
.

One can easily show that there is a unique solution(x0, y0) up to translation and reflection
as in (5.12). This shows that to leading order the poles of the dispersive Burgers equation
lie on two staggered horizontal linear arrays with spacingεα1.
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Figure 2. =aj (t, ν) versus<aj (t, ν). Time evolution inC of aj (t, ν), j = −4, · · · , 4 for
ν = 10−5 × i and N (number of poles)= 105. tinitial = t∗ = 1 andtf inal = 1.25. Typical time
stepδt ≈ 10−3. nsteps = 175. Time-stepping tolerance: 10−8 < LRT < 10−4 (where LRT is
local relative tolerance).

5.2. x ∈ (−xs(t) − δ/2, xs(t) + δ/2
)c

, δ > 0, ν = iε, ε → 0+, t > t∗

The inviscid limit is found in a straightforward manner in this case; only one saddle point
is relevant, so that the asymptotic limit derived in section 5.1 reduces to

9iε(x, t) = 9(x, t) + O(ε) asε → 0+,

where9(x, t) = zs(x, t) is the spatially singular part of the dispersionless solution (see
section 6 of [29, I] for more details). Thus the solution outside the caustic behaves according
to the following property.

Property 5.2 As ν → 0+ for x ∈ (−xs(t) − δ/2, xs(t) + δ/2
)c

, δ > 0, t > t∗, the solution
to the Burgers equation is given by

ψiε(x, t) = x

t
− 9iε(x, t)

t
= x

t
− 9(x, t)

t
+ O(ε) asε → 0+,

9(x, t) = zs∗(x, t), zs∗ : <w(zs∗, x) = max
s=0,1,2

<w(zs, x).

5.3. Uniform asymptotic expansion asν → 0 for t > t∗ across the causticx = ±xs(t) via
Pearcey integral

Following the notation of Kaminski [23], we introduce the Pearcey integral from which
one can derive a uniform asymptotic expansion with two coalescing saddle points (see also
[32]). Let

P(X, Y ) =
∫ +∞

−∞
ei(u4/4+Xu2/2+Yu) du (5.13)
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Figure 3. Close-up of figure 2.

denote the Pearcey integral. In the arbitrary case|θ | 6 π/2, letting y → (−iν/2)1/4 u =
ei3π/8(ν/2)1/4 u, one can expressEεeiθ (x, t) in terms ofP(X, Y )

Eεeiθ (x, t) =
(

εeiθ

2i

)1/4

P

(
X = α√

2ε
ei(π/4−θ/2), Y = x

2t

(
1

2ε3

)1/4

e−i(π/8+3θ/4)

)
.

In particular forθ = 0 (ν = ε ∈ R), we have (cf. equation (3.12) in [29, I])

Eε(x, t) =
(

ε

2i

)1/4

P

(
X = α√

2ε
eiπ/4, Y = x

2t

(
1

2ε3

)1/4

e−iπ/8

)
.

For θ = π/2 (ν = iε), from (3.5) we can expressEiε(x, t) as

Eiε(x, t) =
∫ +∞

−∞
exp

{
i

2ε

(
y4 − αy2 − x

t
y
)}

dy

=
(ε

2

)1/4
∫ +∞

−∞
exp

{
i

(
u4

4
− α√

2ε

u2

2
− x

2t

(
1

2ε3

)1/4

u

)}
du

=
(ε

2

)1/4
P

(
X(ε; t) = −α√

2ε
, Y (ε; x, t) = −x

2t

(
1

2ε3

)1/4)
. (5.14)

Clearly a smallε asymptotic ofEiε is equivalent to a combined asymptotic expansion of
the Pearcey integral as|X|, |Y | → +∞. The caustic ofP(X, Y ) and the corresponding
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Figure 4. =aj (t, ν) versus<aj (t, ν). Time evolution inC of aj (t, ν), j = −4, · · · , 4 for
ν = 10−4i and N = 105. tinitial = t∗ = 1 and tf inal = 2. nsteps = 280. Typical time step
δt ≈ 3 × 10−3. Time-stepping tolerance: 10−8 < LRT < 10−4.

caustic ofEiε(x, t) is given by

Y = 2√
27

(−X)3/2 ⇐⇒ x = ±xs(t) ∈ R for t > t∗. (5.15)

Hence the uniform asymptotic behaviour ofEiε in a neighbourhood of the caustic is
found from the one ofP(−X, (2/

√
27 − τ)X3/2) as X → +∞, where τ = 0 at the

caustic, andτ 6= 0 away from it [23]. This amounts to a uniform expansion valid for
|x ± xs(t)| 6 |δ±(τ ; t)| whereδ±(τ ) = δ±(τ ; t) = ∓(

√
27/2)|xs(t)|τ . This expansion is

also valid outside of these intervals centred about±xs(t); however, the region of interest is
the neighbourhood of the caustic. Indeed one only needs to use the asymptotic expansion
of the Airy function and its derivative to find the results obtained in sections 5.1 and 5.2.

From (3.11) and (5.14) we have that

9iε(x, t) = t2iε ∂x log
(
Eiε(x, t)

)
= t2iε ∂x log

[
P

(
X(ε; t) = −α√

2ε
, Y (ε; x, t) = −x

2t

(
1

2ε3

)1/4)]
.

Let

X = X(ε; t), Y = Y (ε; t) = Y (ε; x = ±xs(t) − δ±(τ ; t), t),
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Figure 5. Close-up of figure 4.

whereδ ± (τ ; t) → 0 asτ → 0, so that

9iε

(
x = ±xs(t) − δ±(τ ; t), t

)
= t2iε ∂x log(P (X, Y ))

= −t2iε ∂τ log

(
P

(
− X, (2/

√
27− τ)X3/2

)) /
∂δ±
∂τ

.

Let P(τ) = P

(
− X, (2/

√
27− τ)X3/2

)
then, since∂δ±/∂τ = ∓√

27xs(t)/2, we have

9iε

(
x = ±xs(t) − δ±(τ ; t), t

)
= ± 4t iε√

27xs(t)

Pτ (τ )

P (τ)
.

Following the notation presented in [29], let

p0(τ ) = 3−1/6(1 + O(τ )), q0(τ ) = −3−5/6

2
(1 + O(τ )), ζ(τ ) = 3−1/6τ(1 + O(τ )),

and

f (v) = f (v; τ) = v4

4
− v2

2
+

(
2√
27

− τ

)
v,

and the vi, i = 1, 2, 3 are the saddle points off (v; τ) determined by the equation
fv(vi; τ) = 0, so thatf (vi; τ) = −v2

i /4 + (2/
√

27− τ)3vi/4. Thevi are specifically

v1(τ ) = − 2√
3

sin
(π

3
+ φ(τ)

)
, v2(τ ) = 2√

3
sin(φ(τ)),

v3(τ ) = 2√
3

sin
(π

3
− φ(τ)

)
,
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Figure 6. =aj (t, ν) versus<aj (t, ν). Time evolution inC of aj (t, ν), j = −4, · · · , 4 for
ν = 10−3i and N = 105. tinitial = t∗ = 1 and tf inal = 4. nsteps = 80. Typical time step
δt = 0.05. Time-stepping tolerance: 10−8 < LRT < 10−4.

where

φ = φ(τ) = 1

3
arcsin

(
1 − τ

√
27/2

)
, τ ∈ R, |φ| 6 π

6
.

Since

X = −α√
2ε

⇒ iX2

2
= i

α2

4ε
⇒ X−2 = O(ε),

then according to the expansion of the Pearcey integral presented by Kaminski [23], we
have proved the following property.

Property 5.3 The uniform asymptotic expansion asε → 0+ of 9iε(x = ±xs(t)−δ±(τ ; t), t)

in a neighbourhood of the causticsx = ±xs(t) is

9iε

(
x = ±xs(t) − δ±(τ ; t), t

)
= ±

√
3

2

(
xs(t)

t

)1/3 [
[v2 + v3]ei α2

4ε
[f (v2)+f (v3)]

×
{
p0(τ )

2π

X1/6
Ai(−X4/3ζ(τ )) + q0(τ )

2π

iX5/6
Ai′(−X4/3ζ(τ ))

}
+2v1 ei α2

4ε
2f (v1)

(
π

3v2
1 − 1

)1/2 1 + i

X1/2

]
/[

ei α2

4ε
[f (v2)+f (v3)]

{
p0(τ )

2π

X1/6
Ai(−X4/3ζ(τ ))
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Figure 7. =aj (t, ν) versus<aj (t, ν). Time evolution inC of aj (t, ν), j = −4, · · · , 4 for
ν = 10−2i and N = 105. tinitial = t∗ = 1 and tf inal = 5. nsteps = 48. Typical time step
δt = 0.1. Time-stepping tolerance: 10−8 < LRT < 10−4.

+q0(τ )
2π

iX5/6
Ai′(−X4/3ζ(τ ))

}
+ ei α2

4ε
2f (v1)

(
π

3v2
1 − 1

)1/2 1 + i

X1/2

]
+O(ε) asε → 0+.

5.3.1. Behaviour at the causticsx = ±xs(t) At the causticsx = ±xs(t), τ = 0,

φ(0) = π/6, v1(0) = −2/
√

3, v2(0) = v3(0) = 1/
√

3,

f (vi; 0) = −v2
i /4 + vi/2

√
3, f (v2; 0) = f (v3; 0) = −2/3, f (v1; 0) = 1/12.

Since X = O(ε−1/2), the dominant term asε → 0+ in both the numerator and the
denominator of9iε is obviously the term containing the factorX−1/6. Therefore the
dominant behaviour of9iε(±xs(t), t) reduces to the simple form

9iε(±xs(t), t) = ±
√

3

2

(
xs(t)

t

)1/3

(v2(0) + v3(0)) + O(ε)

= ±
(

xs(t)

t

)1/3

+ O(ε) asε → 0+.
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Figure 8. <ψν(x, t) versusx from the pole dynamics forν = 10−4i and N = 105 at
t = 1, 1.05, 1.1, 1.15.

6. Continuum limit of the pole expansion and the Calogero dynamical system

From the equation for the pole dynamics and the Mittag–Leffler expansion of the non-zero
dispersion solution, one can obtain a set of equations for the inviscid limit which give a new
representation of the solution to the inviscid Burgers equation. Recall the pole expansion

ψν(x, t) = x

t
−

∞∑
n=1

4νx

x2 − a2
n(t, ν)

= x

t
− 2ν

∞∑
n=−∞
n6=0

1

x − an

, (6.1a)

and the pole dynamics;∀n ∈ N∗,

ȧn = an

t
− ν

an

− 4νan

∞∑
l=1
l 6=n

1

a2
n − a2

l

= an

t
− 2ν

∞∑
l=−∞
l 6=n,0

1

an − al

. (6.1b)

Define the complex mapF(ζ, ν, t) as

an(t, ν) = F(ζ ν
n = νn, ν, t) : Z∗ × R+ × R+ → C, a−n = −an. (6.2)

At t∗, we have [29 (I, section 4.1)]

an(t∗, ν) = F(ζ ν
n = νn, ν, t∗) = i4t∗ (2νµn)

3/4

= i4t∗ (2ν(c−1n + c0 + c1/n + · · ·))3/4

= i4t∗
(
c−1(2νn) + c02ν + c1(2ν)2/(2νn) + · · ·))3/4

.
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Figure 9. <ψν(x, t) versusx. Comparison of pole dynamics (——) and stationary phase
approximation (· · · · · ·) for ν = 10−3i and N = 105. Projection of pole locations on the real
axis (+) att = 1, 2, 3, 4.

Then introduce the map

f (ζ, t) = F(ζ, 0, t) : R × R+ → C, f (−ζ, t) = −f (ζ, t), (6.3)

where the continuous variableζ corresponds to a position on the real axis which can be
thought of as a variable obtained by simultaneously lettingν → 0+ andn → +∞. Assume
that

an(t, ν) = F(n|ν|, ν, t) = f (n|ν|, t) + en(t, ν) (6.4)

in which en(t, ν) is a small error term that goes to 0 asν → 0. Now let |ν| → 0 so that
η = ν/|ν| remains constant. Then, at least formally,

2ν
∑
`6=n

1

an(t, ν) − a`(t, ν)
' 2η|ν|

∑
`6=n

1

f (n|ν|, t) − f (`|ν|, t)
ν→0−→ 2η PV

∫ ∞

−∞

dζ ′

f (ζ, t) − f (ζ ′, t)
. (6.5)

Moreover, this approximation shows that the representation (6.4) is valid for all time if it
is true at t = 0. A rigorous analysis of the approximation (6.5) has been performed in
the context of vortex sheets in [9]. A rigorous justification of this limiting process is also
presented by other means in [29, II] for the real viscosity case. It is then clear that the pair
of equations (6.1a) and (6.1b) satisfy the following:

Property 6.1The continuum limit of the Calogero dynamical system and the pole expansion
is the system of integrodifferential equations defined for anyx such that∀ζ ∈ R, x 6= f (ζ, t),
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Figure 10. <ψν(x, t) versusx. Comparison of pole dynamics (——) and stationary phase
approximation (· · · · · ·) for ν = 10−2i and N = 105 at t = 1, 2, 3, 4, 5. Projection of pole
locations on the real axis (+).

by

∂f

∂t
(ζ, t) = f (ζ, t)

t
− 2η PV

∫ ∞

−∞

dζ ′

f (ζ, t) − f (ζ ′, t)
,

ψ(x, t) = x

t
− 2η

∫ ∞

−∞

dζ ′

x − f (ζ ′, t)
.

This property can also be expressed as

∂f

∂t
(ζ, t) = f (ζ, t)

t
− 2ηf (ζ, t)

∫ ∞

0

dζ ′

f 2(ζ, t) − f 2(ζ ′, t)

= f (ζ, t)

t
− ηf (ζ, t) PV

∫ ∞

−∞

dζ ′

f 2(ζ, t) − f 2(ζ ′, t)
, (6.6a)

and

ψ(x, t) = x

t
− 2ηx

∫ ∞

0

dζ ′

x2 − f 2(ζ ′, t)

= x

t
− ηx

∫ ∞

−∞

dζ ′

x2 − f 2(ζ ′, t)
, x 6= f (ζ, t). (6.6b)

The system consisting of equations (6.6a) and (6.6b) provides a slowly varying, but
incomplete, description of the solution of the Burgers equation and of the pole dynamics.
Let f (ζ, t) solve the continuum (i.e. slowly varying) equation (6.6a). Then the approximate
pole positions are given by (6.4) and the solutionψν of the Burgers equation by the pole
expansion (6.1a). Furthermore, as shown in the next section, the corresponding solution
ψ of the inviscid Burgers equation is given by (6.6b), and the image off in C is a
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Figure 11. Branch-cut dynamics forν = 10−5i at t = 1, 1.05, 1.1, 1.15, 1.2, 1.25.

branch cut forψ. This is an incomplete description, since it does not yield a formula for
the wavelength, phase and amplitude of the oscillations. Moreover, when the poles are
close to the real line, the oscillations in the Burgers solution are quite sensitive to small
errors. In fact, computations presented in section 7.3 forν = εi, show that some of the
poles found through this ‘branch-cut dynamics’ method lie on the real axis, which makes
the reconstruction of the solutionψν impossible. We believe that this difficulty could be
overcome through improvements in the approximation (6.5).

6.1. Branch-cut dynamics

The branch-cut dynamics method, presented in this section, is a new method for solving the
inviscid Burgers equation

ψt + ψψx = 0. (6.7)

The main interest here in this method is that it represents the continuum limit, as|ν| → 0,
of the pole dynamics for the viscous equation. It is also interesting to note that the resulting
integro-differential equation is nearly the same as the Birkhoff–Rott equation for a vortex
sheet, but without the complex conjugation on the right-hand side. The branch-cut dynamics
have a parametric and a non-parametric formulation. In the parametric formulation, the
solution is described through the dynamics of a complex-valued functionf (ζ, t) of a real



Pole dynamics for complex Burgers equation 1691

Figure 12. Branch-cut dynamics forν = 10−4i at t = 1, 1.1, 1.2, 1.3.

variableζ . Let f (ζ, t) satisfy

ft (ζ, t) = f (ζ t)

t
− 2η PV

∫ ∞

−∞

dζ ′

f (ζ, t) − f (ζ ′, t)
(6.8)

in which η is an arbitrary constant. The integral is a Cauchy principal-value integral, due to
the singularity atζ ′ = ζ , as well as possible singularities atζ ′ = ±∞. Next defineψ(x, t)

by

ψ(x, t) = x

t
− 2η

∫ ∞

−∞

dζ ′

x − f (ζ ′, t)
. (6.9)

A straightforward calculation shows thatψ(x, t) is a solution to the inviscid Burgers equation

ψt + ψψx = 0 (6.10)

for any choice ofη. These equations can be rephrased in a second non-parametric
formulation involving a moving curve0(t) in the complex plane (which may consist of
several disconnected parts) and a density functionρ(z, t) defined forz ∈ 0(t). In particular,
0(t) is the image off (ζ, t) for ζ varying over the real line. The density functionρ(z, t)

is defined by [29 (II, section 5)]

ρ(z, t) = 1

fζ (ζ, t)
, (6.11)

in which z = f (ζ, t). Then dζ ′ = ρ(z′, t) dz′ and

ψ(x, t) = x

t
− 2η

∫
0(t)

ρ(z′, t)
x − z′ dz′. (6.12)
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Figure 13. Branch-cut dynamics forν = 10−3i at t = 1, 2, 3, 4.

This formula can be extended into the complexx-plane but is discontinuous across the
curve0(t), i.e. 0(t) is a branch cut for the functionψ. Variations in the arbitrary complex
parameterη correspond to variations in the branch cut0(t) for ψ, without change in the
branch point. An application of the Plemejl formulae (see [14]) at a pointz on 0(t) shows
that limiting valuesψ+ andψ− from the right and left, respectively, are

ψ±(z, t) = z

t
− 2η lim

r→0

∫
0r±(t)

ρ(z′, t)
z − z′ dz′ ∓ 2ηπ iρ(z, t). (6.13)

Here, the0r
±(t) are contours identical to0(t) except for removed semi-circular arcs of

radius r above and below the singularity. Since lim
r→0

0r
±(t) = 0(t), it follows that the

difference inψ± is

ψ−(z, t) − ψ+(z, t) = 4ηπ iρ(z, t), (6.14)

and the average ofψ± is

9̃(z, t) ≡ 1

2
(ψ+(z, t) + ψ−(z, t))

= z

t
− 2η

∫
0(t)

ρ(z′, t)
z − z′ dz′

= x

t
− 2η PV

∫ ∞

−∞

dζ ′

f (ζ, t) − f (ζ ′, t)
= ∂f

∂t
(ζ, t). (6.15)
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Figure 14. Branch-cut dynamics forν = 10−3eiπ/4 at t = 1, 2, 3, 4.

Since 0= ψt + ψψz = ψt + (
1
2ψ2

)
z

for both ψ = ψ+ andψ−, it follows thatρ satisfies the
conservation equation

ρt + (9̃ρ)z = 0. (6.16)

Therefore the branch-cut dynamics equations (6.8) and (6.9) are equivalent to the motion
of 0(t) by the velocity9̃(z, t), and the evolution of the densityρ(z, t) through (6.16).

The usefulness of this method in the present context is its relation to the pole dynamics
for the viscous (or dispersive) Burgers equation. An interesting equivalent form of the
branch-cut dynamics equation (6.8) is found by considering the change of time variable

τ = t−1 − t−1
0

g(ζ, τ ) = t−1f (ζ, t)
(6.17)

for any constantt0. The resulting equation forg is

∂g

∂τ
(ζ, τ ) = 2η PV

∫ ∞

−∞

dζ ′

g(ζ, τ ) − g(ζ ′, τ )
. (6.18)

If η = 1/(4π i), and if the left-hand side was replaced by its complex conjugate∂ḡ/∂τ , this
equation would be identical to the Birkhoff–Rott equation for a vortex sheet [9].

7. Numerics

We present numerics which pertain to the analysis previously derived. That is, we use both
the stationary phase formula and the pole dynamics as a means to compute the solution. A
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Figure 15. Positions of the first 20 poles from the pole dynamics forν = 10−3eiπ/4 and
N = 105 at t = 1, 2, 3, 4.

third method based on a full finite-difference scheme is also presented initially. For all three
methods, we set the parameter valuet∗ = 1. In all the figures describing the behaviour of
the solutionψν , we plot only the real part of the solution<ψν . Thus, whenever there is a
label ψ, it should be understood as<ψν .

7.1. Finite differences, Runge–Kutta scheme and pole expansion

We present a numerical scheme which enables us to solve (3.1) for arbitrary values of
argν for moderately small values of|ν| = ε. The procedure is sometimes referred to
as the method of lines and consists in using a centred difference operator in space while
time marching with a Runge–Kutta scheme. The method is implemented on the interval
I = [0, 1/2], with boundary conditionsψν(0, t) = 0 andψν(1/2, t) = 0. The condition
that ψν(1/2, t) = 0 is consistent with the value of the dispersionless solution and as such
is consistent for small enough values ofε. We can use two different initial conditions:

ψ(x, 0) = 4x3 − x

t∗
(7.1a)

ψν(x, t∗) = x

t∗
− 4νx

∞∑
n=1

1

x2 − a2
n(t∗, ν)

. (7.1b)

If the second condition is used, then the pole positions att = t∗ are specified by the
asymptotic estimate presented in property 4.1. This estimate is used for all values ofµn
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Figure 16. Positions of the first 20 poles from the pole dynamics forν = 10−5i and N = 105

at t = 1, 1.05, 1.1, 1.15, 1.2, 1.25.

for 10 6 n 6 N :

an(t∗, ν) = ei3θ/4 i 4t∗(2εµn)
3/4,

µn = G(µ(0)
n ), µ(0)

n = 2π

3
√

3
(n − 1/3), n > 10, (7.2)

G(µ) = µ + 7

432µ

(
1 − 1

6µ

(
1 + 7

72µ

(
1 − 5

12µ

(
1 + 53143

18900µ

))))
.

For 16 n 6 9, we use the numerical values found in [28, table 3], under the column headed
Numerical roots:

µ1 = 0.8221037147 µ2 = 2.0226889660 µ3 = 3.2292915284

µ4 = 4.4372464748 µ5 = 5.6457167459 µ6 = 6.8544374340

µ7 = 8.0632985369 µ8 = 9.2722462225 µ9 = 10.4812510479.

Let

ψj = ψ(j ∗ 1x, t), Eψj = ψj+1, Epψj = ψj+p,

D+ = (E − E0)/1x, D− = (E0 − E−1)/1x, D0 = (D+ + D−)/2.

One then solves the system ofJ − 1 equations using a Runge–Kutta 4–5 scheme:
dψj

dt
= −D0(ψ2

j /2) + νD+D−ψj , j = 1, · · · , J − 1, (7.3)

whereJ ∗ 1x = 1/2, ψj=0 = 0 andψJ = 0.
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Figure 17. Positions of the first 20 poles from the pole dynamics forν = 10−4i and N = 105

at t = 1, 1.1, 1.2, 1.3.

7.2. Numerical pole dynamics

We now investigate the motion of the simple poles ofψν(x, t) for various values of
ν ∈ C+. The procedure consists in truncating the Calogero dynamical system and by
starting with initial data for the poles att = t∗: the complex poles ofψν(x, t) are located
at x = ±an(t, ν) = ±√

νκn(t, ν), where the variablesκn satisfy the system

∀n ∈ N∗,

{
1
2

dκn

dt
= κn

t
− 1 − 4κn

∑∞
l=1
l 6=n

1
κn−κl

κn(t∗, ν) = a2
n(t∗, ν)/ν.

(7.4)

an(t∗, ν) is computed as is described in the previous section. The value ofan(t, ν) is
recovered using the relationan(t, ν) = √

νκn(t, ν). Starting fromt = t∗, we compute and
plot the evolution of the first four polesan(t, ν), n = −4, · · · , 4 for different values ofν.
We useN poles in the computations, i.e.a1 to aN whereN × 10−4 is 1, 2.5, 5, 10. That is,
we consider the truncated system

∀n = 1, · · · , N,

{
κ̇n

2 = κn

t
− 1 − 4κn

∑N
l=1
l 6=n

1
κn−κl

κn(t∗, ν) = (4t∗)2(2µn)
3/2√εeiθ/2

where the integerN is appropriately chosen. In order to accelerate the computation of the
slowly converging pole expansions

N∑
l=1
l 6=n

1

κl − κn

, ∀n = 1, · · · , N
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Figure 18. Positions of the first 20 poles from the pole dynamics forν = 10−3i and N = 105

at t = 1, 2, 3, 4.

we use the Multipole algorithm developed by Greengard and Rokhlin [20] and implemented
by Greengard, which reduces the number of operations from O(N2) to O(N logN). A
fourth- and fifth-order Runge–Kutta–Fehlberg scheme with automatic step-size control is
used. Since the initial data are specified att = t∗ = 1, we can solve the system forwards
and backwards in time starting fromt = 1. The typical tolerance in the computation is
10−8 < |(x4 − x5)/x5| < 10−4 wherex4 andx5 are the fourth- and fifth-order estimates of
κ1(t, ν), respectively. Once the tolerance criterion is met, we recover the pole location via
the relationan(t, ν) = √

νκn(t, ν). The difference between the complexν case and the realν

case is that the variables are all real forν real, and thus system (7.4) is a system of real ODEs
whereas, forν ∈ C+, system (7.4) is a genuinely complex ODE system. The justification
of the numerics is the most difficult aspect of this simulation because one must justify the
convergence of the method both as the number of poles increases and as the time step is
refined. The time-step control is automatically determined by the relative tolerance (RT) test
on the fourth- and fifth-order approximations of the first ordered pole (the one closest to the
origin). (Note that RT is also called LRT for local relative tolerance in the figure captions.)
Thus one cannot fix the time stepping; rather one can have a subtle control on it by reducing
this tolerance. Typically, we fix the number of poles to 50 000 and vary the tolerance on the
successive intervals 10−10 < RT < 10−6, 10−8 < RT < 10−4, 10−6 < RT < 10−2. Then we
fix the tolerance at the highest reasonable level 10−8 < RT < 10−4, and vary the number
of poles whereN × 10−4 varies from 1, 2.5, 5, 10. Another test of accuracy is performed
on exactly solvable two-pair pole dynamics [29 (I, section 5)] and can easily be adapted
to this case. A discussion of the convergence of the pole dynamics method for the case
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Figure 19. Positions of the first 20 poles from the pole dynamics forν = 10−2i and N = 105

at t = 1, 2, 3, 4, 5.

ν ∈ R can be found in [29, I]. The convergence of the (truncated) pole dynamics to the true
solution of the (infinite) Calogero dynamical system as the numberN of poles increases
and as the time stepping of the Runge–Kutta scheme is decreased improves as the argument
θ of ν increases toπ/2 and worsens as the magnitudeε of ν decreases. The convergence
improves with increasingθ because the position of the poles att∗ gets closer to the real
axis. The closer the poles are to the real axis, the better the convergence in the tails of the
solution becomes. Indeed, the most difficult case (computationally) occurs when argν = 0,
as discussed in [29, I].

When ν > 0, the behaviour of the poleβ1(t, ν) displayed in [29, I] describes the
evolution of the width of the analyticity strip of the viscous solution.

When ν ∈ iR, the behaviour of the poles is studied asε = |ν| decreases to 0. One
can observe a structuring of the pole behaviour into a spiralling motion at the end of which
they end close to the real axis fort ≈ t∗, t > t∗. It is the presence of these poles close
to the real axis which gives rise to rapid oscillations which are observed in both the pole
expansion reconstruction and the stationary phase approximation. We describe many cases
for ε ranging fromε = 10−2 to ε = 10−5 due to the drastic difference in the behaviour
of the poles displayed in figures 2–7. In many of these figures, we do not display the full
height of the oscillations in order to compare the pole dynamics with the stationary phase
approximation. The agreement between the two methods is remarkable (figures 8–10). The
few discrepancies which can be observed in these figures occur in the amplitude of the peaks
of certain oscillations. They are due to the extreme sensitivity of the pole reconstruction to
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Figure 20. =aj (t, ν) versus<aj (t, ν). Time evolution inC of aj (t, ν), j = −4, · · · , 4 for
ν = 10−3eiπ/4 and N = 105. tinitial = t∗ = 1 and tf inal = 4. nsteps = 80. Time-stepping
tolerance: 10−8 < LRT < 10−4.

the pole positions. The accuracy of the match between the stationary phase approximation
and the pole dynamics also serves as a justification for the pole dynamics.

Finally, only the caseε = 10−3 is treated for argν = π/4 to illustrate the behaviour of a
mixed dissipative–dispersive system (see (3.3)). In this case (argν = π/4), the diversity in
the behaviour of the poles in figure 20 is much less rich than that observed for argν = π/2.
Moreover, the number of oscillations is fixed to one and, as such, is less interesting to
observe. However, this case is included to provide a comparison with the (full) finite-
difference scheme (method of lines) displayed in figure 21.

7.3. Numerical branch-cut dynamics

Finally we present the results of numerical computations for the branch-cut dynamics
equation. Rather than solving (6.8) directly, we move pointsX(t) on the branch cut through
the equation

Ẋ(t) = 1

2
(ψ+ + ψ−)(X(t), t), (7.5)

in which ψ+ andψ− are the limits from the right and left, respectively, of the corresponding
solution of the inviscid Burgers equation. For the initial dataψ(x, 0) = 4x3 − x/t∗, the
positions of the poles are prescribed att = t∗ to be the pole positions for the Burgers
equation with viscosityν = εeiθ , as described in section 4 and [28]. In particular they lie
on the line argz = 3θ/4. Their location fort > t∗ is found by solving the ODE (7.5).
Moreover the solution values

ψ(x, t) = ψ0(x0) = 4x3
0 − x0/t∗ (7.6)
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Figure 21. <ψν(x, t) versusx. Comparison of pole dynamics (——) and finite-difference
approximation (· · · · · ·) for ν = 10−3eiπ/4 and N = 105 at t = 1, 2, 3, 4. Projection of pole
locations on the real axis (+).

are found through the inversion of the cubic equation [29, section 6]

x = x0 + t ψ0(x0) = 4tx3
0 + x0(t∗ − t)/t∗. (7.7)

At a complex pointx on the branch cut we have

ψ+(x, t) = ψ0(x+(x, t), t), ψ−(x, t) = ψ0(x−(x, t), t), (7.8)

in which x+ and x− are the limiting values ofx0 from the right and left at the pointx.
For large positive or negative values ofx on the real line, the cubic equation (7.7) has a
single real valuex0 = x0(x, t). The valuex+(x, t) is the analytic continuation of this real
value ofx0(x, t) from the positive real axis; the valuex−(x, t) is the analytic continuation
of x0(x, t) from the negative real axis.

Results of numerical solution of the branch-cut dynamics equation in the form (7.5)
corresponding to initial data (7.6) are presented in figures 11–14 forν = 10−5i, 10−4i, 10−3i
and 10−3

√
i. As described in section 6.1, the equation for the branch cut depends only on

θ = arg ν; the value ofε is only used to determine the positions of the poles att = t∗
corresponding to that value ofν. In each of these figures, as well as in similar computations
for other values ofν, we see that the branch cut is a line of angle 3θ/4 at t = t∗ and that,
as t increases, the branch cut again approaches a line but with a small angle. Forθ = π/2
(i.e. ν = iε) the branch cut moves onto the real line ast increases.

Next we compare the pole positions computed by the branch-cut dynamics method with
those obtained from the Calogero equations. The Calogero system is exact, except for
discretization int and a cut-off in the numberN of poles. In the caseν = 10−3

√
i, there

is excellent agreement between the results from the branch-cut dynamics (figure 14) and
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those from the Calogero system (figure 15). The cases withν = iε are more interesting,
since there are oscillations in the corresponding Burgers solution. The branch-cut dynamics
results of figures 11–13 are in excellent agreement with the Calogero results of figures 16–
18 for poles that are outside the caustic points of the inviscid Burgers solution. Within the
caustic region, the poles from the branch-cut dynamics lie on the real axis, while those from
Calogero lie slightly off. On the other hand, the real parts of the pole positions from the
two methods are in good agreement.

This shows that the branch-cut dynamics do a very good job of describing the pole
dynamics for Burgers equation with complex viscosity, except within the caustic region for
imaginary viscosity.
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Appendix. Generalization of the initial data to ψψ0(x) = 2nx2n−1 − x/t∗

Using a result in [29, I] concerning the asymptotic behaviour of thekth zero µk,n of
Fn(µ) = ∫ ∞

−∞ eµ (2niz−z2n)dz, we can prove the following.

Property A.1. Let n ∈ N, n > 2, and letν = εeiθ ∈ C+ = {ε > 0, |θ | 6 π/2}. Thekth
ordered pole of the solution att = t∗ arising from the initial dataψ0(x) = 2nx2n−1 − x/t∗
is located at

ak,n(t∗, ν = εeiθ ) = ei 2n−1
2n

θ i2nt∗
(
2εµk,n

) 2n−1
2n ,

where the coefficientsµk,n are asymptotically given by

µk,n = π

4n − 2
sec

(
π

4n − 2

) (
n − 1

2n − 1
+ 1 + 2k

)
+ O

(
1

k

)
ask → +∞.
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